LECTURE NOTES ON Quantum Cryptography

Size: px
Start display at page:

Download "LECTURE NOTES ON Quantum Cryptography"

Transcription

1 Department of Software The University of Babylon LECTURE NOTES ON Quantum Cryptography By Dr. Samaher Hussein Ali College of Information Technology, University of Babylon, Iraq

2 Introduction One: hard problems in mathematics Breaking the system requires an efficient algorithm for solving a hard problem e.g. Factoring large numbers, discrete logarithms Examples: RSA, El Gamal Used in public key systems Slow Two: information theory Texts scrambled by repeated application of bit shifts and permutations Examples: DES, AES Used in private key systems Fast Dr. Samaher Hussein Ali Notes of Lecture 15

3 Technology Determines What is Breakable RSA Cryptosystem C = M e mod n d = e -1 mod ((p-1) (q-1)) RSA vs. supercomputer: 40 Tflop/s (4 x flop/sec) RSA wins! RSA vs. Quantum Computer computer wins!

4 Modern Ciphers vs. Quantum Computer Hard problem variety Exponential speedup easily breaks algorithms such as RSA If information requires long term protection (e.g. 20+ years), these algorithms are already dead Information theory variety Quadratic speedup (so far) Longer keys can keep them useful

5 Quantum Crypto Why? Quantum Cryptography is one of the new field in the cryptography to design the system promises of new level of security in the communication system Protect against attack by quantum computer or any future machine Eavesdropping detection Hard to do now High volume key distribution If it can be made fast enough

6 Quantum Mechanics for Cryptography Measurement Basis Basis frame of reference for quantum measurement Example polarization vertical/horizontal vs. diagonal Horizontal filter, light gets through = 0 Vertical filter, light gets through = 1 45 deg. filter, light = deg. filter, light = 1

7 No cloning theorem It is not possible to create perfect copies of a quantum state in transit for the purpose of measurement, while sending on the original. Consequently, current practical quantum cryptography setups are point to point based or at best within a Local Area Network since optical fiber amplifiers cannot be used.

8 Entanglement Two or more quantum systems can be entangled Causality and Superposition Causality, together with the superposition principle can be used for secure key distribution. If the two terms that constitute a superposition state are sent with a time delay relative to each other, and if they are not essentially connected, then Eve cannot spy on them.

9 A Quantum Key Distribution with Single Photons The transmitter is traditionally called Alice and the receiver Bob, while the intruder is called Eve. Single photons Quantum key distribution with single polarized photons was originally proposed by Bennett and Brassard in 1984 (BB84 protocol). There are two data transmission channels involved: the classical (high density) and quantum (low density) channels.

10 BB84 protocol Alice sends randomly one of the four quantum states Bit value 0 Bit value 1 0, 1, with equal probability, When Bob receives a state from Alice, he chooses randomly either 0, 1, And also Bob result correlates with the bit Alice sent only when he picked the right basis i.e. the one used by Alice. After Bob has measured the necessary number of states, Alice communicates with Bob via the classical channel and tells him when she used which basis. They discard the cases in which they used different bases, and therefore establish a secret key, called the sifted key

11 Comparing measurements Alice s Bit Alice s Basis + + Photon Bob s Basis Bob s Bit The test bits allow Alice and Bob to test whether the channel is secure. Test bits

12 Getting the Final Key Alice s Bit Alice s Basis + + Photon Bob s Basis Bob s Bit Test bits discarded Final Key = 01

13 Quantum Eavesdropping It is impossible for Eve to gain perfect knowledge of the quantum state sent by Alice to Bob. However, Eve can gain partial knowledge via a probing auxiliary quantum system in contact with the signal so that they interact, and then perform a projection measurement on the auxiliary system to retrieve some information. Ideally we can always identify Eve by the occurrence of errors during transmission. But this is not that easy in the real world. There will always be detector noise, misalignments of detectors and transmission losses. It is not even possible in principle to distinguish errors due to noise from errors due to intrusion. We therefore have to assume that all errors are due to eavesdropping. Since it is necessary that Alice and Bob share an identical string of bits, they must rectify any discrepancy in their sifted key. This concerns error correction and uses the public channel.

