Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Size: px
Start display at page:

Download "Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction"

Transcription

1 Tutorial on Quantum Computing Vwani P. Roychowdhury Lecture 1: Introduction 1

2 & ) &! # Fundamentals Qubits A single qubit is a two state system, such as a two level atom we denote two orthogonal states of a single qubit as Any state of this system can be in arbitrary superposition: qubits more generally, a system of qubits represents a Hilbert space of dimension "!, and the state of the system is a superposition of the basic states #,+ %$ &('*) & * /.,+ -. * %$ &('*). & &

3 Entangeled States Example 1: product state Example 2: EPR (Einstein Podolsky Rosen) pair 3

4 Unitary Operations Hadamard transformation a 1 qubit operation, denoted by following transform, and performs the NOT a 1 qubit operation 4

5 Measurement Example 1: measurement ) with probability with probability Example 2: partial measurement 5 first system measured ) with probability ) and the system collapses to with probability and the system collapses to Example 3: ) first system measured ) the system collapses to ) the system collapses to ) 5

6 Quantum Teleportation There are two players: Alice and Bob. Alice is given a quantum system unknown to her. Alice classical channel Bob Alice wants to send sufficient information about so that Bob is able to make an accurate copy of it. Alice is not allowed to transform the original particle. Alice Bob 6

7 Suppose Alice and Bob each has a particle of an EPR pair: Alice Bob EPR pair EPR pair: 7

8 the state of the three particles: It can be written as 8

9 where The four states are a complete orthonormal basis for particles 1 and 2. 9

10 Alice measures in Bell operator basis of the joint system consists of the particle 1 (i.e., ) and the particle 2 (her EPR particle). Regardless of the unknown state, the four measurment outcomes are equally likely. After Alices s measurment, Bob s particle 3 will be projected into one of the following four pure states: result of Alice s measurment Bob s particle 3 Alice, via the classical channel, sends the result of the measurement. Then Bob performs the corresponding unitary opertaor on his particle. 10

11 Communication Complexity Alice Bob Alice and Bob are provided with binary strings. goal: Alice has to determine, where and with as little communication between Alice and Bob as possible. 11

12 trivial solution: Bob sends all his bits to Alice. nontrivial question: Can this be done with communicating less than bits? Two party communication complexity of the function is the minimum number of bits that must be communicated between Alice and Bob in order for Alice to compute. Generalization to more than two parties is straightforward. 12

13 Example 1: The parity function : addition modulo two. It suffices for Bob to send a single bit (i.e., ) to Alice. Example 2: The inner product modulo two It is proved that bits of communication is necessary. That is, there is no communication protocol that allows Alice to compute if the total number of bits communicated is less than. Question: If Alice and Bob share quantum entangled particles, is it possible to reduce the communication complexity? 13

14 There are parties. The party receives. The inputs satisfy mod The goal is to compute mod which is always is 0 or 1. The classical communication complexity of. If parties share entangled particles then can be computed by communicating bits. is 14

15 The parties share the cat state where the party holds the qubit. 15

16 the protocol: (1) Each party applies the phase change operator $ on his qubit. (2) Each applies the Hadamard transform on his qubit (3) measures his qubit and sends the outcoming bit. in the basis to the others., Then. 16

17 Why is this protocol correct? After applying the phase change operator, the entangled state becomes $ The Hadamard transform results in (with $ factor) $ $ $ or $ $ which is odd even otherwise. if, and 17

18 The RSA public key cryptosystem Eve public file Alice Bob private file plain message open channel plain message 18

19 private file prime numbers: and integres and such that (mod where least common multiple public file and mod mod It holds that mod 19

20 Example: then l.c.m. chose then mod public file: and If the plaintext is then the ciphertext is mod Bob uses mod plain text. to obtain the 20

21 Quantum Cryptography Eve Alice Bob plain message encryption decryption plain message open channel key Quantum channel 21

22 Generating quantum key distribution: Alice and Bob generate their own independent sets of random numbers: Alice Bob They try to find a suset of identical bits in their sets of random bits. Alice * 0 * * 1 * * 1 * * Bob * 0 * * 1 * * 1 * * The result is their common key: 22

