Interplay of security and clock synchronization"

Size: px
Start display at page:

Download "Interplay of security and clock synchronization""

Transcription

1 July 13, 2010, P. R. Kumar " This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License." See Interplay of security and clock synchronization" Yih-Chun Hu and P.R. Kumar Dept. of Electrical and Computer Engineering, and" Coordinated Science Lab" University of Illinois, Urbana-Champaign" Sep 4-5, 2008" 1/20

2 Clock synchronization over networks" Knowledge of time is important in Networks" Communication network protocols" Sensor network applications" Networked control" However no two clocks agree Several issues" How to synchronize clocks in wireless networks?" Can clock synchronization be helpful vis-à-vis security?" And what about security of clock synchronization itself?" 2/20

3 It is impossible to synchronize two clocks" Theorem (Graham & K ʻ04)" It is impossible to determine (d 12, d 21, a 2, b 2 ) through any packet exchanges" Reference Clock 1" d 12 d 21 Clock 2" r 1 = a 2 (s 1 + d 12 ) + b 2 τ 2 r 1 s 2 r 3 s 4 Skew a 2 τ 2 Offset b 2 τ 1 τ 1 d12 d 21 d 12 d 21 r 4 s 1 r 2 s 3 s 2 = a 2 (r 2 d 21 ) + b 2 r 1 s 2 r 3 = s 4... s r a 2 a s d 12 a r d 21 b "Rank 3: Cannot estimate 4 parameters" 3/20

4 So what is determinable?" r â 1 s * s a r a 2 â 2 ˆd12 a * * = 2 d 12 + â ˆb 1 a r 3 = s d 12 2 ˆd21 a * * 2 s 4 2 d 21 a 1 r d 21 ˆb b a * 2 := r (k ) (l ) 1,2 r 1,2 (k s ) (l ) 1 s 1 d * 12 := r (k ) 1,2 a * (k ) 2 s 1 d * * 21 := a * (l 2r ) (l ) 2,1 s 2 * a 2 a 2 ˆd 12 0 and ˆd 21 0 ˆb 2 [ a * 2 d * 21,a * 2 d * 12 ] (k r ) (k 1,2 = a 2 s ) 1 + a 2 d 12 + b 2 = a * (k 2 s ) 1 + a * * 2 d 12 4/20

5 Interplay between Clock Synchronization and Security (Hu & K ʼ08 )" 5/20

6 Man in the middle attack" What must a Man in the Middle do to remain undetected?" What resources does a Man in the Middle need to remain undetected?" How to challenge the Man in the Middle?" R" Can we synchronize clocks in spite of the Man in the Middle? " M" M provides a logical channel between S and R" M cannot decrypt any messages between S to R" M cannot alter any messages between S and R" S" M cannot create any fake messages between S and R" M can occasionally discard messages between S and R" 6/20

7 What can Man-in-the-Middle do?" 7/20

8 Affine forwarding policy" Without Man in the Middle" Time received is affine in" a SR! S Coefficient is estimate of skew" a SR (! S + d SR ) + b SR! S + d SR R" With Man in the Middle" Mʼs forwarding policy" Packet received at τ Forwarded at F(τ) Receipt time a SR M"! S + d SM has to be affine in"! S So F(τ) has to be affine in τ " ( F (! S + d SM ) + d ) MR + b SR! S! S a SR F (! S + d SM ) S" ( F (! S + d SM ) + d MR ) + b SR R" S" 8/20

9 Expansionary affine forwarding policy" Consider affine forwarding policy " F (! ) = " F! + # F Causality" Forwarding packet can only take place after receiving packet"! S R"! S + d SM M"! F (" S + d SM ) + # F S"! F (" S + d SM )+ # F $" S + d SM for all " S So "! F " 1 9/20

10 M can only add a delay to packets" Estimate of skew = Coefficient of " So skew estimate made by R with reference to S is" a SR! F Backward path skew estimate made by S with reference to R is" a RS! B But product of skew estimates has to be 1"! S! S ( ) + b SR a SR! F (" S + d SM ) + # F + d MR! S + d SM! F (" S + d SM ) + # F R" M" S" a SR! F a RS! B =! F! B = 1 a SR! F R" But! F " 1 and"! B " 1! F! B M" So"! F =! B = 1 Forwarding time is pure delay: F!" ( ) =! + " F S" a RS! B

