Figure 10.1 Skew between computer clocks in a distributed system

Size: px
Start display at page:

Download "Figure 10.1 Skew between computer clocks in a distributed system"

Transcription

1 Figure 10.1 Skew between computer clocks in a distributed system Network Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

2 Figure 10.2 Clock synchronization using a time server m r m r Pp m t m t Time Server, server,ss Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

3 Figure 10.3 An example synchronization subnet in an NTP implementation Note: Arrows denote synchronization control, numbers denote strata. Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

4 Figure 10.4 Messages exchanged between a pair of NTP peers Server B T i 2 T i 1 Time m m' Server A T i 3 T i Time Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

5 Figure 10.5 Events occurring at three processes p 1 a b m 1 c d m 2 Physical time p 3 e f Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

6 Figure 10.6 Lamport timestamps for the events shown in Figure p 1 a b m c d m 2 Physical time p 3 1 e f 5 Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

7 Figure 10.7 Vector timestamps for the events shown in Figure 10.5 (1,0,0) (2,0,0) p 1 a b m 1 (2,1,0) (2,2,0) c d m 2 Physical time p 3 (0,0,1) e f (2,2,2) Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

8 Figure 10.8 Detecting global properties p 1 a. Garbage collection object reference message garbage object p1 wait-for b. Deadlock wait-for p1 c. Termination passive activate passive Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

9 Figure 10.9 Cuts e 1 0 e 1 1 e 1 2 e 1 3 p 1 m 1 m 2 e 2 0 e 2 1 e 2 2 Physical time Inconsistent cut Consistent cut Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

10 Figure Chandy and Lamport s snapshot algorithm Marker receiving rule for process On p i s receipt of a marker message over channel c: if ( p i has not yet recorded its state) it records its process state now; records the state of c as the empty set; turns on recording of messages arriving over other incoming channels; else p i records the state of c as the set of messages it has received over c since it saved its state. end if Marker sending rule for process p i After p i has recorded its state, for each outgoing channel c: p i sends one marker message over c (before it sends any other message over c). p i Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

11 Figure Two processes and their initial states p c 1 2 c 1 $1000 (none) $ account widgets account widgets Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

12 Figure The execution of the processes in Figure Global state S 0 2. Global state S 1 3. Global state S 2 4. Global state S 3 c 2 <$1000, 0> p 1 (empty) <$50, 2000> c 1 c 2 (empty) <$900, 0> p 1 (Order 10, $100), M <$50, 2000> c 1 c 2 (empty) <$900, 0> p 1 (Order 10, $100), M <$50, 1995> c 1 c 2 (five widgets) <$900, 5> p 1 (Order 10, $100) <$50, 1995> c 1 (empty) (M = marker message) Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

13 Figure Reachability between states in the snapshot algorithm actual execution e 0,e 1,... S init recording begins recording ends S final S snap pre-snap: e' 0,e' 1,...e' R-1 post-snap: e' R,e' R+1,... Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

14 Figure Vector timestamps and variable values for the execution of Figure 10.9 p 1 (1,0) (2,0) (3,0) (4,3) x 1 = 1 x 1 = 100 x 1 = 105 x 1 = 90 m 1 m 2 x 2 = 100 x 2 = 95 x 2 = 90 (2,1) (2,2) (2,3) Cut C 2 Physical time Cut C 1 Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

15 Figure The lattice of global states for the execution of Figure Level 0 S 00 1 S S 30 S 20 S 21 S ij = global state after i events at process 1 and j events at process S31 S 32 S 22 S 23 6 S 33 7 S 43 Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

16 Figure Algorithms to evaluate possibly φ and definitely φ 1. Evaluating possibly φ for global history H of N processes L := 0; States := { s 0 1 s 0 0 (, 2,, s N )}; while ( φ( S) = False for all S States) L := L + 1; Reachable := { S : S reachable in H from some S States level( S ) = L}; States := Reachable end while output "possibly φ"; 2. Evaluating definitely φ for global history H of N processes L := 0; if (φ s 0 1 s 0 0 (, 2,, s N )) then States := {} else States := { s 0 1 s 0 0 (, 2,, s N )}; while (States {}) L := L + 1; Reachable := { S : S reachable in H from some S States level( S' ) = L}; States := { S Reachable: φ( S) = False} end while output "definitely φ"; Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