23 How to find the common bits securely? Alice sends, through a quantum channel, the following quantum states for each bit in her set bit state Bob makes a measurement on each state he receives. The measurement depends on his corresponding bit. bit measurement where where 23

24 Measurement is a projection opertor The result of this measurement on state is, with probability,, with probability, 24

25 The probability of Bob s measurement results: Alice s bit Bob s bit measurement result probability decision Y N 1 N 1 N Y N Y= pass ; Bob observes N= fail. when he makes the projection. If the bits are different, the decision is always ) N. If Bob and Alice have the same bit then with probability the decision is Y. 25

26 Bob sends the sequence of Y N decisions to Alice over a public channel. They keep only the bits for which the decision is Y. The result becomes the shared key. 26

27 Deutsch s Algorithm: Fault Detection (?) A Boolean function is given. It is known that either is constant or balanced (i.e., takes values 0 and 1 an equal number of times). The problem is to decide whether is constant or balanced. measurement 27

28 Step 1: prepare the state where the first register consists of qubits. Step 2: perform the Hadamard transform on the first qubits $ $ $ 28

29 # Step 3: apply $ $ note that for so the result of this step is $ note that $ $ where is orthogonal to. if if is constant, is balanced, 29

30 Step 4: apply the Hadamard transform qubits on the first note that because is orthogonal to, because the unitary operation maps orthogonal states to orthogonal ones. the final result if is constant if is balanced where is orthogonal to measure the first qubits is constant if and only if we observe zeros 30

31 Grover s algorithm: Quantum search A Boolean function that for only one value. such Find:. We assume that can be evaluated in unit time. Any classical algorithm (deterministic or probabilistic) for this problem needs to check at least vectors of. Grover s algorithm shows the quantum computer can solves this problem in time. 31

32 Fix for, we define the unitary operator as $, if o We will apply, for, and. The operator can be computed efficiently (in time polynomial in ); In the beginning we do not know, but still it is possible to compute efficiently, if we assume that can be computed efficiently on each given input. The algorithm is based on iteration of the following transform: 32

33 First we prepare the uniform superposition $ Then we apply the transform on repeatedly The operator maps each superposition of the form to itself. 33

34 Initially and after iteration of, for $, After iterations the probability of measuring,i.e., is very close to 1 if 34

35 Computing the unitary operator 35

36 Computing the unitary operator 36

37 Search algorithm 37

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 11 February 21, 2013 CPSC 467b, Lecture 11 1/27 Discrete Logarithm Diffie-Hellman Key Exchange ElGamal Key Agreement Primitive Roots

More information

Unitary evolution: this axiom governs how the state of the quantum system evolves in time.

Unitary evolution: this axiom governs how the state of the quantum system evolves in time. CS 94- Introduction Axioms Bell Inequalities /7/7 Spring 7 Lecture Why Quantum Computation? Quantum computers are the only model of computation that escape the limitations on computation imposed by the

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Quantum information and quantum computing

Quantum information and quantum computing Middle East Technical University, Department of Physics January 7, 009 Outline Measurement 1 Measurement 3 Single qubit gates Multiple qubit gates 4 Distinguishability 5 What s measurement? Quantum measurement

More information

CS257 Discrete Quantum Computation

CS257 Discrete Quantum Computation CS57 Discrete Quantum Computation John E Savage April 30, 007 Lect 11 Quantum Computing c John E Savage Classical Computation State is a vector of reals; e.g. Booleans, positions, velocities, or momenta.

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

Entanglement and information

Entanglement and information Ph95a lecture notes for 0/29/0 Entanglement and information Lately we ve spent a lot of time examining properties of entangled states such as ab è 2 0 a b è Ý a 0 b è. We have learned that they exhibit

More information

Lecture Notes, Week 6

Lecture Notes, Week 6 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Week 6 (rev. 3) Professor M. J. Fischer February 15 & 17, 2005 1 RSA Security Lecture Notes, Week 6 Several

More information

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1 Cryptography CS 555 Topic 25: Quantum Crpytography CS555 Topic 25 1 Outline and Readings Outline: What is Identity Based Encryption Quantum cryptography Readings: CS555 Topic 25 2 Identity Based Encryption