11 Detecting a Half-duplex Man-in-the- Middle" 11/20

12 Detecting a Half-Duplex Man-in-the-Middle" Send a long packet of duration greater than d RS +d SR R" d SM " d RS +d SR +d SM" d SM +β F " M" 0" d RS +d SR" S" Simultaneous send to R while receiving from S" M will need to simultaneously receive and send for a positive duration: (d RS +d SR +d SM ) (d SM +β F ) = d RS +d SR β F > 0" 12/20

13 Detecting a Full-Duplex Man-in-the-Middle" 13/20

14 The Simultaneous Receive, Send, Receive Challenge (SRSR Challenge)" Let C S = Time taken by S to switch from Transmit to Receive mode" Let C R = Time taken by R to switch from Transmit to Receive mode" R can verify that M is forwarding if C S - d RS + C R < C S - d RS + d RM + d MR " d RS" C S -d RS" d SR " R" Send me a pkt from -100 to 0." I will send you a pkt at C S.. " Send me a pkt from -100 to 0." I will send you a pkt at C S.. " C S -d RS +d RM" d SM" M" S" -1000" -100" 0" C S " Simultaneous send to R and receive from R as well as S" If C R < d RM + d MR and C S d RS + d RM < d SM then M gets caught" 14/20

15 The Switch Time condition for detecting the Man-in-the-Middle" IF C R < d RM + d MR and C S d RS + d RM < d SM" " " " OR" X" X" +" If both violated, then C S + C R d RS + d SR " "C S < d SM + d MS and C R d SR + d SM < d RM" then M gets caught in one of the two directions" Suppose C R < d RM +d MR AND C S <d SM +d MS " Then C R +C S < d RM +d MR +d SM +d MS < d SR + d RS" Hence EITHER C S d RS + d RM < d SM OR C R d SR + d SM < d RM holds " Thus M gets caught in one of the two directions" 15/20

16 When is Man-in-the-Middle impossible to detect?" 16/20

17 Impossibility condition for detecting Man-in-the-Middle" Theorem" If C R > d MR +d RM OR C S > d MS +d SM Then Man-in-the-Middle can evade detection" Proof" Suppose C R > d MR +d RM wlog" Consider the following RS-Priority Detection Prevention Strategy for M" Choose forwarding delay 0 β F < C R d MR d RM for both R to S and S to R" Conflict resolution strategy: Give priority to RS packets (from R to S)" When packets from both R and S are incoming, listen only to R and not S" When M needs to transmit to both R and S, transmit only to S and not R! 17/20

18 RS Priority Detection Avoidance Strategy" All packets from R are received and sent to S" We only need to consider packets from S to R: Recall β F < C R d MR d RM " Receiver conflict" R cannot check reception" Transmitter conflict" R cannot check reception" β F +d MR +d RM <C R" β F +d MR +d RM <C R" -d RM" β F +d MR" R" -β F -d RM" d MR" R" X" 0" β F " X" M" S" -β F " 0" X" M" S" What M doesnʼt hear doesnʼt hurt" What M doesnʼt transmit doesnʼt hurt" 18/20

19 Man in the Middle Attack: Clocks, Detectability and Consequences" Theorem" A Half Duplex Man-in-the-Middle can always be detected" A Full Duplex Man-in-the-Middle will be detected by the SRSR Challenge if both turnaround times are short: C R < d RM +d MR AND C S <d SM +d MS " The Full Duplex Man-in-the-Middle can avoid detection by:" An RS-Priority Strategy with Low Forwarding Delay (RSLFD) if C R > d RM +d MR," By an SRLFD Policy if C S > d SM +d MS " The Double Full Duplex Man-in-the-Middle can avoid detection" Two simultaneous transmitters, two simultaneous receivers with shielding between transmitters and receivers, and two tunnels" Even when he can avoid detection" A Man-in-the-Middle can only add a pure delay in each direction" The delay should be small enough if Man-in-the-Middle is Full Duplex" So time-based applications are still temporally consistent! 19/20

20 Thank you" 20/20

Fundamental issues in networked control systems 2: Latencies and Time

Fundamental issues in networked control systems 2: Latencies and Time See last page and http://creativecommons.org/licenses/by-nc-nd/3.0/ Fundamental issues in networked control systems 2: Latencies and Time P. R. Kumar Dept. of Electrical and Computer Engineering, and Coordinated

More information

Introduction to Quantum Cryptography

Introduction to Quantum Cryptography Università degli Studi di Perugia September, 12th, 2011 BunnyTN 2011, Trento, Italy This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Quantum Mechanics