14 QKD vs. Public/Private Key protocols

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security Areas for Discussion Joseph Spring Department of Computer Science MSc Distributed Systems and Security Introduction Photons Quantum Key Distribution Protocols BB84 A 4 state QKD Protocol B9 A state QKD

More information

Quantum Cryptography

Quantum Cryptography Quantum Cryptography Umesh V. Vazirani CS 161/194-1 November 28, 2005 Why Quantum Cryptography? Unconditional security - Quantum computers can solve certain tasks exponentially faster; including quantum

More information

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes 5th March 2004 Unconditional Security of Quantum Key Distribution With Practical Devices Hermen Jan Hupkes The setting Alice wants to send a message to Bob. Channel is dangerous and vulnerable to attack.

More information

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1 Cryptography CS 555 Topic 25: Quantum Crpytography CS555 Topic 25 1 Outline and Readings Outline: What is Identity Based Encryption Quantum cryptography Readings: CS555 Topic 25 2 Identity Based Encryption

More information

Quantum Cryptography. Marshall Roth March 9, 2007

Quantum Cryptography. Marshall Roth March 9, 2007 Quantum Cryptography Marshall Roth March 9, 2007 Overview Current Cryptography Methods Quantum Solutions Quantum Cryptography Commercial Implementation Cryptography algorithms: Symmetric encrypting and

More information

Security Implications of Quantum Technologies

Security Implications of Quantum Technologies Security Implications of Quantum Technologies Jim Alves-Foss Center for Secure and Dependable Software Department of Computer Science University of Idaho Moscow, ID 83844-1010 email: jimaf@cs.uidaho.edu

More information

+ = OTP + QKD = QC. ψ = a. OTP One-Time Pad QKD Quantum Key Distribution QC Quantum Cryptography. θ = 135 o state 1

+ = OTP + QKD = QC. ψ = a. OTP One-Time Pad QKD Quantum Key Distribution QC Quantum Cryptography. θ = 135 o state 1 Quantum Cryptography Quantum Cryptography Presented by: Shubhra Mittal Instructor: Dr. Stefan Robila Intranet & Internet Security (CMPT-585-) Fall 28 Montclair State University, New Jersey Introduction

More information

C. QUANTUM INFORMATION 111

C. QUANTUM INFORMATION 111 C. QUANTUM INFORMATION 111 C Quantum information C.1 Qubits C.1.a Single qubits 1. Qubit: Just as the bits 0 and 1 are represented by distinct physical states, so the quantum bits (or qubits) 0i and 1i

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

Cryptography in a quantum world

Cryptography in a quantum world T School of Informatics, University of Edinburgh 25th October 2016 E H U N I V E R S I T Y O H F R G E D I N B U Outline What is quantum computation Why should we care if quantum computers are constructed?

More information

10 - February, 2010 Jordan Myronuk

10 - February, 2010 Jordan Myronuk 10 - February, 2010 Jordan Myronuk Classical Cryptography EPR Paradox] The need for QKD Quantum Bits and Entanglement No Cloning Theorem Polarization of Photons BB84 Protocol Probability of Qubit States

More information

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata An Introduction to Quantum Information By Aditya Jain Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata 1. Introduction Quantum information is physical information that is held in the state of

More information

C. QUANTUM INFORMATION 99

C. QUANTUM INFORMATION 99 C. QUANTUM INFORMATION 99 C Quantum information C.1 Qubits C.1.a Single qubits Just as the bits 0 and 1 are represented by distinct physical states in a conventional computer, so the quantum bits (or qubits)

More information

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution Chapter 13: Photons for quantum information Quantum only tasks Teleportation Superdense coding Quantum key distribution Quantum teleportation (Theory: Bennett et al. 1993; Experiments: many, by now) Teleportation

More information

Ping Pong Protocol & Auto-compensation

Ping Pong Protocol & Auto-compensation Ping Pong Protocol & Auto-compensation Adam de la Zerda For QIP seminar Spring 2004 02.06.04 Outline Introduction to QKD protocols + motivation Ping-Pong protocol Security Analysis for Ping-Pong Protocol

More information

Quantum Cryptography and Security of Information Systems

Quantum Cryptography and Security of Information Systems Quantum Cryptography and Security of Information Systems Dalibor Hrg University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb dalix@fly.srk.fer.hr Leo Budin University of Zagreb, Faculty

More information

Enigma Marian Rejewski, Jerzy Róz ycki, Henryk Zygalski

Enigma Marian Rejewski, Jerzy Róz ycki, Henryk Zygalski 1 Enigma Marian Rejewski, Jerzy Róz ycki, Henryk Zygalski What is the problem with classical cryptography? Secret key cryptography Requires secure channel for key distribution In principle every

More information

Research, Development and Simulation of Quantum Cryptographic Protocols

Research, Development and Simulation of Quantum Cryptographic Protocols http://dx.doi.org/1.5755/j1.eee.19.4.17 Research, Development and Simulation of Quantum Cryptographic Protocols C. Anghel 1 1 University Dunărea de Jos Galati, 2 Științei, 8146 Galati, Romania, phone:

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Thursday, November 3, 016 Lecture Number 16 Fall 016 Jeffrey H.

