Crashed router. Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education

Size: px
Start display at page:

Download "Crashed router. Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education"

Transcription

1 Figure 11.1 A network artition Crashed router Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

2 Figure 11.2 Server managing a mutual exclusion token for a set of rocesses Queue of requests Server Grant token 1 1. Request token 2. Release token Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

3 Figure 11.3 A ring of rocesses transferring a mutual exclusion token 1 2 n 3 4 Token Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

4 Figure 11.4 Ricart and Agrawala s algorithm On initialization state := RELEASED; To enter the section state := WANTED; Multicast request to all rocesses; Request rocessing deferred here T := request s timestam; Wait until (number of relies received = (N 1)); state := HELD; On receit of a request <T i, i > at j (i j) if (state = HELD or (state = WANTED and (T, j ) < (T i, i ))) then queue request from i without relying; else rely immediately to i ; end if To exit the critical section state := RELEASED; rely to any queued requests; Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

5 Figure 11.5 Multicast synchronization Rely Rely 34 Rely 2 34 Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

6 Figure 11.6 Maekawa s algorithm (cont d on next slide) On initialization state := RELEASED; voted := FALSE; i For to enter the critical section state := WANTED; Multicast request to all rocesses in V i { i }; Wait until (number of relies received = (K 1)); state := HELD; On receit of a request from i at j (i j) if (state = HELD or voted = TRUE) then queue request from i without relying; else send rely to i ; voted := TRUE; end if Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

7 Maekawa s algorithm (cont d) i For to exit the critical section state := RELEASED; Multicast release to all rocesses in { }; V i On receit of a release from i at j (i j) if (queue of requests is non-emty) then remove head of queue from send rely to k ; voted := TRUE; else voted := FALSE; end if i k, say; Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

8 Figure 11.7 A ring-based election in rogress Note: The election was started by rocess 17. The highest rocess identifier encountered so far is 24. Particiant rocesses are shown darkened Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

9 Figure 11.8 The bully algorithm election Stage 1 C election answer answer election Stage 2 election answer election C timeout Stage Eventually... Stage 4 coordinator C The election of coordinator 2, after the failure of 4 and then 3 Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

10 Figure 11.9 Oen and closed grous Closed grou Oen grou Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

11 Figure Reliable multicast algorithm On initialization Received := {}; For rocess to R-multicast message m to grou g B-multicast(g, m); // g is included as a destination On B-deliver(m) at rocess q with g = grou(m) if ( m Received ) then Received := Received { m} ; if ( q ) then B-multicast(g, m); end if R-deliver m; end if Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

12 Figure The hold-back queue for arriving multicast messages Message rocessing deliver Hold-back queue Delivery queue Incoming messages When delivery guarantees are met Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

13 Figure Total, FIFO and causal ordering of multicast messages T 1 T 2 F 1 F 2 F 3 Time C 1 C 2 C 3 P 1 P 2 P 3 Notice the consistent ordering of totally ordered messages T 1 and T 2, the FIFO-related messages F 1 and F 2 and the causally related messages C 1 and C 3 and the otherwise arbitrary delivery ordering of messages Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

14 Figure Dislay from bulletin board rogram Bulletin board: os.interesting Item From Subject 23 A.Hanlon Mach 24 G.Joseh Microkernels 25 A.Hanlon Re: Microkernels 26 T.L Heureux RPC erformance 27 M.Walker Re: Mach end Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

15 Figure Total ordering using a sequencer 1. Algorithm for grou member r g On initialization: := 0; To TO-multicast message m to grou g B-multicast( g { sequencer( g) }, <m, i>); On B-deliver(<m, i>) with g = grou(m) Place <m, i> in hold-back queue; On B-deliver(m order = < order, i, S>) with g = grou(m order ) wait until <m, i> in hold-back queue and S = r g ; TO-deliver m; // (after deleting it from the hold-back queue) r g = S + 1 ; 2. Algorithm for sequencer of g On initialization: := 0; s g On B-deliver(<m, i>) with g = grou(m) B-multicast(g, < order, i, s g >); s g := s g + 1; Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

16 Figure The ISIS algorithm for total ordering RM1 P Message 2 Proosed Seq 3 Agreed Seq RM2 P P 1 FE P 3 RM3 Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