17 Figure Evaluating definitely φ Level 0 F 1 F 2 F F = (φ(s) = False); T = (φ(s) = True) F F T? Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

Slides for Chapter 14: Time and Global States

Slides for Chapter 14: Time and Global States Slides for Chapter 14: Time and Global States From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Clocks,

More information

Chapter 11 Time and Global States

Chapter 11 Time and Global States CSD511 Distributed Systems 分散式系統 Chapter 11 Time and Global States 吳俊興 國立高雄大學資訊工程學系 Chapter 11 Time and Global States 11.1 Introduction 11.2 Clocks, events and process states 11.3 Synchronizing physical

More information

Time is an important issue in DS

Time is an important issue in DS Chapter 0: Time and Global States Introduction Clocks,events and process states Synchronizing physical clocks Logical time and logical clocks Global states Distributed debugging Summary Time is an important

More information

Snapshots. Chandy-Lamport Algorithm for the determination of consistent global states <$1000, 0> <$50, 2000> mark. (order 10, $100) mark

Snapshots. Chandy-Lamport Algorithm for the determination of consistent global states <$1000, 0> <$50, 2000> mark. (order 10, $100) mark 8 example: P i P j (5 widgets) (order 10, $100) cji 8 ed state P i : , P j : , c ij : , c ji : Distributed Systems

More information

Agreement. Today. l Coordination and agreement in group communication. l Consensus

Agreement. Today. l Coordination and agreement in group communication. l Consensus Agreement Today l Coordination and agreement in group communication l Consensus Events and process states " A distributed system a collection P of N singlethreaded processes w/o shared memory Each process

More information

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No!

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No! A subtle problem An obvious problem when LC = t do S doesn t make sense for Lamport clocks! there is no guarantee that LC will ever be S is anyway executed after LC = t Fixes: if e is internal/send and

More information

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H Cuts Cuts A cut C is a subset of the global history of H C = h c 1 1 hc 2 2...hc n n A cut C is a subset of the global history of H The frontier of C is the set of events e c 1 1,ec 2 2,...ec n n C = h

More information

Our Problem. Model. Clock Synchronization. Global Predicate Detection and Event Ordering

Our Problem. Model. Clock Synchronization. Global Predicate Detection and Event Ordering Our Problem Global Predicate Detection and Event Ordering To compute predicates over the state of a distributed application Model Clock Synchronization Message passing No failures Two possible timing assumptions:

More information

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks Vector Clocks and Distributed Snapshots Today. Logical Time: Vector clocks 2. Distributed lobal Snapshots CS 48: Distributed Systems Lecture 5 Kyle Jamieson 2 Motivation: Distributed discussion board Distributed

More information

Chandy-Lamport Snapshotting

Chandy-Lamport Snapshotting Chandy-Lamport Snapshotting COS 418: Distributed Systems Precept 8 Themis Melissaris and Daniel Suo [Content adapted from I. Gupta] Agenda What are global snapshots? The Chandy-Lamport algorithm Why does

More information

Crashed router. Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

Crashed router. Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education Figure 11.1 A network artition Crashed router Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education 2001 1 Figure 11.2 Server managing

More information

Ordering and Consistent Cuts Nicole Caruso

Ordering and Consistent Cuts Nicole Caruso Ordering and Consistent Cuts Nicole Caruso Cornell University Dept. of Computer Science Time, Clocks, and the Ordering of Events in a Distributed System Leslie Lamport Stanford Research Institute About

More information

Clocks in Asynchronous Systems

Clocks in Asynchronous Systems Clocks in Asynchronous Systems The Internet Network Time Protocol (NTP) 8 Goals provide the ability to externally synchronize clients across internet to UTC provide reliable service tolerating lengthy

More information

Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms. CS 249 Project Fall 2005 Wing Wong

Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms. CS 249 Project Fall 2005 Wing Wong Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms CS 249 Project Fall 2005 Wing Wong Outline Introduction Asynchronous distributed systems, distributed computations,

More information

CptS 464/564 Fall Prof. Dave Bakken. Cpt. S 464/564 Lecture January 26, 2014

CptS 464/564 Fall Prof. Dave Bakken. Cpt. S 464/564 Lecture January 26, 2014 Overview of Ordering and Logical Time Prof. Dave Bakken Cpt. S 464/564 Lecture January 26, 2014 Context This material is NOT in CDKB5 textbook Rather, from second text by Verissimo and Rodrigues, chapters