More information

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute High Fidelity to Low Weight Daniel Gottesman Perimeter Institute A Word From Our Sponsor... Quant-ph/0212066, Security of quantum key distribution with imperfect devices, D.G., H.-K. Lo, N. Lutkenhaus,

More information

Advanced Cryptography Quantum Algorithms Christophe Petit

Advanced Cryptography Quantum Algorithms Christophe Petit The threat of quantum computers Advanced Cryptography Quantum Algorithms Christophe Petit University of Oxford Christophe Petit -Advanced Cryptography 1 Christophe Petit -Advanced Cryptography 2 The threat

More information

A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC)

A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC) A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC) Majid Alshammari and Khaled Elleithy Department of Computer Science and Engineering University of Bridgeport

More information

Quantum Information Transfer and Processing Miloslav Dušek

Quantum Information Transfer and Processing Miloslav Dušek Quantum Information Transfer and Processing Miloslav Dušek Department of Optics, Faculty of Science Palacký University, Olomouc Quantum theory Quantum theory At the beginning of 20 th century about the

More information

Realization of B92 QKD protocol using id3100 Clavis 2 system

Realization of B92 QKD protocol using id3100 Clavis 2 system Realization of B92 QKD protocol using id3100 Clavis 2 system Makhamisa Senekane 1, Abdul Mirza 1, Mhlambululi Mafu 1 and Francesco Petruccione 1,2 1 Centre for Quantum Technology, School of Chemistry and

More information

An Introduction. Dr Nick Papanikolaou. Seminar on The Future of Cryptography The British Computer Society 17 September 2009

An Introduction. Dr Nick Papanikolaou. Seminar on The Future of Cryptography The British Computer Society 17 September 2009 An Dr Nick Papanikolaou Research Fellow, e-security Group International Digital Laboratory University of Warwick http://go.warwick.ac.uk/nikos Seminar on The Future of Cryptography The British Computer

More information

Practical aspects of QKD security

Practical aspects of QKD security Practical aspects of QKD security Alexei Trifonov Audrius Berzanskis MagiQ Technologies, Inc. Secure quantum communication Protected environment Alice apparatus Optical channel (insecure) Protected environment

More information

Introduction to Quantum Cryptography

Introduction to Quantum Cryptography Università degli Studi di Perugia September, 12th, 2011 BunnyTN 2011, Trento, Italy This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Quantum Mechanics

More information

A probabilistic quantum key transfer protocol

A probabilistic quantum key transfer protocol SECURITY AND COMMUNICATION NETWORKS Security Comm. Networks 013; 6:1389 1395 Published online 13 March 013 in Wiley Online Library (wileyonlinelibrary.com)..736 RESEARCH ARTICLE Abhishek Parakh* Nebraska

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction Tutorial on Quantum Computing Vwani P. Roychowdhury Lecture 1: Introduction 1 & ) &! # Fundamentals Qubits A single qubit is a two state system, such as a two level atom we denote two orthogonal states

More information

Research Proposal for Secure Double slit experiment. Sandeep Cheema Security Analyst, Vichara Technologies. Abstract

Research Proposal for Secure Double slit experiment. Sandeep Cheema Security Analyst, Vichara Technologies. Abstract Research Proposal for Secure Double slit experiment Sandeep Cheema Security Analyst, Vichara Technologies Abstract The key objective of this research proposal is to resolve or advance with the measurement

More information

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki *Perimeter Institute for Theoretical Physics Collaboration with Masato Koashi

More information

Seminar Report On QUANTUM CRYPTOGRAPHY. Submitted by SANTHIMOL A. K. In the partial fulfillment of requirements in degree of

Seminar Report On QUANTUM CRYPTOGRAPHY. Submitted by SANTHIMOL A. K. In the partial fulfillment of requirements in degree of Seminar Report On QUANTUM CRYPTOGRAPHY Submitted by SANTHIMOL A. K. In the partial fulfillment of requirements in degree of Master of Technology in Computer and Information Science DEPARTMENT OF COMPUTER