More information

Quantum Communication Complexity

Quantum Communication Complexity Quantum Communication Complexity Ronald de Wolf Communication complexity has been studied extensively in the area of theoretical computer science and has deep connections with seemingly unrelated areas,

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

Security Implications of Quantum Technologies

Security Implications of Quantum Technologies Security Implications of Quantum Technologies Jim Alves-Foss Center for Secure and Dependable Software Department of Computer Science University of Idaho Moscow, ID 83844-1010 email: jimaf@cs.uidaho.edu

More information

Quantum Information & Quantum Computation

Quantum Information & Quantum Computation CS90A, Spring 005: Quantum Information & Quantum Computation Wim van Dam Engineering, Room 509 vandam@cs http://www.cs.ucsb.edu/~vandam/teaching/cs90/ Administrative The Final Examination will be: Monday

More information

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata An Introduction to Quantum Information By Aditya Jain Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata 1. Introduction Quantum information is physical information that is held in the state of

More information

Introduction to Quantum Computing for Folks

Introduction to Quantum Computing for Folks Introduction to Quantum Computing for Folks Joint Advanced Student School 2009 Ing. Javier Enciso encisomo@in.tum.de Technische Universität München April 2, 2009 Table of Contents 1 Introduction 2 Quantum

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

CS120, Quantum Cryptography, Fall 2016

CS120, Quantum Cryptography, Fall 2016 CS10, Quantum Cryptography, Fall 016 Homework # due: 10:9AM, October 18th, 016 Ground rules: Your homework should be submitted to the marked bins that will be by Annenberg 41. Please format your solutions

More information

Physics ; CS 4812 Problem Set 4

Physics ; CS 4812 Problem Set 4 Physics 4481-7681; CS 4812 Problem Set 4 Six problems (six pages), all short, covers lectures 11 15, due in class 25 Oct 2018 Problem 1: 1-qubit state tomography Consider a 1-qubit state ψ cos θ 2 0 +

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 9 February 6, 2012 CPSC 467b, Lecture 9 1/53 Euler s Theorem Generating RSA Modulus Finding primes by guess and check Density of

More information

Number theory (Chapter 4)

Number theory (Chapter 4) EECS 203 Spring 2016 Lecture 12 Page 1 of 8 Number theory (Chapter 4) Review Compute 6 11 mod 13 in an efficient way What is the prime factorization of 100? 138? What is gcd(100, 138)? What is lcm(100,138)?

More information

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution Chapter 13: Photons for quantum information Quantum only tasks Teleportation Superdense coding Quantum key distribution Quantum teleportation (Theory: Bennett et al. 1993; Experiments: many, by now) Teleportation

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

SUPERDENSE CODING AND QUANTUM TELEPORTATION

SUPERDENSE CODING AND QUANTUM TELEPORTATION SUPERDENSE CODING AND QUANTUM TELEPORTATION YAQIAO LI This note tries to rephrase mathematically superdense coding and quantum teleportation explained in [] Section.3 and.3.7, respectively (as if I understood

More information

Univ.-Prof. Dr. rer. nat. Rudolf Mathar. Written Examination. Cryptography. Tuesday, August 29, 2017, 01:30 p.m.

Univ.-Prof. Dr. rer. nat. Rudolf Mathar. Written Examination. Cryptography. Tuesday, August 29, 2017, 01:30 p.m. Cryptography Univ.-Prof. Dr. rer. nat. Rudolf Mathar 1 2 3 4 15 15 15 15 60 Written Examination Cryptography Tuesday, August 29, 2017, 01:30 p.m. Name: Matr.-No.: Field of study: Please pay attention to

More information

Quantum Wireless Sensor Networks

Quantum Wireless Sensor Networks Quantum Wireless Sensor Networks School of Computing Queen s University Canada ntional Computation Vienna, August 2008 Main Result Quantum cryptography can solve the problem of security in sensor networks.