More information

Distributed Systems. 06. Logical clocks. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 06. Logical clocks. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 06. Logical clocks Paul Krzyzanowski Rutgers University Fall 2017 2014-2017 Paul Krzyzanowski 1 Logical clocks Assign sequence numbers to messages All cooperating processes can agree

More information

10/12/2016. An FSM with No Inputs Moves from State to State. ECE 120: Introduction to Computing. Eventually, the States Form a Loop

10/12/2016. An FSM with No Inputs Moves from State to State. ECE 120: Introduction to Computing. Eventually, the States Form a Loop University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering An FSM with No Inputs Moves from State to State What happens if an FSM has no inputs? ECE 120: Introduction to Computing

More information

Quantum Wireless Sensor Networks

Quantum Wireless Sensor Networks Quantum Wireless Sensor Networks School of Computing Queen s University Canada ntional Computation Vienna, August 2008 Main Result Quantum cryptography can solve the problem of security in sensor networks.

More information

Distributed Computing. Synchronization. Dr. Yingwu Zhu

Distributed Computing. Synchronization. Dr. Yingwu Zhu Distributed Computing Synchronization Dr. Yingwu Zhu Topics to Discuss Physical Clocks Logical Clocks: Lamport Clocks Classic paper: Time, Clocks, and the Ordering of Events in a Distributed System Lamport

More information

Network Security Based on Quantum Cryptography Multi-qubit Hadamard Matrices

Network Security Based on Quantum Cryptography Multi-qubit Hadamard Matrices Global Journal of Computer Science and Technology Volume 11 Issue 12 Version 1.0 July Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN:

More information

Common Information of Random Linear Network Coding Over A 1-Hop Broadcast Packet Erasure Channel

Common Information of Random Linear Network Coding Over A 1-Hop Broadcast Packet Erasure Channel Wang, ISIT 2011 p. 1/15 Common Information of Random Linear Network Coding Over A 1-Hop Broadcast Packet Erasure Channel Chih-Chun Wang, Jaemin Han Center of Wireless Systems and Applications (CWSA) School

More information

Time in Distributed Systems: Clocks and Ordering of Events

Time in Distributed Systems: Clocks and Ordering of Events Time in Distributed Systems: Clocks and Ordering of Events Clocks in Distributed Systems Needed to Order two or more events happening at same or different nodes (Ex: Consistent ordering of updates at different

More information

Clock Synchronization

Clock Synchronization Today: Canonical Problems in Distributed Systems Time ordering and clock synchronization Leader election Mutual exclusion Distributed transactions Deadlock detection Lecture 11, page 7 Clock Synchronization

More information

Slides for Chapter 14: Time and Global States

Slides for Chapter 14: Time and Global States Slides for Chapter 14: Time and Global States From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Clocks,

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modeling and Simulation NETW 707 Lecture 6 ARQ Modeling: Modeling Error/Flow Control Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Data Link Layer Data Link Layer provides

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

The Elliptic Curve in https

The Elliptic Curve in https The Elliptic Curve in https Marco Streng Universiteit Leiden 25 November 2014 Marco Streng (Universiteit Leiden) The Elliptic Curve in https 25-11-2014 1 The s in https:// HyperText Transfer Protocol

More information

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 416 Distributed Systems Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 1 Important Lessons (last lecture) Clocks on different systems will always behave differently Skew and drift

More information

Distributed Systems. Time, Clocks, and Ordering of Events

Distributed Systems. Time, Clocks, and Ordering of Events Distributed Systems Time, Clocks, and Ordering of Events Björn Franke University of Edinburgh 2016/2017 Today Last lecture: Basic Algorithms Today: Time, clocks, NTP Ref: CDK Causality, ordering, logical

More information

Fraud within Asymmetric Multi-Hop Cellular Networks

Fraud within Asymmetric Multi-Hop Cellular Networks Financial Cryptography 2005 EPFL, Lausanne, Switzerland ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Wireless networks Single-hop cellular network Multi-hop network Multi-hop cellular network Asymmetric multi-hop

More information

Agreement. Today. l Coordination and agreement in group communication. l Consensus

Agreement. Today. l Coordination and agreement in group communication. l Consensus Agreement Today l Coordination and agreement in group communication l Consensus Events and process states " A distributed system a collection P of N singlethreaded processes w/o shared memory Each process