More information

A Matlab Realization of Shor s Quantum Factoring Algorithm

A Matlab Realization of Shor s Quantum Factoring Algorithm 1 A Matlab Realization of Shor s Quantum Factoring Algorithm S. Jha, P. Chatterjee, A.Falor and M. Chakraborty, Member IEEE Department of Information Technology Institute of Engineering & Management Kolkata,

More information

Quantum Cryptography Bertrand Bonnefoy-Claudet Zachary Estrada

Quantum Cryptography Bertrand Bonnefoy-Claudet Zachary Estrada Quantum Cryptography Bertrand Bonnefoy-Claudet Zachary Estrada Crypto against modern computers No known attack against RSA, AES,... yet They are not proven (and they cannot be) Crypto against modern computers

More information

Ground-Satellite QKD Through Free Space. Steven Taylor

Ground-Satellite QKD Through Free Space. Steven Taylor Ground-Satellite QKD Through Free Space Steven Taylor Quantum Computation and Quantum Information, Spring 2014 Introduction: In this paper I will provide a brief introduction on what Quantum Key Distribution

More information

Practical quantum-key. key- distribution post-processing

Practical quantum-key. key- distribution post-processing Practical quantum-key key- distribution post-processing processing Xiongfeng Ma 马雄峰 IQC, University of Waterloo Chi-Hang Fred Fung, Jean-Christian Boileau, Hoi Fung Chau arxiv:0904.1994 Hoi-Kwong Lo, Norbert

More information

APPLICATIONS. Quantum Communications

APPLICATIONS. Quantum Communications SOFT PROCESSING TECHNIQUES FOR QUANTUM KEY DISTRIBUTION APPLICATIONS Marina Mondin January 27, 2012 Quantum Communications In the past decades, the key to improving computer performance has been the reduction

More information

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography Lecture 19: (Diffie-Hellman Key Exchange & ElGamal Encryption) Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies

More information

Quantum Cryptography

Quantum Cryptography Quantum Cryptography Christian Schaffner Research Center for Quantum Software Institute for Logic, Language and Computation (ILLC) University of Amsterdam Centrum Wiskunde & Informatica Winter 17 QuantumDay@Portland

More information

Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations

Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations David Gaharia Joel Wibron under the direction of Prof. Mohamed Bourennane Quantum Information & Quantum

More information

Stop Conditions Of BB84 Protocol Via A Depolarizing Channel (Quantum Cryptography)

Stop Conditions Of BB84 Protocol Via A Depolarizing Channel (Quantum Cryptography) Journal of Computer Science 3 (6): 44-49, 7 ISSN 549-3636 7 Science Publications Stop Conditions Of BB84 Protocol Via A Depolarizing Channel (Quantum Cryptography) Iyed Ben Slimen, Olfa Trabelsi, Houria

More information

quantum distribution of a sudoku key Sian K. Jones University of South Wales

quantum distribution of a sudoku key Sian K. Jones University of South Wales Games and Puzzles quantum distribution of a sudoku key Sian K. Jones University of South Wales sian-kathryn.jones@southwales.ac.uk Abstract: Sudoku grids are often cited as being useful in cryptography

More information

Quantum cryptography -the final battle?

Quantum cryptography -the final battle? Quantum cryptography -the final battle? CS4236 Principles of Computer Security National University of Singapore Jonas Rundberg, NT030157A This presentation Quantum mechanics Introduction Notation Polarized

More information

arxiv:quant-ph/ v1 13 Jan 2003

arxiv:quant-ph/ v1 13 Jan 2003 Deterministic Secure Direct Communication Using Ping-pong protocol without public channel Qing-yu Cai Laboratory of Magentic Resonance and Atom and Molecular Physics, Wuhan Institute of Mathematics, The

More information

Quantum Entanglement and Cryptography. Deepthi Gopal, Caltech

Quantum Entanglement and Cryptography. Deepthi Gopal, Caltech + Quantum Entanglement and Cryptography Deepthi Gopal, Caltech + Cryptography Concisely: to make information unreadable by anyone other than the intended recipient. The sender of a message scrambles/encrypts

More information

Quantum sampling of mixed states

Quantum sampling of mixed states Quantum sampling of mixed states Philippe Lamontagne January 7th Philippe Lamontagne Quantum sampling of mixed states January 7th 1 / 9 The setup Philippe Lamontagne Quantum sampling of mixed states January

More information

Quantum Communication. Serge Massar Université Libre de Bruxelles

Quantum Communication. Serge Massar Université Libre de Bruxelles Quantum Communication Serge Massar Université Libre de Bruxelles Plan Why Quantum Communication? Prepare and Measure schemes QKD Using Entanglement Teleportation Communication Complexity And now what?