More information

CS505: Distributed Systems

CS505: Distributed Systems Cristina Nita-Rotaru CS505: Distributed Systems Ordering events. Lamport and vector clocks. Global states. Detecting failures. Required reading for this topic } Leslie Lamport,"Time, Clocks, and the Ordering

More information

Distributed Systems Time and Global State

Distributed Systems Time and Global State Distributed Systems Time and Global State Allan Clark School of Informatics University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/ds Autumn Term 2012 Distributed Systems Time and Global State

More information

Distributed Algorithms Time, clocks and the ordering of events

Distributed Algorithms Time, clocks and the ordering of events Distributed Algorithms Time, clocks and the ordering of events Alberto Montresor University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

7680: Distributed Systems

7680: Distributed Systems Cristina Nita-Rotaru 7680: Distributed Systems Physical and logical clocks. Global states. Failure detection. Ordering events in distributed systems } Time is essential for ordering events in a distributed

More information

Distributed Computing. Synchronization. Dr. Yingwu Zhu

Distributed Computing. Synchronization. Dr. Yingwu Zhu Distributed Computing Synchronization Dr. Yingwu Zhu Topics to Discuss Physical Clocks Logical Clocks: Lamport Clocks Classic paper: Time, Clocks, and the Ordering of Events in a Distributed System Lamport

More information

Time. To do. q Physical clocks q Logical clocks

Time. To do. q Physical clocks q Logical clocks Time To do q Physical clocks q Logical clocks Events, process states and clocks A distributed system A collection P of N single-threaded processes (p i, i = 1,, N) without shared memory The processes in

More information

Distributed Systems Fundamentals

Distributed Systems Fundamentals February 17, 2000 ECS 251 Winter 2000 Page 1 Distributed Systems Fundamentals 1. Distributed system? a. What is it? b. Why use it? 2. System Architectures a. minicomputer mode b. workstation model c. processor

More information

Clock Synchronization

Clock Synchronization Today: Canonical Problems in Distributed Systems Time ordering and clock synchronization Leader election Mutual exclusion Distributed transactions Deadlock detection Lecture 11, page 7 Clock Synchronization

More information

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour Distributed Algorithms (CAS 769) Week 1: Introduction, Logical clocks, Snapshots Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Distributed Algorithms

More information

CS505: Distributed Systems

CS505: Distributed Systems Department of Computer Science CS505: Distributed Systems Lecture 5: Time in Distributed Systems Overview Time and Synchronization Logical Clocks Vector Clocks Distributed Systems Asynchronous systems:

More information

Distributed Algorithms

Distributed Algorithms Distributed Algorithms December 17, 2008 Gerard Tel Introduction to Distributed Algorithms (2 nd edition) Cambridge University Press, 2000 Set-Up of the Course 13 lectures: Wan Fokkink room U342 email:

More information

Time. Today. l Physical clocks l Logical clocks

Time. Today. l Physical clocks l Logical clocks Time Today l Physical clocks l Logical clocks Events, process states and clocks " A distributed system a collection P of N singlethreaded processes without shared memory Each process p i has a state s

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 & Clocks, Clocks, and the Ordering of Events in a Distributed System. L. Lamport, Communications of the ACM, 1978 Notes 15: & Clocks CS 347 Notes

More information

Absence of Global Clock

Absence of Global Clock Absence of Global Clock Problem: synchronizing the activities of different part of the system (e.g. process scheduling) What about using a single shared clock? two different processes can see the clock

More information

DISTRIBUTED COMPUTER SYSTEMS

DISTRIBUTED COMPUTER SYSTEMS DISTRIBUTED COMPUTER SYSTEMS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Topics Clock Synchronization Physical Clocks Clock Synchronization Algorithms

More information

Distributed Systems. 06. Logical clocks. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 06. Logical clocks. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 06. Logical clocks Paul Krzyzanowski Rutgers University Fall 2017 2014-2017 Paul Krzyzanowski 1 Logical clocks Assign sequence numbers to messages All cooperating processes can agree