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 & Clocks, Clocks, and the Ordering of Events in a Distributed System. L. Lamport, Communications of the ACM, 1978 Notes 15: & Clocks CS 347 Notes

More information

Distributed Systems. Time, clocks, and Ordering of events. Rik Sarkar. University of Edinburgh Spring 2018

Distributed Systems. Time, clocks, and Ordering of events. Rik Sarkar. University of Edinburgh Spring 2018 Distributed Systems Time, clocks, and Ordering of events Rik Sarkar University of Edinburgh Spring 2018 Notes Today: Time, clocks, NTP Ref: CDK Causality, ordering, logical clocks: Ref: VG, CDK Time Ordering

More information

On the Quality of Service of Failure Detectors. Sam Toueg Wei Chen, Marcos K. Aguilera (part of Wei ChenÕs PhD Thesis)

On the Quality of Service of Failure Detectors. Sam Toueg Wei Chen, Marcos K. Aguilera (part of Wei ChenÕs PhD Thesis) On the Quality of Service of Failure etectors Sam oueg Wei Chen, Marcos K. Aguilera part of Wei ChenÕs Ph hesis Abstract We study the quality of service QoS of failure detectors. By QoS, we mean a specification

More information

DISTRIBUTED COMPUTER SYSTEMS

DISTRIBUTED COMPUTER SYSTEMS DISTRIBUTED COMPUTER SYSTEMS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Topics Clock Synchronization Physical Clocks Clock Synchronization Algorithms

More information

Distributed Systems Fundamentals

Distributed Systems Fundamentals February 17, 2000 ECS 251 Winter 2000 Page 1 Distributed Systems Fundamentals 1. Distributed system? a. What is it? b. Why use it? 2. System Architectures a. minicomputer mode b. workstation model c. processor

More information

Notes on BAN Logic CSG 399. March 7, 2006

Notes on BAN Logic CSG 399. March 7, 2006 Notes on BAN Logic CSG 399 March 7, 2006 The wide-mouthed frog protocol, in a slightly different form, with only the first two messages, and time stamps: A S : A, {T a, B, K ab } Kas S B : {T s, A, K ab

More information

Multimedia Systems WS 2010/2011

Multimedia Systems WS 2010/2011 Multimedia Systems WS 2010/2011 15.11.2010 M. Rahamatullah Khondoker (Room # 36/410 ) University of Kaiserslautern Department of Computer Science Integrated Communication Systems ICSY http://www.icsy.de

More information

Chapter 6: Securing neighbor discovery

Chapter 6: Securing neighbor discovery Securit and Cooperation in Wireless Networks http://secowinet.epfl.ch/ the wormhole attack; centralized and decentralized wormhole detection mechanisms; 007 Levente Buttán and Jean-Pierre Hubau Introduction

More information

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Agreement Protocols CS60002: Distributed Systems Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Classification of Faults Based on components that failed Program

More information

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation Logical Time Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation 2013 ACM Turing Award:

More information

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson Distributed systems Lecture 4: Clock synchronisation; logical clocks Dr Robert N. M. Watson 1 Last time Started to look at time in distributed systems Coordinating actions between processes Physical clocks

More information

Practice Assignment 2 Discussion 24/02/ /02/2018

Practice Assignment 2 Discussion 24/02/ /02/2018 German University in Cairo Faculty of MET (CSEN 1001 Computer and Network Security Course) Dr. Amr El Mougy 1 RSA 1.1 RSA Encryption Practice Assignment 2 Discussion 24/02/2018-29/02/2018 Perform encryption

More information

Recap. CS514: Intermediate Course in Operating Systems. What time is it? This week. Reminder: Lamport s approach. But what does time mean?

Recap. CS514: Intermediate Course in Operating Systems. What time is it? This week. Reminder: Lamport s approach. But what does time mean? CS514: Intermediate Course in Operating Systems Professor Ken Birman Vivek Vishnumurthy: TA Recap We ve started a process of isolating questions that arise in big systems Tease out an abstract issue Treat

More information

Gradient Clock Synchronization

Gradient Clock Synchronization Noname manuscript No. (will be inserted by the editor) Rui Fan Nancy Lynch Gradient Clock Synchronization the date of receipt and acceptance should be inserted later Abstract We introduce the distributed

More information

CS505: Distributed Systems

CS505: Distributed Systems Cristina Nita-Rotaru CS505: Distributed Systems Ordering events. Lamport and vector clocks. Global states. Detecting failures. Required reading for this topic } Leslie Lamport,"Time, Clocks, and the Ordering