More information

Public-Key Cryptosystems CHAPTER 4

Public-Key Cryptosystems CHAPTER 4 Public-Key Cryptosystems CHAPTER 4 Introduction How to distribute the cryptographic keys? Naïve Solution Naïve Solution Give every user P i a separate random key K ij to communicate with every P j. Disadvantage:

More information

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms CRYPTOGRAPHY 19 Cryptography 5 ElGamal cryptosystems and Discrete logarithms Definition Let G be a cyclic group of order n and let α be a generator of G For each A G there exists an uniue 0 a n 1 such

More information

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley Challenges in Quantum Information Science Umesh V. Vazirani U. C. Berkeley 1 st quantum revolution - Understanding physical world: periodic table, chemical reactions electronic wavefunctions underlying

More information

Quantum Cryptography

Quantum Cryptography Quantum Cryptography (Notes for Course on Quantum Computation and Information Theory. Sec. 13) Robert B. Griffiths Version of 26 March 2003 References: Gisin = N. Gisin et al., Rev. Mod. Phys. 74, 145

More information

The BB84 cryptologic protocol

The BB84 cryptologic protocol The cryptologic protocol of quantum key distribution Dimitri Petritis Institut de recherche mathématique de Rennes Université de Rennes 1 et CNRS (UMR 6625) Vernam s ciphering Principles of coding and

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

Security and implementation of differential phase shift quantum key distribution systems

Security and implementation of differential phase shift quantum key distribution systems Security and implementation of differential phase shift quantum key distribution systems Eleni Diamanti University Ph.D. Oral Examination June 1 st, 2006 Classical cryptography cryptography = κρυπτός +

More information

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Boaz Barak November 21, 2007 Cyclic groups and discrete log A group G is cyclic if there exists a generator

More information

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange ENEE 457: Computer Systems Security 10/3/16 Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

Applications of Quantum Key Distribution (QKD)

Applications of Quantum Key Distribution (QKD) Applications of Quantum Key Distribution (QKD) Olav Tirkkonen, Iikka Elonsalo, Jari Lietzen, Teemu Manninen, Ilkka Tittonen, Roope Vehkalahti Departments of Communications and Networking & Micro and Nano,

More information

Simulation of BB84 Quantum Key Distribution in depolarizing channel

Simulation of BB84 Quantum Key Distribution in depolarizing channel Simulation of BB84 Quantum Key Distribution in depolarizing channel Hui Qiao, Xiao-yu Chen * College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China xychen@mail.zjgsu.edu.cn

More information

Cryptography. P. Danziger. Transmit...Bob...

Cryptography. P. Danziger. Transmit...Bob... 10.4 Cryptography P. Danziger 1 Cipher Schemes A cryptographic scheme is an example of a code. The special requirement is that the encoded message be difficult to retrieve without some special piece of

More information

Introduction to Quantum Key Distribution

Introduction to Quantum Key Distribution Fakultät für Physik Ludwig-Maximilians-Universität München January 2010 Overview Introduction Security Proof Introduction What is information? A mathematical concept describing knowledge. Basic unit is

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Lecture Notes, Week 6

Lecture Notes, Week 6 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Week 6 (rev. 3) Professor M. J. Fischer February 15 & 17, 2005 1 RSA Security Lecture Notes, Week 6 Several

More information

Quantum Cryptography

Quantum Cryptography http://tph.tuwien.ac.at/ svozil/publ/2005-qcrypt-pres.pdf Institut für Theoretische Physik, University of Technology Vienna, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria svozil@tuwien.ac.at 16.