17 Figure Causal ordering using vector timestams Algorithm for grou member i ( i = 12,, N ) On initialization g V i [ j] := 0 ( j = 12,, N ); To CO-multicast message m to grou g g g V i [] i := V i [] i + 1 ; g B-multicast(g, < V i, m>); On B-deliver(<, m>) from, with g = grou(m) g j lace < V j, m> in hold-back queue; g g g g wait until V j [ j] = V i [ j] + 1 and V j [ k] V i [ k] ( k j ); CO-deliver m; // after removing it from the hold-back queue g g V i [ j] := V i [ j] + 1 ; V j g Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

18 Figure Consensus for three rocesses P 1 d 1 :=roceed d 2 :=roceed P 2 v 1 =roceed 1 v 2 =roceed RM2 Consensus algorithm v 3 =abort RM3 P 3 (crashes) Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

19 Figure Consensus in a synchronous system i Algorithm for rocess g; algorithm roceeds in f + 1 rounds On initialization 1 0 Values i := { }; Values i = {}; v i In round r ( 1 r f + 1) r r 1 B-multicast(g, Values i Values ); // Send only values that have not been sent r + 1 r i Values i := Values i ; while (in round r) { On B-deliver( V j ) from some r + 1 r + 1 j Values i := Values i V j ; } After ( f + 1) rounds f + 1 Assign d i = minimum( Values i ); Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

20 Figure Three byzantine generals 1 (Commander) 1 (Commander) 1:v 1:v 2:1:v 2 3 3:1:u 1:w 1:x 2:1:w 2 3 3:1:x Faulty rocesses are shown shaded Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

21 Figure Four byzantine generals 1 (Commander) 1 (Commander) 1:v 1:v 1:v 2:1:v 2 3:1:u 3 4:1:v 4:1:v 2:1:v 3:1:w 1:u 1:w 1:v 2:1:u 2 3:1:w 3 4:1:v 4:1:v 2:1:u 3:1:w 4 Faulty rocesses are shown shaded 4 Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concets and Design Edn. 3 Pearson Education

Figure 10.1 Skew between computer clocks in a distributed system

Figure 10.1 Skew between computer clocks in a distributed system Figure 10.1 Skew between computer clocks in a distributed system Network Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education 2001

More information

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 06: Synchronization Version: November 16, 2009 2 / 39 Contents Chapter

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 6 (version April 7, 28) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.2. Tel: (2)

More information

Coordination. Failures and Consensus. Consensus. Consensus. Overview. Properties for Correct Consensus. Variant I: Consensus (C) P 1. v 1.

Coordination. Failures and Consensus. Consensus. Consensus. Overview. Properties for Correct Consensus. Variant I: Consensus (C) P 1. v 1. Coordination Failures and Consensus If the solution to availability and scalability is to decentralize and replicate functions and data, how do we coordinate the nodes? data consistency update propagation

More information

Consensus. Consensus problems

Consensus. Consensus problems Consensus problems 8 all correct computers controlling a spaceship should decide to proceed with landing, or all of them should decide to abort (after each has proposed one action or the other) 8 in an

More information

Asynchronous Models For Consensus

Asynchronous Models For Consensus Distributed Systems 600.437 Asynchronous Models for Consensus Department of Computer Science The Johns Hopkins University 1 Asynchronous Models For Consensus Lecture 5 Further reading: Distributed Algorithms

More information

Slides for Chapter 14: Time and Global States

Slides for Chapter 14: Time and Global States Slides for Chapter 14: Time and Global States From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Clocks,

More information

Agreement. Today. l Coordination and agreement in group communication. l Consensus

Agreement. Today. l Coordination and agreement in group communication. l Consensus Agreement Today l Coordination and agreement in group communication l Consensus Events and process states " A distributed system a collection P of N singlethreaded processes w/o shared memory Each process

More information

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Agreement Protocols CS60002: Distributed Systems Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Classification of Faults Based on components that failed Program

More information

CS505: Distributed Systems

CS505: Distributed Systems Cristina Nita-Rotaru CS505: Distributed Systems. Required reading for this topic } Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson for "Impossibility of Distributed with One Faulty Process,

More information

Early stopping: the idea. TRB for benign failures. Early Stopping: The Protocol. Termination

Early stopping: the idea. TRB for benign failures. Early Stopping: The Protocol. Termination TRB for benign failures Early stopping: the idea Sender in round : :! send m to all Process p in round! k, # k # f+!! :! if delivered m in round k- and p " sender then 2:!! send m to all 3:!! halt 4:!