More information

Causality and Time. The Happens-Before Relation

Causality and Time. The Happens-Before Relation Causality and Time The Happens-Before Relation Because executions are sequences of events, they induce a total order on all the events It is possible that two events by different processors do not influence

More information

Figure 10.1 Skew between computer clocks in a distributed system

Figure 10.1 Skew between computer clocks in a distributed system Figure 10.1 Skew between computer clocks in a distributed system Network Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education 2001

More information

Chapter 11 Time and Global States

Chapter 11 Time and Global States CSD511 Distributed Systems 分散式系統 Chapter 11 Time and Global States 吳俊興 國立高雄大學資訊工程學系 Chapter 11 Time and Global States 11.1 Introduction 11.2 Clocks, events and process states 11.3 Synchronizing physical

More information

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2.0 THEOREM OF WIENER- KHINTCHINE An important technique in the study of deterministic signals consists in using harmonic functions to gain the spectral

More information

Chandy-Lamport Snapshotting

Chandy-Lamport Snapshotting Chandy-Lamport Snapshotting COS 418: Distributed Systems Precept 8 Themis Melissaris and Daniel Suo [Content adapted from I. Gupta] Agenda What are global snapshots? The Chandy-Lamport algorithm Why does

More information

Time. Today. l Physical clocks l Logical clocks

Time. Today. l Physical clocks l Logical clocks Time Today l Physical clocks l Logical clocks Events, process states and clocks " A distributed system a collection P of N singlethreaded processes without shared memory Each process p i has a state s

More information

Distributed Consensus

Distributed Consensus Distributed Consensus Reaching agreement is a fundamental problem in distributed computing. Some examples are Leader election / Mutual Exclusion Commit or Abort in distributed transactions Reaching agreement

More information

Entanglement and information

Entanglement and information Ph95a lecture notes for 0/29/0 Entanglement and information Lately we ve spent a lot of time examining properties of entangled states such as ab è 2 0 a b è Ý a 0 b è. We have learned that they exhibit

More information

Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks

Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks Shuangqing Wei Abstract Synchronization of relay nodes is an important and critical issue in exploiting cooperative

More information

HDR - A Hysteresis-Driven Routing Algorithm for Energy Harvesting Tag Networks

HDR - A Hysteresis-Driven Routing Algorithm for Energy Harvesting Tag Networks HDR - A Hysteresis-Driven Routing Algorithm for Energy Harvesting Tag Networks Adrian Segall arxiv:1512.06997v1 [cs.ni] 22 Dec 2015 March 12, 2018 Abstract The work contains a first attempt to treat the

More information

Time, Clocks, and the Ordering of Events in a Distributed System

Time, Clocks, and the Ordering of Events in a Distributed System Time, Clocks, and the Ordering of Events in a Distributed System Motivating example: a distributed compilation service FTP server storing source files, object files, executable file stored files have timestamps,

More information

Time Synchronization in WSNs: A Maximum Value Based Consensus Approach

Time Synchronization in WSNs: A Maximum Value Based Consensus Approach 211 5th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, 211 Time Synchronization in WSNs: A Maximum Value Based Consensus Approach Jianping

More information

Lecture on Sensor Networks

Lecture on Sensor Networks Lecture on Sensor Networks Cyclic Historical Redundancy Development Copyright (c) 2008 Dr. Thomas Haenselmann (University of Mannheim, Germany). Permission is granted to copy, distribute and/or modify

More information

Clocks in Asynchronous Systems

Clocks in Asynchronous Systems Clocks in Asynchronous Systems The Internet Network Time Protocol (NTP) 8 Goals provide the ability to externally synchronize clients across internet to UTC provide reliable service tolerating lengthy

More information

Immediate Detection of Predicates in Pervasive Environments

Immediate Detection of Predicates in Pervasive Environments Immediate Detection of redicates in ervasive Environments Ajay Kshemkalyani University of Illinois at Chicago November 30, 2010 A. Kshemkalyani (U Illinois at Chicago) Immediate Detection of redicates......