More information

Causality and Time. The Happens-Before Relation

Causality and Time. The Happens-Before Relation Causality and Time The Happens-Before Relation Because executions are sequences of events, they induce a total order on all the events It is possible that two events by different processors do not influence

More information

Causality & Concurrency. Time-Stamping Systems. Plausibility. Example TSS: Lamport Clocks. Example TSS: Vector Clocks

Causality & Concurrency. Time-Stamping Systems. Plausibility. Example TSS: Lamport Clocks. Example TSS: Vector Clocks Plausible Clocks with Bounded Inaccuracy Causality & Concurrency a b exists a path from a to b Brad Moore, Paul Sivilotti Computer Science & Engineering The Ohio State University paolo@cse.ohio-state.edu

More information

Information System Design IT60105

Information System Design IT60105 n IT60105 Lecture 13 Statechart Diagrams Lecture #13 What is a Statechart diagram? Basic components in a state-chart diagram and their notations Examples: Process Order in OLP system What is a Statechart

More information

Systems of Linear Equations

Systems of Linear Equations 4 Systems of Linear Equations Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 4.1, Slide 1 1-1 4.1 Systems of Linear Equations in Two Variables R.1 Fractions Objectives 1. Decide whether an

More information

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 06: Synchronization Version: November 16, 2009 2 / 39 Contents Chapter

More information

Distributed Systems 8L for Part IB

Distributed Systems 8L for Part IB Distributed Systems 8L for Part IB Handout 2 Dr. Steven Hand 1 Clocks Distributed systems need to be able to: order events produced by concurrent processes; synchronize senders and receivers of messages;

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 6 (version April 7, 28) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.2. Tel: (2)

More information

Exclusive Access to Resources in Distributed Shared Memory Architecture

Exclusive Access to Resources in Distributed Shared Memory Architecture Exclusive Access to Resources in Distributed Shared Memory Architecture Ludwik Czaja 1,2 1 Institute of Informatics, The University of Warsaw 2 University of Economics and Computer Science Vistula in Warsaw

More information

CS5412: REPLICATION, CONSISTENCY AND CLOCKS

CS5412: REPLICATION, CONSISTENCY AND CLOCKS 1 CS5412: REPLICATION, CONSISTENCY AND CLOCKS Lecture X Ken Birman Recall that clouds have tiers 2 Up to now our focus has been on client systems and the network, and the way that the cloud has reshaped

More information

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 416 Distributed Systems Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 1 Important Lessons (last lecture) Clocks on different systems will always behave differently Skew and drift

More information

AGREEMENT PROBLEMS (1) Agreement problems arise in many practical applications:

AGREEMENT PROBLEMS (1) Agreement problems arise in many practical applications: AGREEMENT PROBLEMS (1) AGREEMENT PROBLEMS Agreement problems arise in many practical applications: agreement on whether to commit or abort the results of a distributed atomic action (e.g. database transaction)

More information

Time, Clocks, and the Ordering of Events in a Distributed System

Time, Clocks, and the Ordering of Events in a Distributed System Time, Clocks, and the Ordering of Events in a Distributed System Motivating example: a distributed compilation service FTP server storing source files, object files, executable file stored files have timestamps,

More information

MODELING TIME AND EVENTS IN A DISTRIBUTED SYSTEM

MODELING TIME AND EVENTS IN A DISTRIBUTED SYSTEM MODELING TIME AND EVENTS IN A DISTRIBUTED SYSTEM Joseph Spring School of Computing, University of Hertfordshire, College Lane, Hatfield. AL10 9AB UK e-mail: j.spring @ herts.ac.uk 1. Distributed Systems

More information

Section 6 Fault-Tolerant Consensus

Section 6 Fault-Tolerant Consensus Section 6 Fault-Tolerant Consensus CS586 - Panagiota Fatourou 1 Description of the Problem Consensus Each process starts with an individual input from a particular value set V. Processes may fail by crashing.