More information

Discrete Mathematics GCD, LCM, RSA Algorithm

Discrete Mathematics GCD, LCM, RSA Algorithm Discrete Mathematics GCD, LCM, RSA Algorithm Abdul Hameed http://informationtechnology.pk/pucit abdul.hameed@pucit.edu.pk Lecture 16 Greatest Common Divisor 2 Greatest common divisor The greatest common

More information

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms CRYPTOGRAPHY 19 Cryptography 5 ElGamal cryptosystems and Discrete logarithms Definition Let G be a cyclic group of order n and let α be a generator of G For each A G there exists an uniue 0 a n 1 such

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya

Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors Lecturer: Lale Özkahya Resources: Kenneth Rosen,

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 10 February 19, 2013 CPSC 467b, Lecture 10 1/45 Primality Tests Strong primality tests Weak tests of compositeness Reformulation

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

1 Measurements, Tensor Products, and Entanglement

1 Measurements, Tensor Products, and Entanglement Stanford University CS59Q: Quantum Computing Handout Luca Trevisan September 7, 0 Lecture In which we describe the quantum analogs of product distributions, independence, and conditional probability, and

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

Seminar 1. Introduction to Quantum Computing

Seminar 1. Introduction to Quantum Computing Seminar 1 Introduction to Quantum Computing Before going in I am also a beginner in this field If you are interested, you can search more using: Quantum Computing since Democritus (Scott Aaronson) Quantum

More information

EPR paradox, Bell inequality, etc.

EPR paradox, Bell inequality, etc. EPR paradox, Bell inequality, etc. Compatible and incompatible observables AA, BB = 0, then compatible, can measure simultaneously, can diagonalize in one basis commutator, AA, BB AAAA BBBB If we project

More information

Quantum Pseudo-Telepathy

Quantum Pseudo-Telepathy Quantum Pseudo-Telepathy Michail Lampis mlambis@softlab.ntua.gr NTUA Quantum Pseudo-Telepathy p.1/24 Introduction In Multi-Party computations we are interested in measuring communication complexity. Communication

More information

Public-Key Cryptosystems CHAPTER 4

Public-Key Cryptosystems CHAPTER 4 Public-Key Cryptosystems CHAPTER 4 Introduction How to distribute the cryptographic keys? Naïve Solution Naïve Solution Give every user P i a separate random key K ij to communicate with every P j. Disadvantage:

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Quantum Cryptography

Quantum Cryptography Quantum Cryptography (Notes for Course on Quantum Computation and Information Theory. Sec. 13) Robert B. Griffiths Version of 26 March 2003 References: Gisin = N. Gisin et al., Rev. Mod. Phys. 74, 145

More information

Shor s Prime Factorization Algorithm

Shor s Prime Factorization Algorithm Shor s Prime Factorization Algorithm Bay Area Quantum Computing Meetup - 08/17/2017 Harley Patton Outline Why is factorization important? Shor s Algorithm Reduction to Order Finding Order Finding Algorithm

More information

Quantum Communication

Quantum Communication Quantum Communication Harry Buhrman CWI & University of Amsterdam Physics and Computing Computing is physical Miniaturization quantum effects Quantum Computers ) Enables continuing miniaturization ) Fundamentally

More information

Quantum Computing: Foundations to Frontier Fall Lecture 3

Quantum Computing: Foundations to Frontier Fall Lecture 3 Quantum Computing: Foundations to Frontier Fall 018 Lecturer: Henry Yuen Lecture 3 Scribes: Seyed Sajjad Nezhadi, Angad Kalra Nora Hahn, David Wandler 1 Overview In Lecture 3, we started off talking about

More information

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen Entanglement arnoldzwicky.org Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen PHYS403, July 26, 2017 Entanglement A quantum object can

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Quadratic residues Useful tests Digital Signatures CPSC 467b: Cryptography and Computer Security Lecture 14 Michael J. Fischer Department of Computer Science Yale University March 1, 2010 Michael

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

Lecture 20: Bell inequalities and nonlocality

Lecture 20: Bell inequalities and nonlocality CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 0: Bell inequalities and nonlocality April 4, 006 So far in the course we have considered uses for quantum information in the

More information

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m.