More information

TECHNICAL REPORT YL DISSECTING ZAB

TECHNICAL REPORT YL DISSECTING ZAB TECHNICAL REPORT YL-2010-0007 DISSECTING ZAB Flavio Junqueira, Benjamin Reed, and Marco Serafini Yahoo! Labs 701 First Ave Sunnyvale, CA 94089 {fpj,breed,serafini@yahoo-inc.com} Bangalore Barcelona Haifa

More information

14 Diffie-Hellman Key Agreement

14 Diffie-Hellman Key Agreement 14 Diffie-Hellman Key Agreement 14.1 Cyclic Groups Definition 14.1 Example Let д Z n. Define д n = {д i % n i Z}, the set of all powers of д reduced mod n. Then д is called a generator of д n, and д n

More information

Communication constraints and latency in Networked Control Systems

Communication constraints and latency in Networked Control Systems Communication constraints and latency in Networked Control Systems João P. Hespanha Center for Control Engineering and Computation University of California Santa Barbara In collaboration with Antonio Ortega

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 5 Routing Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Warning These notes are not self-contained, probably not understandable, unless you also

More information

TTA and PALS: Formally Verified Design Patterns for Distributed Cyber-Physical

TTA and PALS: Formally Verified Design Patterns for Distributed Cyber-Physical TTA and PALS: Formally Verified Design Patterns for Distributed Cyber-Physical DASC 2011, Oct/19 CoMMiCS Wilfried Steiner wilfried.steiner@tttech.com TTTech Computertechnik AG John Rushby rushby@csl.sri.com

More information

Efficient Sharing of Resources in Distributed Systems

Efficient Sharing of Resources in Distributed Systems Efficient Sharing of Resources in Distributed Systems Debessay (Debish) Fesehaye Kassa Dept. of Computer Science University of Illinois at Urbana-Champaign May 18, 2013 Debish Fesehaye Efficient Sharing

More information

Asymptotically Optimal and Bandwith-efficient Decentralized Detection

Asymptotically Optimal and Bandwith-efficient Decentralized Detection Asymptotically Optimal and Bandwith-efficient Decentralized Detection Yasin Yılmaz and Xiaodong Wang Electrical Engineering Department, Columbia University New Yor, NY 10027 Email: yasin,wangx@ee.columbia.edu

More information

Our Problem. Model. Clock Synchronization. Global Predicate Detection and Event Ordering

Our Problem. Model. Clock Synchronization. Global Predicate Detection and Event Ordering Our Problem Global Predicate Detection and Event Ordering To compute predicates over the state of a distributed application Model Clock Synchronization Message passing No failures Two possible timing assumptions:

More information

NONLINEAR CONTROL with LIMITED INFORMATION. Daniel Liberzon

NONLINEAR CONTROL with LIMITED INFORMATION. Daniel Liberzon NONLINEAR CONTROL with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign Plenary talk, 2 nd Indian Control

More information

Online Packet Routing on Linear Arrays and Rings

Online Packet Routing on Linear Arrays and Rings Proc. 28th ICALP, LNCS 2076, pp. 773-784, 2001 Online Packet Routing on Linear Arrays and Rings Jessen T. Havill Department of Mathematics and Computer Science Denison University Granville, OH 43023 USA

More information

Distributed Optimization over Networks Gossip-Based Algorithms

Distributed Optimization over Networks Gossip-Based Algorithms Distributed Optimization over Networks Gossip-Based Algorithms Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Random

More information

EXPERIMENT Traffic Light Controller

EXPERIMENT Traffic Light Controller 11.1 Objectives EXPERIMENT 11 11. Traffic Light Controller Practice on the design of clocked sequential circuits. Applications of sequential circuits. 11.2 Overview In this lab you are going to develop

More information

An Achievable Rate for the Multiple Level Relay Channel

An Achievable Rate for the Multiple Level Relay Channel An Achievable Rate for the Multiple Level Relay Channel Liang-Liang Xie and P. R. Kumar Department of Electrical and Computer Engineering, and Coordinated Science Laboratory University of Illinois, Urbana-Champaign

More information

Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback

Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback Venkata Sreekanta Annapureddy 1 Srikrishna Bhashyam 2 1 Department of Electrical and Computer Engineering University of Illinois

More information

Detecting Wormhole Attacks in Wireless Networks Using Local Neighborhood Information

Detecting Wormhole Attacks in Wireless Networks Using Local Neighborhood Information Detecting Wormhole Attacks in Wireless Networks Using Local Neighborhood Information W. Znaidi M. Minier and JP. Babau Centre d'innovations en Télécommunication & Intégration de services wassim.znaidi@insa-lyon.fr