More information

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Agreement Protocols CS60002: Distributed Systems Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Classification of Faults Based on components that failed Program

More information

SDS developer guide. Develop distributed and parallel applications in Java. Nathanaël Cottin. version

SDS developer guide. Develop distributed and parallel applications in Java. Nathanaël Cottin. version SDS developer guide Develop distributed and parallel applications in Java Nathanaël Cottin sds@ncottin.net http://sds.ncottin.net version 0.0.3 Copyright 2007 - Nathanaël Cottin Permission is granted to

More information

MAD. Models & Algorithms for Distributed systems -- 2/5 -- download slides at

MAD. Models & Algorithms for Distributed systems -- 2/5 -- download slides at MAD Models & Algorithms for Distributed systems -- /5 -- download slides at http://people.rennes.inria.fr/eric.fabre/ 1 Today Runs/executions of a distributed system are partial orders of events We introduce

More information

Distributed Consensus

Distributed Consensus Distributed Consensus Reaching agreement is a fundamental problem in distributed computing. Some examples are Leader election / Mutual Exclusion Commit or Abort in distributed transactions Reaching agreement

More information

6.852: Distributed Algorithms Fall, Class 24

6.852: Distributed Algorithms Fall, Class 24 6.852: Distributed Algorithms Fall, 2009 Class 24 Today s plan Self-stabilization Self-stabilizing algorithms: Breadth-first spanning tree Mutual exclusion Composing self-stabilizing algorithms Making

More information

Formal Methods for Monitoring Distributed Computations

Formal Methods for Monitoring Distributed Computations Formal Methods for Monitoring Distributed Computations Vijay K. Garg Parallel and Distributed Systems Lab, Department of Electrical and Computer Engineering, The University of Texas at Austin, FRIDA 15

More information

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation Logical Time Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation 2013 ACM Turing Award:

More information

CS 425 / ECE 428 Distributed Systems Fall Indranil Gupta (Indy) Oct. 5, 2017 Lecture 12: Time and Ordering All slides IG

CS 425 / ECE 428 Distributed Systems Fall Indranil Gupta (Indy) Oct. 5, 2017 Lecture 12: Time and Ordering All slides IG CS 425 / ECE 428 Distributed Systems Fall 2017 Indranil Gupta (Indy) Oct. 5, 2017 Lecture 12: Time and Ordering All slides IG Why Synchronization? You want to catch a bus at 6.05 pm, but your watch is

More information

S1 S2. checkpoint. m m2 m3 m4. checkpoint P checkpoint. P m5 P

S1 S2. checkpoint. m m2 m3 m4. checkpoint P checkpoint. P m5 P On Consistent Checkpointing in Distributed Systems Guohong Cao, Mukesh Singhal Department of Computer and Information Science The Ohio State University Columbus, OH 43201 E-mail: fgcao, singhalg@cis.ohio-state.edu

More information

Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM

Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM Wan Fokkink (Vrije Universiteit, Section Theoretical Computer Science CWI, Embedded Systems Group Amsterdam, The

More information

CS505: Distributed Systems

CS505: Distributed Systems Department of Computer Science CS505: Distributed Systems Lecture 10: Consensus Outline Consensus impossibility result Consensus with S Consensus with Ω Consensus Most famous problem in distributed computing

More information

Reliable Broadcast for Broadcast Busses

Reliable Broadcast for Broadcast Busses Reliable Broadcast for Broadcast Busses Ozalp Babaoglu and Rogerio Drummond. Streets of Byzantium: Network Architectures for Reliable Broadcast. IEEE Transactions on Software Engineering SE- 11(6):546-554,

More information

A Communication-Induced Checkpointing Protocol that Ensures Rollback-Dependency Trackability

A Communication-Induced Checkpointing Protocol that Ensures Rollback-Dependency Trackability A Communication-Induced Checkpointing Protocol that Ensures Rollback-Dependency Trackability Roberto BALDONI Jean-Michel HELARY y Achour MOSTEFAOUI y Michel RAYNAL y Abstract Considering an application

More information

Using Happens-Before Relationship to debug MPI non-determinism. Anh Vo and Alan Humphrey

Using Happens-Before Relationship to debug MPI non-determinism. Anh Vo and Alan Humphrey Using Happens-Before Relationship to debug MPI non-determinism Anh Vo and Alan Humphrey {avo,ahumphre}@cs.utah.edu Distributed event ordering is crucial Bob receives two undated letters from his dad One

More information

Fault-Tolerant Consensus

Fault-Tolerant Consensus Fault-Tolerant Consensus CS556 - Panagiota Fatourou 1 Assumptions Consensus Denote by f the maximum number of processes that may fail. We call the system f-resilient Description of the Problem Each process

More information

Do we have a quorum?