More information

Fault-Tolerant Consensus

Fault-Tolerant Consensus Fault-Tolerant Consensus CS556 - Panagiota Fatourou 1 Assumptions Consensus Denote by f the maximum number of processes that may fail. We call the system f-resilient Description of the Problem Each process

More information

Consensus when failstop doesn't hold

Consensus when failstop doesn't hold Consensus when failstop doesn't hold FLP shows that can't solve consensus in an asynchronous system with no other facility. It can be solved with a perfect failure detector. If p suspects q then q has

More information

Asynchronous group mutual exclusion in ring networks

Asynchronous group mutual exclusion in ring networks Asynchronous group mutual exclusion in ring networks K.-P.Wu and Y.-J.Joung Abstract: In group mutual exclusion solutions for shared-memory models and complete messagepassing networks have been proposed.

More information

Section 6 Fault-Tolerant Consensus

Section 6 Fault-Tolerant Consensus Section 6 Fault-Tolerant Consensus CS586 - Panagiota Fatourou 1 Description of the Problem Consensus Each process starts with an individual input from a particular value set V. Processes may fail by crashing.

More information

AGREEMENT PROBLEMS (1) Agreement problems arise in many practical applications:

AGREEMENT PROBLEMS (1) Agreement problems arise in many practical applications: AGREEMENT PROBLEMS (1) AGREEMENT PROBLEMS Agreement problems arise in many practical applications: agreement on whether to commit or abort the results of a distributed atomic action (e.g. database transaction)

More information

C 1. Recap: Finger Table. CSE 486/586 Distributed Systems Consensus. One Reason: Impossibility of Consensus. Let s Consider This

C 1. Recap: Finger Table. CSE 486/586 Distributed Systems Consensus. One Reason: Impossibility of Consensus. Let s Consider This Recap: Finger Table Finding a using fingers Distributed Systems onsensus Steve Ko omputer Sciences and Engineering University at Buffalo N102 86 + 2 4 N86 20 + 2 6 N20 2 Let s onsider This

More information

Unreliable Failure Detectors for Reliable Distributed Systems

Unreliable Failure Detectors for Reliable Distributed Systems Unreliable Failure Detectors for Reliable Distributed Systems A different approach Augment the asynchronous model with an unreliable failure detector for crash failures Define failure detectors in terms

More information

Distributed Consensus

Distributed Consensus Distributed Consensus Reaching agreement is a fundamental problem in distributed computing. Some examples are Leader election / Mutual Exclusion Commit or Abort in distributed transactions Reaching agreement

More information

The Weakest Failure Detector to Solve Mutual Exclusion

The Weakest Failure Detector to Solve Mutual Exclusion The Weakest Failure Detector to Solve Mutual Exclusion Vibhor Bhatt Nicholas Christman Prasad Jayanti Dartmouth College, Hanover, NH Dartmouth Computer Science Technical Report TR2008-618 April 17, 2008

More information

Distributed Mutual Exclusion Based on Causal Ordering

Distributed Mutual Exclusion Based on Causal Ordering Journal of Computer Science 5 (5): 398-404, 2009 ISSN 1549-3636 2009 Science Publications Distributed Mutual Exclusion Based on Causal Ordering Mohamed Naimi and Ousmane Thiare Department of Computer Science,

More information

Distributed Systems 8L for Part IB

Distributed Systems 8L for Part IB Distributed Systems 8L for Part IB Handout 2 Dr. Steven Hand 1 Clocks Distributed systems need to be able to: order events produced by concurrent processes; synchronize senders and receivers of messages;

More information

Reliable Broadcast for Broadcast Busses

Reliable Broadcast for Broadcast Busses Reliable Broadcast for Broadcast Busses Ozalp Babaoglu and Rogerio Drummond. Streets of Byzantium: Network Architectures for Reliable Broadcast. IEEE Transactions on Software Engineering SE- 11(6):546-554,

More information

Implementing Uniform Reliable Broadcast with Binary Consensus in Systems with Fair-Lossy Links