More information

10 - February, 2010 Jordan Myronuk

10 - February, 2010 Jordan Myronuk 10 - February, 2010 Jordan Myronuk Classical Cryptography EPR Paradox] The need for QKD Quantum Bits and Entanglement No Cloning Theorem Polarization of Photons BB84 Protocol Probability of Qubit States

More information

1 Indistinguishability for multiple encryptions

1 Indistinguishability for multiple encryptions CSCI 5440: Cryptography Lecture 3 The Chinese University of Hong Kong 26 September 2012 1 Indistinguishability for multiple encryptions We now have a reasonable encryption scheme, which we proved is message

More information

Time. To do. q Physical clocks q Logical clocks

Time. To do. q Physical clocks q Logical clocks Time To do q Physical clocks q Logical clocks Events, process states and clocks A distributed system A collection P of N single-threaded processes (p i, i = 1,, N) without shared memory The processes in

More information

LECTURE NOTES ON Quantum Cryptography

LECTURE NOTES ON Quantum Cryptography Department of Software The University of Babylon LECTURE NOTES ON Quantum Cryptography By Dr. Samaher Hussein Ali College of Information Technology, University of Babylon, Iraq Samaher@itnet.uobabylon.edu.iq

More information

AGREEMENT PROBLEMS (1) Agreement problems arise in many practical applications:

AGREEMENT PROBLEMS (1) Agreement problems arise in many practical applications: AGREEMENT PROBLEMS (1) AGREEMENT PROBLEMS Agreement problems arise in many practical applications: agreement on whether to commit or abort the results of a distributed atomic action (e.g. database transaction)

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation Karim G. Seddik and Amr A. El-Sherif 2 Electronics and Communications Engineering Department, American University in Cairo, New

More information

Time is an important issue in DS

Time is an important issue in DS Chapter 0: Time and Global States Introduction Clocks,events and process states Synchronizing physical clocks Logical time and logical clocks Global states Distributed debugging Summary Time is an important

More information

Towards control over fading channels

Towards control over fading channels Towards control over fading channels Paolo Minero, Massimo Franceschetti Advanced Network Science University of California San Diego, CA, USA mail: {minero,massimo}@ucsd.edu Invited Paper) Subhrakanti

More information

TIME SYNCHRONIZATION IN LARGE-SCALE NETWORKS

TIME SYNCHRONIZATION IN LARGE-SCALE NETWORKS TIME SYNCHRONIZATION IN LARGE-SCALE NETWORKS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of

More information

Absence of Global Clock

Absence of Global Clock Absence of Global Clock Problem: synchronizing the activities of different part of the system (e.g. process scheduling) What about using a single shared clock? two different processes can see the clock

More information

Feasibility of the interlock protocol against man-in-the-middle attacks on quantum cryptography

Feasibility of the interlock protocol against man-in-the-middle attacks on quantum cryptography International Journal of Quantum Information c World Scientific Publishing Company Feasibility of the interlock protocol against man-in-the-middle attacks on quantum cryptography Karl Svozil Institut für

More information

arxiv: v1 [cs.sy] 30 Sep 2015

arxiv: v1 [cs.sy] 30 Sep 2015 Optimal Sensor Scheduling and Remote Estimation over an Additive Noise Channel Xiaobin Gao, Emrah Akyol, and Tamer Başar arxiv:1510.00064v1 cs.sy 30 Sep 015 Abstract We consider a sensor scheduling and

More information

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms CRYPTOGRAPHY 19 Cryptography 5 ElGamal cryptosystems and Discrete logarithms Definition Let G be a cyclic group of order n and let α be a generator of G For each A G there exists an uniue 0 a n 1 such

More information

Distributed Clock Synchronization over Wireless Networks: Algorithms and Analysis

Distributed Clock Synchronization over Wireless Networks: Algorithms and Analysis Distributed Clock Synchronization over Wireless Networks: Algorithms and Analysis Arvind Giridhar and P. R. Kumar Abstract We analyze the spatial smoothing algorithm of Solis, Borkar and Kumar [1] for

More information

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks Vector Clocks and Distributed Snapshots Today. Logical Time: Vector clocks 2. Distributed lobal Snapshots CS 48: Distributed Systems Lecture 5 Kyle Jamieson 2 Motivation: Distributed discussion board Distributed

More information

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 06: Synchronization Version: November 16, 2009 2 / 39 Contents Chapter

More information

Chapter 2. A Look Back. 2.1 Substitution ciphers

Chapter 2. A Look Back. 2.1 Substitution ciphers Chapter 2 A Look Back In this chapter we take a quick look at some classical encryption techniques, illustrating their weakness and using these examples to initiate questions about how to define privacy.