Do we have a quorum? Do we have a quorum? Quorum Systems Given a set U of servers, U = n: A quorum system is a set Q 2 U such that Q 1, Q 2 Q : Q 1 Q 2 Each Q in Q is a quorum How quorum systems work: A read/write shared register

More information

Distributed Mutual Exclusion Based on Causal Ordering

Distributed Mutual Exclusion Based on Causal Ordering Journal of Computer Science 5 (5): 398-404, 2009 ISSN 1549-3636 2009 Science Publications Distributed Mutual Exclusion Based on Causal Ordering Mohamed Naimi and Ousmane Thiare Department of Computer Science,

More information

Monitoring Functions on Global States of Distributed Programs. The University of Texas at Austin, Austin, Texas June 10, 1994.

Monitoring Functions on Global States of Distributed Programs. The University of Texas at Austin, Austin, Texas June 10, 1994. Monitoring Functions on Global States of Distributed Programs Alexander I. Tomlinson alext@pine.ece.utexas.edu Vijay K. Garg garg@ece.utexas.edu Department of Electrical and Computer Engineering The University

More information

Determining Consistent States of Distributed Objects Participating in a Remote Method Call

Determining Consistent States of Distributed Objects Participating in a Remote Method Call Determining Consistent States of Distributed Objects Participating in a Remote Method Call Magdalena S lawińska and Bogdan Wiszniewski Faculty of Electronics, Telecommunications and Informatics Gdańsk

More information

Time in Distributed Systems: Clocks and Ordering of Events

Time in Distributed Systems: Clocks and Ordering of Events Time in Distributed Systems: Clocks and Ordering of Events Clocks in Distributed Systems Needed to Order two or more events happening at same or different nodes (Ex: Consistent ordering of updates at different

More information

An Asynchronous Message-Passing Distributed Algorithm for the Generalized Local Critical Section Problem

An Asynchronous Message-Passing Distributed Algorithm for the Generalized Local Critical Section Problem algorithms Article An Asynchronous Message-Passing Distributed Algorithm for the Generalized Local Critical Section Problem Sayaka Kamei 1, * and Hirotsugu Kakugawa 2 1 Graduate School of Engineering,

More information

Clock Synchronization

Clock Synchronization What s it or? Temporal ordering o events produced by concurrent processes Clock Synchronization Synchronization between senders and receivers o messages Coordination o joint activity Serialization o concurrent

More information

Overview: Synchronous Computations

Overview: Synchronous Computations Overview: Synchronous Computations barriers: linear, tree-based and butterfly degrees of synchronization synchronous example 1: Jacobi Iterations serial and parallel code, performance analysis synchronous

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 5 Routing Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Warning These notes are not self-contained, probably not understandable, unless you also

More information

On Stabilizing Departures in Overlay Networks

On Stabilizing Departures in Overlay Networks On Stabilizing Departures in Overlay Networks Dianne Foreback 1, Andreas Koutsopoulos 2, Mikhail Nesterenko 1, Christian Scheideler 2, and Thim Strothmann 2 1 Kent State University 2 University of Paderborn

More information

Coordination. Failures and Consensus. Consensus. Consensus. Overview. Properties for Correct Consensus. Variant I: Consensus (C) P 1. v 1.

Coordination. Failures and Consensus. Consensus. Consensus. Overview. Properties for Correct Consensus. Variant I: Consensus (C) P 1. v 1. Coordination Failures and Consensus If the solution to availability and scalability is to decentralize and replicate functions and data, how do we coordinate the nodes? data consistency update propagation

More information

Minimal Spanning Tree

Minimal Spanning Tree 1 Minimal Spanning Tree CS60002: Distributed Systems Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Leader Election versus Spanning Tree Let C E be

More information

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson Distributed systems Lecture 4: Clock synchronisation; logical clocks Dr Robert N. M. Watson 1 Last time Started to look at time in distributed systems Coordinating actions between processes Physical clocks

More information

Modeling Concurrent Systems

Modeling Concurrent Systems Modeling Concurrent Systems Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