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m. Final Exam Math 10: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 0 April 2002 :0 11:00 a.m. Instructions: Please be as neat as possible (use a pencil), and show

More information

Practice Assignment 2 Discussion 24/02/ /02/2018

Practice Assignment 2 Discussion 24/02/ /02/2018 German University in Cairo Faculty of MET (CSEN 1001 Computer and Network Security Course) Dr. Amr El Mougy 1 RSA 1.1 RSA Encryption Practice Assignment 2 Discussion 24/02/2018-29/02/2018 Perform encryption

More information

A Matlab Realization of Shor s Quantum Factoring Algorithm

A Matlab Realization of Shor s Quantum Factoring Algorithm 1 A Matlab Realization of Shor s Quantum Factoring Algorithm S. Jha, P. Chatterjee, A.Falor and M. Chakraborty, Member IEEE Department of Information Technology Institute of Engineering & Management Kolkata,

More information

Simon s algorithm (1994)

Simon s algorithm (1994) Simon s algorithm (1994) Given a classical circuit C f (of polynomial size, in n) for an f : {0, 1} n {0, 1} n, such that for a certain s {0, 1} n \{0 n }: x, y {0, 1} n (x y) : f (x) = f (y) x y = s with

More information

Cryptography. P. Danziger. Transmit...Bob...

Cryptography. P. Danziger. Transmit...Bob... 10.4 Cryptography P. Danziger 1 Cipher Schemes A cryptographic scheme is an example of a code. The special requirement is that the encoded message be difficult to retrieve without some special piece of

More information

Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography. D. J. Guan

Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography. D. J. Guan Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography D. J. Guan Abstract The development of quantum algorithms and quantum information theory, as well as the design

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

Lecture 7: ElGamal and Discrete Logarithms

Lecture 7: ElGamal and Discrete Logarithms Lecture 7: ElGamal and Discrete Logarithms Johan Håstad, transcribed by Johan Linde 2006-02-07 1 The discrete logarithm problem Recall that a generator g of a group G is an element of order n such that

More information

CSCI 2570 Introduction to Nanocomputing. Discrete Quantum Computation

CSCI 2570 Introduction to Nanocomputing. Discrete Quantum Computation CSCI 2570 Introduction to Nanocomputing Discrete Quantum Computation John E Savage November 27, 2007 Lect 22 Quantum Computing c John E Savage What is Quantum Computation It is very different kind of computation

More information

Lecture 11 September 30, 2015

Lecture 11 September 30, 2015 PHYS 7895: Quantum Information Theory Fall 015 Lecture 11 September 30, 015 Prof. Mark M. Wilde Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

6.896 Quantum Complexity Theory September 9, Lecture 2

6.896 Quantum Complexity Theory September 9, Lecture 2 6.96 Quantum Complexity Theory September 9, 00 Lecturer: Scott Aaronson Lecture Quick Recap The central object of study in our class is BQP, which stands for Bounded error, Quantum, Polynomial time. Informally

More information

Theme : Cryptography. Instructor : Prof. C Pandu Rangan. Speaker : Arun Moorthy CS

Theme : Cryptography. Instructor : Prof. C Pandu Rangan. Speaker : Arun Moorthy CS 1 C Theme : Cryptography Instructor : Prof. C Pandu Rangan Speaker : Arun Moorthy 93115 CS 2 RSA Cryptosystem Outline of the Talk! Introduction to RSA! Working of the RSA system and associated terminology!

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 13 March 3, 2013 CPSC 467b, Lecture 13 1/52 Elliptic Curves Basics Elliptic Curve Cryptography CPSC

More information

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015 L7. Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang, 5 March 2015 1 Outline The basic foundation: multiplicative group modulo prime The basic Diffie-Hellman (DH) protocol The discrete logarithm

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Probabilistic exact cloning and probabilistic no-signalling. Abstract Probabilistic exact cloning and probabilistic no-signalling Arun Kumar Pati Quantum Optics and Information Group, SEECS, Dean Street, University of Wales, Bangor LL 57 IUT, UK (August 5, 999) Abstract

More information

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography CS 7880 Graduate Cryptography September 10, 2015 Lecture 1: Perfect Secrecy and Statistical Authentication Lecturer: Daniel Wichs Scribe: Matthew Dippel 1 Topic Covered Definition of perfect secrecy One-time