Implementing Uniform Reliable Broadcast with Binary Consensus in Systems with Fair-Lossy Links Implementing Uniform Reliable Broadcast with Binary Consensus in Systems with Fair-Lossy Links Jialin Zhang Tsinghua University zhanggl02@mails.tsinghua.edu.cn Wei Chen Microsoft Research Asia weic@microsoft.com

More information

CS505: Distributed Systems

CS505: Distributed Systems Department of Computer Science CS505: Distributed Systems Lecture 10: Consensus Outline Consensus impossibility result Consensus with S Consensus with Ω Consensus Most famous problem in distributed computing

More information

Abstract. The paper considers the problem of implementing \Virtually. system. Virtually Synchronous Communication was rst introduced

Abstract. The paper considers the problem of implementing \Virtually. system. Virtually Synchronous Communication was rst introduced Primary Partition \Virtually-Synchronous Communication" harder than Consensus? Andre Schiper and Alain Sandoz Departement d'informatique Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne (Switzerland)

More information

Section 3.3: Discrete-Event Simulation Examples

Section 3.3: Discrete-Event Simulation Examples Section 33: Discrete-Event Simulation Examples Discrete-Event Simulation: A First Course c 2006 Pearson Ed, Inc 0-13-142917-5 Discrete-Event Simulation: A First Course Section 33: Discrete-Event Simulation

More information

Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms. CS 249 Project Fall 2005 Wing Wong

Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms. CS 249 Project Fall 2005 Wing Wong Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms CS 249 Project Fall 2005 Wing Wong Outline Introduction Asynchronous distributed systems, distributed computations,

More information

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks Vector Clocks and Distributed Snapshots Today. Logical Time: Vector clocks 2. Distributed lobal Snapshots CS 48: Distributed Systems Lecture 5 Kyle Jamieson 2 Motivation: Distributed discussion board Distributed

More information

Distributed Algorithms Time, clocks and the ordering of events

Distributed Algorithms Time, clocks and the ordering of events Distributed Algorithms Time, clocks and the ordering of events Alberto Montresor University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Distributed Systems Byzantine Agreement

Distributed Systems Byzantine Agreement Distributed Systems Byzantine Agreement He Sun School of Informatics University of Edinburgh Outline Finish EIG algorithm for Byzantine agreement. Number-of-processors lower bound for Byzantine agreement.

More information

The Byzantine Generals Problem Leslie Lamport, Robert Shostak and Marshall Pease. Presenter: Jose Calvo-Villagran

The Byzantine Generals Problem Leslie Lamport, Robert Shostak and Marshall Pease. Presenter: Jose Calvo-Villagran + The Byzantine Generals Problem Leslie Lamport, Robert Shostak and Marshall Pease Presenter: Jose Calvo-Villagran jcalvovi@uwaterloo.ca + Overview n The Byzantine Generals Problem n A solution: Oral Messages

More information

Lower Bounds for Achieving Synchronous Early Stopping Consensus with Orderly Crash Failures

Lower Bounds for Achieving Synchronous Early Stopping Consensus with Orderly Crash Failures Lower Bounds for Achieving Synchronous Early Stopping Consensus with Orderly Crash Failures Xianbing Wang 1, Yong-Meng Teo 1,2, and Jiannong Cao 3 1 Singapore-MIT Alliance, 2 Department of Computer Science,

More information

Clock Synchronization

Clock Synchronization Today: Canonical Problems in Distributed Systems Time ordering and clock synchronization Leader election Mutual exclusion Distributed transactions Deadlock detection Lecture 11, page 7 Clock Synchronization

More information

Time in Distributed Systems: Clocks and Ordering of Events

Time in Distributed Systems: Clocks and Ordering of Events Time in Distributed Systems: Clocks and Ordering of Events Clocks in Distributed Systems Needed to Order two or more events happening at same or different nodes (Ex: Consistent ordering of updates at different

More information

CS505: Distributed Systems

CS505: Distributed Systems Cristina Nita-Rotaru CS505: Distributed Systems Ordering events. Lamport and vector clocks. Global states. Detecting failures. Required reading for this topic } Leslie Lamport,"Time, Clocks, and the Ordering

More information

Chapter 11 Time and Global States

Chapter 11 Time and Global States CSD511 Distributed Systems 分散式系統 Chapter 11 Time and Global States 吳俊興 國立高雄大學資訊工程學系 Chapter 11 Time and Global States 11.1 Introduction 11.2 Clocks, events and process states 11.3 Synchronizing physical