More information

inpg O MB No Special Technical May 1991 Using Consistent Subcuts for Detecting Stable Properties Keith Marzullo, Laura Sabel

inpg O MB No Special Technical May 1991 Using Consistent Subcuts for Detecting Stable Properties Keith Marzullo, Laura Sabel AP~~~)7 lon PAGE Form Approved inpg O MB No. 0704-0188 AD-A237 122O.. 0... 0 1Mtismu. - et ds 0 n.,,t n 0oml0lon. Send toim lfe~ll WfdW this bnfl S t is Of SW ~th M OfS Wfis~w of Wonnden. inc vic. Oectae

More information

Distributed Termination Detection for Dynamic Systems

Distributed Termination Detection for Dynamic Systems Distributed Termination Detection for Dynamic Systems D.M. Dhamdhere Sridhar Iyer E.K.K.Reddy Dept of Computer Science IIT Bombay Mumbai, INDIA Abstract A symmetric algorithm for detecting the termination

More information

Interplay of security and clock synchronization"

Interplay of security and clock synchronization July 13, 2010, P. R. Kumar " This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License." See http://creativecommons.org/licenses/by-nc-nd/3.0/" Interplay

More information

1 Lamport s Bakery Algorithm

1 Lamport s Bakery Algorithm Com S 6 Spring Semester 2009 Algorithms for Multiprocessor Synchronization Lecture 3: Tuesday, 27th January 2009 Instructor: Soma Chaudhuri Scribe: Neeraj Khanolkar Lamport s Bakery Algorithm Algorithm

More information

Efficient Notification Ordering for Geo-Distributed Pub/Sub Systems

Efficient Notification Ordering for Geo-Distributed Pub/Sub Systems R. BALDONI ET AL. 1 Efficient Notification Ordering for Geo-Distributed Pub/Sub Systems Supplemental material Roberto Baldoni, Silvia Bonomi, Marco Platania, and Leonardo Querzoni 1 ALGORITHM PSEUDO-CODE

More information

S. Neogy 1 A. Sinha 1 P. K. Das 2 1 Department of Computer Science & Engg., Jadavpur University, India sarmisthaneogy@gmail.com 2 Faculty of Engg. & Tech., Mody Institute of Technology & Science, India

More information

Causality and physical time

Causality and physical time Logical Time Causality and physical time Causality is fundamental to the design and analysis of parallel and distributed computing and OS. Distributed algorithms design Knowledge about the progress Concurrency

More information

Simulation of Spiking Neural P Systems using Pnet Lab

Simulation of Spiking Neural P Systems using Pnet Lab Simulation of Spiking Neural P Systems using Pnet Lab Venkata Padmavati Metta Bhilai Institute of Technology, Durg vmetta@gmail.com Kamala Krithivasan Indian Institute of Technology, Madras kamala@iitm.ac.in

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems Luca Abeni luca.abeni@unitn.it Interacting Tasks Until now, only independent tasks... A job never blocks or suspends A task only blocks on job termination In real world, jobs

More information

INF Models of concurrency

INF Models of concurrency INF4140 - Models of concurrency RPC and Rendezvous INF4140 Lecture 15. Nov. 2017 RPC and Rendezvous Outline More on asynchronous message passing interacting processes with different patterns of communication

More information

Unreliable Failure Detectors for Reliable Distributed Systems

Unreliable Failure Detectors for Reliable Distributed Systems Unreliable Failure Detectors for Reliable Distributed Systems A different approach Augment the asynchronous model with an unreliable failure detector for crash failures Define failure detectors in terms

More information

Distributed Deadlock-Avoidance. IMDEA Software Institute, Spain

Distributed Deadlock-Avoidance. IMDEA Software Institute, Spain Distributed Deadlock-voidance César Sánchez IMDE Software Institute, Spain DRV Workshop, ertinoro 19-May, 216 Distributed Deadlock-voidance little story about how static knowledge can help solve unsolvable

More information

On Equilibria of Distributed Message-Passing Games

On Equilibria of Distributed Message-Passing Games On Equilibria of Distributed Message-Passing Games Concetta Pilotto and K. Mani Chandy California Institute of Technology, Computer Science Department 1200 E. California Blvd. MC 256-80 Pasadena, US {pilotto,mani}@cs.caltech.edu

More information

CSC501 Operating Systems Principles. Deadlock

CSC501 Operating Systems Principles. Deadlock CSC501 Operating Systems Principles Deadlock 1 Last Lecture q Priority Inversion Q Priority Inheritance Protocol q Today Q Deadlock 2 The Deadlock Problem q Definition Q A set of blocked processes each