More information

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS Modular arithmetics that we have discussed in the previous lectures is very useful in Cryptography and Computer Science. Here we discuss several

More information

Solution to Midterm Examination

Solution to Midterm Examination YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Handout #13 Xueyuan Su November 4, 2008 Instructions: Solution to Midterm Examination This is a closed book

More information

Notes for Lecture 17

Notes for Lecture 17 U.C. Berkeley CS276: Cryptography Handout N17 Luca Trevisan March 17, 2009 Notes for Lecture 17 Scribed by Matt Finifter, posted April 8, 2009 Summary Today we begin to talk about public-key cryptography,

More information

Network Security Technology Spring, 2018 Tutorial 3, Week 4 (March 23) Due Date: March 30

Network Security Technology Spring, 2018 Tutorial 3, Week 4 (March 23) Due Date: March 30 Network Security Technology Spring, 2018 Tutorial 3, Week 4 (March 23) LIU Zhen Due Date: March 30 Questions: 1. RSA (20 Points) Assume that we use RSA with the prime numbers p = 17 and q = 23. (a) Calculate

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrosky. Lecture 4

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrosky. Lecture 4 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrosky Lecture 4 Lecture date: January 26, 2005 Scribe: Paul Ray, Mike Welch, Fernando Pereira 1 Private Key Encryption Consider a game between

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer 1 Lecture 13 October 16, 2017 (notes revised 10/23/17) 1 Derived from lecture notes by Ewa Syta. CPSC 467, Lecture 13 1/57 Elliptic Curves

More information

Quantum cryptography. Quantum cryptography has a potential to be cryptography of 21 st century. Part XIII

Quantum cryptography. Quantum cryptography has a potential to be cryptography of 21 st century. Part XIII Quantum cryptography Part XIII Quantum cryptography Quantum cryptography has a potential to be cryptography of st century. An important new feature of quantum cryptography is that security of quantum cryptographic

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks 1 Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks Michael Albert michael.albert@cs.otago.ac.nz 2 This week Arithmetic Knapsack cryptosystems Attacks on knapsacks Some

More information

MATH3302 Cryptography Problem Set 2

MATH3302 Cryptography Problem Set 2 MATH3302 Cryptography Problem Set 2 These questions are based on the material in Section 4: Shannon s Theory, Section 5: Modern Cryptography, Section 6: The Data Encryption Standard, Section 7: International

More information

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment.

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment. CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES A selection of the following questions will be chosen by the lecturer to form the Cryptology Assignment. The Cryptology Assignment is due by 5pm Sunday 1

More information

The Relativistic Quantum World

The Relativistic Quantum World The Relativistic Quantum World A lecture series on Relativity Theory and Quantum Mechanics Marcel Merk University of Maastricht, Sept 24 Oct 15, 2014 Relativity Quantum Mechanics The Relativistic Quantum

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Quantum Computation: From Quantum Teleportation to the Shor s Algorithm

Quantum Computation: From Quantum Teleportation to the Shor s Algorithm Quantum Computation: From Quantum Teleportation to the Shor s Algorithm J. J. Ruiz-Lorenzo Dep. Física, Universidad de Extremadura Instituto de Computación Científica Avanzada de Extremadura (ICCAEx) http://www.eweb.unex.es/eweb/fisteor/juan

More information

Advanced Cryptography Quantum Algorithms Christophe Petit

Advanced Cryptography Quantum Algorithms Christophe Petit The threat of quantum computers Advanced Cryptography Quantum Algorithms Christophe Petit University of Oxford Christophe Petit -Advanced Cryptography 1 Christophe Petit -Advanced Cryptography 2 The threat

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 1 1D Schrödinger equation: Particle in an infinite box Consider a particle of mass m confined to an infinite one-dimensional well of width L. The potential is given by V (x) = V 0 x L/2, V (x) =

More information

arxiv: v7 [quant-ph] 20 Mar 2017

arxiv: v7 [quant-ph] 20 Mar 2017 Quantum oblivious transfer and bit commitment protocols based on two non-orthogonal states coding arxiv:1306.5863v7 [quant-ph] 0 Mar 017 Li Yang State Key Laboratory of Information Security, Institute