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 1 1D Schrödinger equation: Particle in an infinite box Consider a particle of mass m confined to an infinite one-dimensional well of width L. The potential is given by V (x) = V 0 x L/2, V (x) =

More information

Deterministic secure communications using two-mode squeezed states

Deterministic secure communications using two-mode squeezed states Deterministic secure communications using twomode squeezed states Alberto M. Marino* and C. R. Stroud, Jr. The Institute of Optics, University of Rochester, Rochester, New York 467, USA Received 5 May

More information

Secrecy and the Quantum

Secrecy and the Quantum Secrecy and the Quantum Benjamin Schumacher Department of Physics Kenyon College Bright Horizons 35 (July, 2018) Keeping secrets Communication Alice sound waves, photons, electrical signals, paper and

More information

Number theory (Chapter 4)

Number theory (Chapter 4) EECS 203 Spring 2016 Lecture 12 Page 1 of 8 Number theory (Chapter 4) Review Compute 6 11 mod 13 in an efficient way What is the prime factorization of 100? 138? What is gcd(100, 138)? What is lcm(100,138)?

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 11 February 21, 2013 CPSC 467b, Lecture 11 1/27 Discrete Logarithm Diffie-Hellman Key Exchange ElGamal Key Agreement Primitive Roots

More information

An Introduction to Quantum Information and Applications

An Introduction to Quantum Information and Applications An Introduction to Quantum Information and Applications Iordanis Kerenidis CNRS LIAFA-Univ Paris-Diderot Quantum information and computation Quantum information and computation How is information encoded

More information

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen Entanglement arnoldzwicky.org Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen PHYS403, July 26, 2017 Entanglement A quantum object can

More information

arxiv: v7 [quant-ph] 20 Mar 2017

arxiv: v7 [quant-ph] 20 Mar 2017 Quantum oblivious transfer and bit commitment protocols based on two non-orthogonal states coding arxiv:1306.5863v7 [quant-ph] 0 Mar 017 Li Yang State Key Laboratory of Information Security, Institute

More information

Error Reconciliation in QKD. Distribution

Error Reconciliation in QKD. Distribution Error Reconciliation in Quantum Key Distribution Richard P. Brent MSI, ANU 1 October 2009 Abstract The problem of "error reconciliation" arises in Quantum Cryptography, which is more accurately described

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Lecture 11: Key Agreement

Lecture 11: Key Agreement Introduction to Cryptography 02/22/2018 Lecture 11: Key Agreement Instructor: Vipul Goyal Scribe: Francisco Maturana 1 Hardness Assumptions In order to prove the security of cryptographic primitives, we

More information

Cyber Security in the Quantum Era

Cyber Security in the Quantum Era T Computer Security Guest Lecture University of Edinburgh 27th November 2017 E H U N I V E R S I T Y O H F R G E D I N B U Outline Quantum Computers: Is it a threat to Cyber Security? Why should we act

More information

Lecture 28: Public-key Cryptography. Public-key Cryptography

Lecture 28: Public-key Cryptography. Public-key Cryptography Lecture 28: Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies on the fact that the adversary does not have access

More information

TWO-LAYER QUANTUM KEY DISTRIBUTION

TWO-LAYER QUANTUM KEY DISTRIBUTION TWO-LAYER QUANTUM KEY DISTRIBUTION PAULO VINÍCIUS PEREIRA PINHEIRO and RUBENS VIANA RAMOS paulovpp@gmail.com rubens.viana@pq.cnpq.br Laboratory of Quantum Information Technology, Department of Teleinformatic

More information

during transmission safeguard information Cryptography: used to CRYPTOGRAPHY BACKGROUND OF THE MATHEMATICAL

during transmission safeguard information Cryptography: used to CRYPTOGRAPHY BACKGROUND OF THE MATHEMATICAL THE MATHEMATICAL BACKGROUND OF CRYPTOGRAPHY Cryptography: used to safeguard information during transmission (e.g., credit card number for internet shopping) as opposed to Coding Theory: used to transmit

More information

arxiv:quant-ph/ v1 13 Mar 2007

arxiv:quant-ph/ v1 13 Mar 2007 Quantum Key Distribution with Classical Bob Michel Boyer 1, Dan Kenigsberg 2 and Tal Mor 2 1. Département IRO, Université de Montréal Montréal (Québec) H3C 3J7 CANADA 2. Computer Science Department, Technion,

More information

arxiv:quant-ph/ v2 2 Jan 2007

arxiv:quant-ph/ v2 2 Jan 2007 Revisiting controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding arxiv:quant-ph/06106v Jan 007 Jun Liu 1, Yan Xia and Zhan-jun Zhang 1,, 1

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Introduction to Modern Cryptography Lecture 5 Number Theory: 1. Quadratic residues. 2. The discrete log problem. Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary - Math Part