More information

Efficient Dependency Tracking for Relevant Events in Concurrent Systems

Efficient Dependency Tracking for Relevant Events in Concurrent Systems Distributed Computing manuscript No. (will be inserted by the editor) Anurag Agarwal Vijay K. Garg Efficient Dependency Tracking for Relevant Events in Concurrent Systems Received: date / Accepted: date

More information

Causal Broadcast Seif Haridi

Causal Broadcast Seif Haridi Causal Broadcast Seif Haridi haridi@kth.se Motivation Assume we have a chat application Whatever written is reliably broadcast to group If you get the following output, is it ok? [Paris] Are you sure,

More information

Chapter 7 HYPOTHESIS-BASED INVESTIGATION OF DIGITAL TIMESTAMPS. 1. Introduction. Svein Willassen

Chapter 7 HYPOTHESIS-BASED INVESTIGATION OF DIGITAL TIMESTAMPS. 1. Introduction. Svein Willassen Chapter 7 HYPOTHESIS-BASED INVESTIGATION OF DIGITAL TIMESTAMPS Svein Willassen Abstract Timestamps stored on digital media play an important role in digital investigations. However, the evidentiary value

More information

Applications of Petri Nets

Applications of Petri Nets Applications of Petri Nets Presenter: Chung-Wei Lin 2010.10.28 Outline Revisiting Petri Nets Application 1: Software Syntheses Theory and Algorithm Application 2: Biological Networks Comprehensive Introduction

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

CS145: Probability & Computing Lecture 24: Algorithms

CS145: Probability & Computing Lecture 24: Algorithms CS145: Probability & Computing Lecture 24: Algorithms Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis, Introduction to Probability, 2008 Pitman, Probability,

More information

Distributed Systems. Time, Clocks, and Ordering of Events

Distributed Systems. Time, Clocks, and Ordering of Events Distributed Systems Time, Clocks, and Ordering of Events Björn Franke University of Edinburgh 2016/2017 Today Last lecture: Basic Algorithms Today: Time, clocks, NTP Ref: CDK Causality, ordering, logical

More information

Benchmarking Model Checkers with Distributed Algorithms. Étienne Coulouma-Dupont

Benchmarking Model Checkers with Distributed Algorithms. Étienne Coulouma-Dupont Benchmarking Model Checkers with Distributed Algorithms Étienne Coulouma-Dupont November 24, 2011 Introduction The Consensus Problem Consensus : application Paxos LastVoting Hypothesis The Algorithm Analysis

More information

Outline F eria AADL behavior 1/ 78

Outline F eria AADL behavior 1/ 78 Outline AADL behavior Annex Jean-Paul Bodeveix 2 Pierre Dissaux 3 Mamoun Filali 2 Pierre Gaufillet 1 François Vernadat 2 1 AIRBUS-FRANCE 2 FéRIA 3 ELLIDIS SAE AS2C Detroit Michigan April 2006 FéRIA AADL

More information

Distributed Systems. Time, clocks, and Ordering of events. Rik Sarkar. University of Edinburgh Spring 2018

Distributed Systems. Time, clocks, and Ordering of events. Rik Sarkar. University of Edinburgh Spring 2018 Distributed Systems Time, clocks, and Ordering of events Rik Sarkar University of Edinburgh Spring 2018 Notes Today: Time, clocks, NTP Ref: CDK Causality, ordering, logical clocks: Ref: VG, CDK Time Ordering

More information

6.852: Distributed Algorithms Fall, Class 25

6.852: Distributed Algorithms Fall, Class 25 6.852: Distributed Algorithms Fall, 2009 Class 25 Today s plan Partially synchronous (timed) distributed systems Modeling timed systems Proof methods Mutual exclusion in timed systems Consensus in timed

More information

Socket Programming. Daniel Zappala. CS 360 Internet Programming Brigham Young University

Socket Programming. Daniel Zappala. CS 360 Internet Programming Brigham Young University Socket Programming Daniel Zappala CS 360 Internet Programming Brigham Young University Sockets, Addresses, Ports Clients and Servers 3/33 clients request a service from a server using a protocol need an

More information