More information

INTRODUCTION TO QUANTUM COMPUTING

INTRODUCTION TO QUANTUM COMPUTING INTRODUCTION TO QUANTUM COMPUTING Writen by: Eleanor Rieffel and Wolfgang Polak Presented by: Anthony Luaders OUTLINE: Introduction Notation Experiment Quantum Bit Quantum Key Distribution Multiple Qubits

More information

Concepts and Algorithms of Scientific and Visual Computing Advanced Computation Models. CS448J, Autumn 2015, Stanford University Dominik L.

Concepts and Algorithms of Scientific and Visual Computing Advanced Computation Models. CS448J, Autumn 2015, Stanford University Dominik L. Concepts and Algorithms of Scientific and Visual Computing Advanced Computation Models CS448J, Autumn 2015, Stanford University Dominik L. Michels Advanced Computation Models There is a variety of advanced

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

Communication Complexity. The dialogues of Alice and Bob...

Communication Complexity. The dialogues of Alice and Bob... Communication Complexity The dialogues of Alice and Bob... Alice and Bob make a date Alice and Bob make a date Are you free on Friday? Alice and Bob make a date Are you free on Friday? No, have to work

More information

University of Tokyo: Advanced Algorithms Summer Lecture 6 27 May. Let s keep in mind definitions from the previous lecture:

University of Tokyo: Advanced Algorithms Summer Lecture 6 27 May. Let s keep in mind definitions from the previous lecture: University of Tokyo: Advanced Algorithms Summer 2010 Lecture 6 27 May Lecturer: François Le Gall Scribe: Baljak Valentina As opposed to prime factorization, primality testing is determining whether a given

More information

9 Knapsack Cryptography

9 Knapsack Cryptography 9 Knapsack Cryptography In the past four weeks, we ve discussed public-key encryption systems that depend on various problems that we believe to be hard: prime factorization, the discrete logarithm, and

More information

An Introduction to Quantum Information and Applications

An Introduction to Quantum Information and Applications An Introduction to Quantum Information and Applications Iordanis Kerenidis CNRS LIAFA-Univ Paris-Diderot Quantum information and computation Quantum information and computation How is information encoded

More information

Lecture 21: Quantum communication complexity

Lecture 21: Quantum communication complexity CPSC 519/619: Quantum Computation John Watrous, University of Calgary Lecture 21: Quantum communication complexity April 6, 2006 In this lecture we will discuss how quantum information can allow for a

More information

LECTURE NOTES ON Quantum Cryptography

LECTURE NOTES ON Quantum Cryptography Department of Software The University of Babylon LECTURE NOTES ON Quantum Cryptography By Dr. Samaher Hussein Ali College of Information Technology, University of Babylon, Iraq Samaher@itnet.uobabylon.edu.iq

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Elliptic Curves An elliptic curve is a cubic equation of the form: y + axy + by = x 3 + cx + dx + e where a, b, c, d and e are real numbers. A special addition operation is

More information

Expand the Quantum Cipher-text Space by Using a Superposition Key

Expand the Quantum Cipher-text Space by Using a Superposition Key International Journal of Computer Networks and Communications Security VOL. 3, NO. 7, JULY 2015, 283 290 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) Expand the

More information

Quantum Teleportation Pt. 1

Quantum Teleportation Pt. 1 Quantum Teleportation Pt. 1 PHYS 500 - Southern Illinois University April 17, 2018 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 1 April 17, 2018 1 / 13 Types of Communication In the

More information

Using Quantum Effects for Computer Security

Using Quantum Effects for Computer Security Using Quantum Effects for Computer Security Arran Hartgroves, James Harvey, Kiran Parmar Thomas Prosser, Michael Tucker December 3, 2004 1 Introduction Computer security is a rapidly changing field. New

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 NOTE: This problem set is to be handed in to my mail slot (SMITH) located in the Clarendon Laboratory by 5:00 PM (noon) Tuesday, 24 May. 1 1D Schrödinger equation: Particle in an infinite box Consider

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information