More information

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015 L7. Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang, 5 March 2015 1 Outline The basic foundation: multiplicative group modulo prime The basic Diffie-Hellman (DH) protocol The discrete logarithm

More information

arxiv: v1 [cs.dc] 30 Mar 2015

arxiv: v1 [cs.dc] 30 Mar 2015 Uniform Information Exchange in Multi-channel Wireless Ad Hoc Networks arxiv:1503.08570v1 [cs.dc] 30 Mar 2015 Li Ning Center for High Performance Computing Shenzhen Institutes of Advanced Technology, CAS

More information

Computing and Communicating Functions over Sensor Networks

Computing and Communicating Functions over Sensor Networks Computing and Communicating Functions over Sensor Networks Solmaz Torabi Dept. of Electrical and Computer Engineering Drexel University solmaz.t@drexel.edu Advisor: Dr. John M. Walsh 1/35 1 Refrences [1]

More information

Cooperative Energy Harvesting Communications with Relaying and Energy Sharing

Cooperative Energy Harvesting Communications with Relaying and Energy Sharing Cooperative Energy Harvesting Communications with Relaying and Energy Sharing Kaya Tutuncuoglu and Aylin Yener Department of Electrical Engineering The Pennsylvania State University, University Park, PA

More information

Timing errors in distributed space-time communications

Timing errors in distributed space-time communications Timing errors in distributed space-time communications Emanuele Viterbo Dipartimento di Elettronica Politecnico di Torino Torino, Italy viterbo@polito.it Yi Hong Institute for Telecom. Research University

More information

CS505: Distributed Systems

CS505: Distributed Systems Cristina Nita-Rotaru CS505: Distributed Systems. Required reading for this topic } Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson for "Impossibility of Distributed with One Faulty Process,

More information

SMS Support in Tally.CRM Table of Contents

SMS Support in Tally.CRM Table of Contents SMS Support in Tally.CRM Table of Contents 1. Introduction / Objective... 2 2. Steps to enable/configure Preferred Mobile Number... 2 i. For you as Admin or Owner of the Business... 2 ii. For your Support

More information

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H Cuts Cuts A cut C is a subset of the global history of H C = h c 1 1 hc 2 2...hc n n A cut C is a subset of the global history of H The frontier of C is the set of events e c 1 1,ec 2 2,...ec n n C = h

More information

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No!

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No! A subtle problem An obvious problem when LC = t do S doesn t make sense for Lamport clocks! there is no guarantee that LC will ever be S is anyway executed after LC = t Fixes: if e is internal/send and

More information

WORMEROS: A New Framework for Defending against Wormhole Attacks on Wireless Ad Hoc Networks

WORMEROS: A New Framework for Defending against Wormhole Attacks on Wireless Ad Hoc Networks WORMEROS: A New Framework for Defending against Wormhole Attacks on Wireless Ad Hoc Networks Hai Vu, Ajay Kulkarni, Kamil Sarac, and Neeraj Mittal Department of Computer Science The University of Texas

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 6 (version April 7, 28) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.2. Tel: (2)

More information

Delay compensation in packet-switching network controlled systems

Delay compensation in packet-switching network controlled systems Delay compensation in packet-switching network controlled systems Antoine Chaillet and Antonio Bicchi EECI - L2S - Université Paris Sud - Supélec (France) Centro di Ricerca Piaggio - Università di Pisa

More information

APPLICATIONS. Quantum Communications

APPLICATIONS. Quantum Communications SOFT PROCESSING TECHNIQUES FOR QUANTUM KEY DISTRIBUTION APPLICATIONS Marina Mondin January 27, 2012 Quantum Communications In the past decades, the key to improving computer performance has been the reduction

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Queue length analysis for multicast: Limits of performance and achievable queue length with random linear coding

Queue length analysis for multicast: Limits of performance and achievable queue length with random linear coding Queue length analysis for multicast: Limits of performance and achievable queue length with random linear coding The MIT Faculty has made this article openly available Please share how this access benefits

More information

Bias Estimation in Asymmetric Packet-based Networks

Bias Estimation in Asymmetric Packet-based Networks Bias Estimation in Asymmetric Packet-based Networks by MohammadJavad Hajikhani A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree

More information