More information

Genuine atomic multicast in asynchronous distributed systems

Genuine atomic multicast in asynchronous distributed systems Theoretical Computer Science 254 (2001) 297 316 www.elsevier.com/locate/tcs Genuine atomic multicast in asynchronous distributed systems Rachid Guerraoui, Andre Schiper Departement d Informatique, Ecole

More information

Eventually consistent failure detectors

Eventually consistent failure detectors J. Parallel Distrib. Comput. 65 (2005) 361 373 www.elsevier.com/locate/jpdc Eventually consistent failure detectors Mikel Larrea a,, Antonio Fernández b, Sergio Arévalo b a Departamento de Arquitectura

More information

Deterministic Consensus Algorithm with Linear Per-Bit Complexity

Deterministic Consensus Algorithm with Linear Per-Bit Complexity Deterministic Consensus Algorithm with Linear Per-Bit Complexity Guanfeng Liang and Nitin Vaidya Department of Electrical and Computer Engineering, and Coordinated Science Laboratory University of Illinois

More information

Dynamic Group Communication

Dynamic Group Communication Dynamic Group Communication André Schiper Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland e-mail: andre.schiper@epfl.ch Abstract Group communication is the basic infrastructure

More information

Time. Lakshmi Ganesh. (slides borrowed from Maya Haridasan, Michael George)

Time. Lakshmi Ganesh. (slides borrowed from Maya Haridasan, Michael George) Time Lakshmi Ganesh (slides borrowed from Maya Haridasan, Michael George) The Problem Given a collection of processes that can... only communicate with significant latency only measure time intervals approximately

More information

On Stabilizing Departures in Overlay Networks

On Stabilizing Departures in Overlay Networks On Stabilizing Departures in Overlay Networks Dianne Foreback 1, Andreas Koutsopoulos 2, Mikhail Nesterenko 1, Christian Scheideler 2, and Thim Strothmann 2 1 Kent State University 2 University of Paderborn

More information

Impossibility of Distributed Consensus with One Faulty Process

Impossibility of Distributed Consensus with One Faulty Process Impossibility of Distributed Consensus with One Faulty Process Journal of the ACM 32(2):374-382, April 1985. MJ Fischer, NA Lynch, MS Peterson. Won the 2002 Dijkstra Award (for influential paper in distributed

More information

arxiv: v2 [cs.dc] 21 Apr 2017

arxiv: v2 [cs.dc] 21 Apr 2017 AllConcur: Leaderless Concurrent Atomic Broadcast (Extended Version) arxiv:1608.05866v2 [cs.dc] 21 Apr 2017 Marius Poke HLRS University of Stuttgart marius.poke@hlrs.de Abstract Many distributed systems

More information

Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM

Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM Wan Fokkink (Vrije Universiteit, Section Theoretical Computer Science CWI, Embedded Systems Group Amsterdam, The

More information

Quantum Algorithms for Leader Election Problem in Distributed Systems

Quantum Algorithms for Leader Election Problem in Distributed Systems Quantum Algorithms for Leader Election Problem in Distributed Systems Pradeep Sarvepalli pradeep@cs.tamu.edu Department of Computer Science, Texas A&M University Quantum Algorithms for Leader Election

More information

DISTRIBUTED COMPUTER SYSTEMS

DISTRIBUTED COMPUTER SYSTEMS DISTRIBUTED COMPUTER SYSTEMS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Topics Clock Synchronization Physical Clocks Clock Synchronization Algorithms

More information

6.852: Distributed Algorithms Fall, Class 24

6.852: Distributed Algorithms Fall, Class 24 6.852: Distributed Algorithms Fall, 2009 Class 24 Today s plan Self-stabilization Self-stabilizing algorithms: Breadth-first spanning tree Mutual exclusion Composing self-stabilizing algorithms Making

More information

Outline F eria AADL behavior 1/ 78

Outline F eria AADL behavior 1/ 78 Outline AADL behavior Annex Jean-Paul Bodeveix 2 Pierre Dissaux 3 Mamoun Filali 2 Pierre Gaufillet 1 François Vernadat 2 1 AIRBUS-FRANCE 2 FéRIA 3 ELLIDIS SAE AS2C Detroit Michigan April 2006 FéRIA AADL