More information

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6 U.C. Berkeley CS276: Cryptography Handout N6 Luca Trevisan February 5, 2009 Notes for Lecture 6 Scribed by Ian Haken, posted February 8, 2009 Summary The encryption scheme we saw last time, based on pseudorandom

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Elliptic Curves An elliptic curve is a cubic equation of the form: y + axy + by = x 3 + cx + dx + e where a, b, c, d and e are real numbers. A special addition operation is

More information

Network Security Based on Quantum Cryptography Multi-qubit Hadamard Matrices

Network Security Based on Quantum Cryptography Multi-qubit Hadamard Matrices Global Journal of Computer Science and Technology Volume 11 Issue 12 Version 1.0 July Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN:

More information

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015 L7. Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang, 5 March 2015 1 Outline The basic foundation: multiplicative group modulo prime The basic Diffie-Hellman (DH) protocol The discrete logarithm

More information

SQL injection principle against BB84 protocol

SQL injection principle against BB84 protocol INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 017 SQL injection principle against BB84 protocol H.Amellal, A.Meslouhi and Y. Hassouni Faculté des Sciences, Département de Physique, LPT-URAC-13,

More information

Quantum Information. and Communication

Quantum Information. and Communication Quantum Information 2015.7.22 and Communication quantum mechanics uncertainty principle wave function superposition state information/communication cryptography signal processing Quantum Information/Communication

More information

Using Quantum Effects for Computer Security

Using Quantum Effects for Computer Security Using Quantum Effects for Computer Security Arran Hartgroves, James Harvey, Kiran Parmar Thomas Prosser, Michael Tucker December 3, 2004 1 Introduction Computer security is a rapidly changing field. New

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Introduction to Cryptography. Lecture 8

Introduction to Cryptography. Lecture 8 Introduction to Cryptography Lecture 8 Benny Pinkas page 1 1 Groups we will use Multiplication modulo a prime number p (G, ) = ({1,2,,p-1}, ) E.g., Z 7* = ( {1,2,3,4,5,6}, ) Z p * Z N * Multiplication

More information

Single Wavelength Entangled Pair in Quantum Channel Authentication for QKD

Single Wavelength Entangled Pair in Quantum Channel Authentication for QKD International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015 1 Single Wavelength Entangled Pair in Quantum Channel Authentication for QKD Mohamed Youssef Khalaf Elwadeya

More information

Theory of Computation Chapter 12: Cryptography

Theory of Computation Chapter 12: Cryptography Theory of Computation Chapter 12: Cryptography Guan-Shieng Huang Dec. 20, 2006 0-0 Introduction Alice wants to communicate with Bob secretely. x Alice Bob John Alice y=e(e,x) y Bob y??? John Assumption

More information

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Quantum Computing Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Physics and Computation A key question: what is computation....fundamentally? What makes it

More information

arxiv:quant-ph/ v1 25 Dec 2006

arxiv:quant-ph/ v1 25 Dec 2006 Sequential Attack with Intensity Modulation on the Differential-Phase-Shift Quantum Key Distribution Protocol Toyohiro Tsurumaru Mitsubishi Electric Corporation, Information Technology R&D Center 5-1-1

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 NOTE: This problem set is to be handed in to my mail slot (SMITH) located in the Clarendon Laboratory by 5:00 PM (noon) Tuesday, 24 May. 1 1D Schrödinger equation: Particle in an infinite box Consider

More information

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Peter Schwabe October 21 and 28, 2011 So far we assumed that Alice and Bob both have some key, which nobody else has. How

More information

BB84 and Noise Immune Quantum Key Distribution Protocols Simulation: An Approach Using Photonic Simulator

BB84 and Noise Immune Quantum Key Distribution Protocols Simulation: An Approach Using Photonic Simulator BB84 and Noise Immune Quantum Key Distribution Protocols Simulation: An Approach Using Photonic Simulator Abudhahir. Buhari, Zuriati. Ahmad Zukarnai, Shamala. K.Subramaniam, Hisham. Zainuddin, and Suhairi.

More information

Security of Quantum Key Distribution with Imperfect Devices

Security of Quantum Key Distribution with Imperfect Devices Security of Quantum Key Distribution with Imperfect Devices Hoi-Kwong Lo Dept. of Electrical & Comp. Engineering (ECE); & Dept. of Physics University of Toronto Email:hklo@comm.utoronto.ca URL: http://www.comm.utoronto.ca/~hklo

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information