More information

THE WEAKEST FAILURE DETECTOR FOR SOLVING WAIT-FREE, EVENTUALLY BOUNDED-FAIR DINING PHILOSOPHERS. A Dissertation YANTAO SONG

THE WEAKEST FAILURE DETECTOR FOR SOLVING WAIT-FREE, EVENTUALLY BOUNDED-FAIR DINING PHILOSOPHERS. A Dissertation YANTAO SONG THE WEAKEST FAILURE DETECTOR FOR SOLVING WAIT-FREE, EVENTUALLY BOUNDED-FAIR DINING PHILOSOPHERS A Dissertation by YANTAO SONG Submitted to the Office of Graduate Studies of Texas A&M University in partial

More information

MODELING TIME AND EVENTS IN A DISTRIBUTED SYSTEM

MODELING TIME AND EVENTS IN A DISTRIBUTED SYSTEM MODELING TIME AND EVENTS IN A DISTRIBUTED SYSTEM Joseph Spring School of Computing, University of Hertfordshire, College Lane, Hatfield. AL10 9AB UK e-mail: j.spring @ herts.ac.uk 1. Distributed Systems

More information

Time is an important issue in DS

Time is an important issue in DS Chapter 0: Time and Global States Introduction Clocks,events and process states Synchronizing physical clocks Logical time and logical clocks Global states Distributed debugging Summary Time is an important

More information

Overview: Synchronous Computations

Overview: Synchronous Computations Overview: Synchronous Computations barriers: linear, tree-based and butterfly degrees of synchronization synchronous example 1: Jacobi Iterations serial and parallel code, performance analysis synchronous

More information

Model Checking of Fault-Tolerant Distributed Algorithms

Model Checking of Fault-Tolerant Distributed Algorithms Model Checking of Fault-Tolerant Distributed Algorithms Part I: Fault-Tolerant Distributed Algorithms Annu Gmeiner Igor Konnov Ulrich Schmid Helmut Veith Josef Widder LOVE 2016 @ TU Wien Josef Widder (TU

More information

Failure detectors Introduction CHAPTER

Failure detectors Introduction CHAPTER CHAPTER 15 Failure detectors 15.1 Introduction This chapter deals with the design of fault-tolerant distributed systems. It is widely known that the design and verification of fault-tolerent distributed

More information

Degradable Agreement in the Presence of. Byzantine Faults. Nitin H. Vaidya. Technical Report #

Degradable Agreement in the Presence of. Byzantine Faults. Nitin H. Vaidya. Technical Report # Degradable Agreement in the Presence of Byzantine Faults Nitin H. Vaidya Technical Report # 92-020 Abstract Consider a system consisting of a sender that wants to send a value to certain receivers. Byzantine

More information

Time. To do. q Physical clocks q Logical clocks

Time. To do. q Physical clocks q Logical clocks Time To do q Physical clocks q Logical clocks Events, process states and clocks A distributed system A collection P of N single-threaded processes (p i, i = 1,, N) without shared memory The processes in

More information

CS418 Operating Systems

CS418 Operating Systems CS418 Operating Systems Lecture 14 Queuing Analysis Textbook: Operating Systems by William Stallings 1 1. Why Queuing Analysis? If the system environment changes (like the number of users is doubled),

More information

arxiv: v1 [cs.dc] 8 Mar 2015

arxiv: v1 [cs.dc] 8 Mar 2015 An Analysis of a Virtually Synchronous Protocol arxiv:1503.02241v1 [cs.dc] 8 Mar 2015 Dan Arnon and Navindra Sharma EMC Corporation June 21, 2018 Abstract Enterprise-scale systems such as those used for

More information

Chandy-Lamport Snapshotting

Chandy-Lamport Snapshotting Chandy-Lamport Snapshotting COS 418: Distributed Systems Precept 8 Themis Melissaris and Daniel Suo [Content adapted from I. Gupta] Agenda What are global snapshots? The Chandy-Lamport algorithm Why does

More information

Finally the Weakest Failure Detector for Non-Blocking Atomic Commit

Finally the Weakest Failure Detector for Non-Blocking Atomic Commit Finally the Weakest Failure Detector for Non-Blocking Atomic Commit Rachid Guerraoui Petr Kouznetsov Distributed Programming Laboratory EPFL Abstract Recent papers [7, 9] define the weakest failure detector

More information

Generic Broadcast. 1 Introduction

Generic Broadcast. 1 Introduction Generic Broadcast Fernando Pedone André Schiper Département d Informatique Ecole Polytechnique Fédérale delausanne 1015 Lausanne, Switzerland {Fernando.Pedone, Andre.Schiper@epfl.ch} Abstract Message ordering

More information

Approximation of δ-timeliness

Approximation of δ-timeliness Approximation of δ-timeliness Carole Delporte-Gallet 1, Stéphane Devismes 2, and Hugues Fauconnier 1 1 Université Paris Diderot, LIAFA {Carole.Delporte,Hugues.Fauconnier}@liafa.jussieu.fr 2 Université

More information

The Underlying Semantics of Transition Systems

The Underlying Semantics of Transition Systems The Underlying Semantics of Transition Systems J. M. Crawford D. M. Goldschlag Technical Report 17 December 1987 Computational Logic Inc. 1717 W. 6th St. Suite 290 Austin, Texas 78703 (512) 322-9951 1

More information

Snapshots. Chandy-Lamport Algorithm for the determination of consistent global states <$1000, 0> <$50, 2000> mark. (order 10, $100) mark

Snapshots. Chandy-Lamport Algorithm for the determination of consistent global states <$1000, 0> <$50, 2000> mark. (order 10, $100) mark 8 example: P i P j (5 widgets) (order 10, $100) cji 8 ed state P i : , P j : , c ij : , c ji : Distributed Systems

More information

Optimal Resilience Asynchronous Approximate Agreement

Optimal Resilience Asynchronous Approximate Agreement Optimal Resilience Asynchronous Approximate Agreement Ittai Abraham, Yonatan Amit, and Danny Dolev School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel {ittaia, mitmit,

More information

1 Lamport s Bakery Algorithm

1 Lamport s Bakery Algorithm Com S 6 Spring Semester 2009 Algorithms for Multiprocessor Synchronization Lecture 3: Tuesday, 27th January 2009 Instructor: Soma Chaudhuri Scribe: Neeraj Khanolkar Lamport s Bakery Algorithm Algorithm

More information

On the Number of Synchronous Rounds Required for Byzantine Agreement

On the Number of Synchronous Rounds Required for Byzantine Agreement On the Number of Synchronous Rounds Required for Byzantine Agreement Matthias Fitzi 1 and Jesper Buus Nielsen 2 1 ETH Zürich 2 University pf Aarhus Abstract. Byzantine agreement is typically considered

More information

Easy Consensus Algorithms for the Crash-Recovery Model

Easy Consensus Algorithms for the Crash-Recovery Model Reihe Informatik. TR-2008-002 Easy Consensus Algorithms for the Crash-Recovery Model Felix C. Freiling, Christian Lambertz, and Mila Majster-Cederbaum Department of Computer Science, University of Mannheim,

More information

Simple Bivalency Proofs of the Lower Bounds in Synchronous Consensus Problems

Simple Bivalency Proofs of the Lower Bounds in Synchronous Consensus Problems Simple Bivalency Proofs of the Lower Bounds in Synchronous Consensus Problems Xianbing Wang, Yong-Meng Teo, and Jiannong Cao Singapore-MIT Alliance E4-04-10, 4 Engineering Drive 3, Singapore 117576 Abstract

More information

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No!

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No! A subtle problem An obvious problem when LC = t do S doesn t make sense for Lamport clocks! there is no guarantee that LC will ever be S is anyway executed after LC = t Fixes: if e is internal/send and

More information

The Weakest Failure Detector for Wait-Free Dining under Eventual Weak Exclusion

The Weakest Failure Detector for Wait-Free Dining under Eventual Weak Exclusion The Weakest Failure Detector for Wait-Free Dining under Eventual Weak Exclusion Srikanth Sastry Computer Science and Engr Texas A&M University College Station, TX, USA sastry@cse.tamu.edu Scott M. Pike

More information

(Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains

(Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains (Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains Tyler Crain Vincent Gramoli, Mikel Larrea, Michel Raynal, University of Sydney, Australia {tyler.crain,vincent.gramoli}@sydney.edu.au

More information

Do we have a quorum?

Do we have a quorum? Do we have a quorum? Quorum Systems Given a set U of servers, U = n: A quorum system is a set Q 2 U such that Q 1, Q 2 Q : Q 1 Q 2 Each Q in Q is a quorum How quorum systems work: A read/write shared register

More information

Timeliness, Failure-Detectors, and Consensus Performance ALEXANDER SHRAER

Timeliness, Failure-Detectors, and Consensus Performance ALEXANDER SHRAER Timeliness, Failure-Detectors, and Consensus Performance ALEXANDER SHRAER Timeliness, Failure-Detectors, and Consensus Performance Research Thesis Submitted in Partial Fulfillment of the Requirements

More information

6.852: Distributed Algorithms Fall, Class 25

6.852: Distributed Algorithms Fall, Class 25 6.852: Distributed Algorithms Fall, 2009 Class 25 Today s plan Partially synchronous (timed) distributed systems Modeling timed systems Proof methods Mutual exclusion in timed systems Consensus in timed

More information

THE chase for the weakest system model that allows

THE chase for the weakest system model that allows 1 Chasing the Weakest System Model for Implementing Ω and Consensus Martin Hutle, Dahlia Malkhi, Ulrich Schmid, Lidong Zhou Abstract Aguilera et al. and Malkhi et al. presented two system models, which

More information

How can one get around FLP? Around FLP in 80 Slides. How can one get around FLP? Paxos. Weaken the problem. Constrain input values

How can one get around FLP? Around FLP in 80 Slides. How can one get around FLP? Paxos. Weaken the problem. Constrain input values How can one get around FLP? Around FLP in 80 Slides Weaken termination Weaken the problem use randomization to terminate with arbitrarily high probability guarantee termination only during periods of synchrony

More information

A Brief Introduction to Model Checking

A Brief Introduction to Model Checking A Brief Introduction to Model Checking Jan. 18, LIX Page 1 Model Checking A technique for verifying finite state concurrent systems; a benefit on this restriction: largely automatic; a problem to fight:

More information

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation Logical Time Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation 2013 ACM Turing Award:

More information

Shared Memory vs Message Passing

Shared Memory vs Message Passing Shared Memory vs Message Passing Carole Delporte-Gallet Hugues Fauconnier Rachid Guerraoui Revised: 15 February 2004 Abstract This paper determines the computational strength of the shared memory abstraction

More information

Barrier. Overview: Synchronous Computations. Barriers. Counter-based or Linear Barriers

Barrier. Overview: Synchronous Computations. Barriers. Counter-based or Linear Barriers Overview: Synchronous Computations Barrier barriers: linear, tree-based and butterfly degrees of synchronization synchronous example : Jacobi Iterations serial and parallel code, performance analysis synchronous

More information

DIFF: array of clock differences between other processes and this one for current round.

DIFF: array of clock differences between other processes and this one for current round. 53 of their first waiting intervals. At the end of its second waiting interval, broadcasts a READY message indicating that it is ready to begin the next round. However, if receives f + 1 READY messages

More information

Distributed Systems Fundamentals

Distributed Systems Fundamentals February 17, 2000 ECS 251 Winter 2000 Page 1 Distributed Systems Fundamentals 1. Distributed system? a. What is it? b. Why use it? 2. System Architectures a. minicomputer mode b. workstation model c. processor

More information

A Weakest Failure Detector for Dining Philosophers with Eventually Bounded Waiting and Failure Locality 1

A Weakest Failure Detector for Dining Philosophers with Eventually Bounded Waiting and Failure Locality 1 A Weakest Failure Detector for Dining Philosophers with Eventually Bounded Waiting and Failure Locality 1 Hyun Chul Chung, Jennifer L. Welch Department of Computer Science & Engineering Texas A&M University

More information

Byzantine Agreement. Gábor Mészáros. Tatracrypt 2012, July 2 4 Smolenice, Slovakia. CEU Budapest, Hungary

Byzantine Agreement. Gábor Mészáros. Tatracrypt 2012, July 2 4 Smolenice, Slovakia. CEU Budapest, Hungary CEU Budapest, Hungary Tatracrypt 2012, July 2 4 Smolenice, Slovakia Byzantium, 1453 AD. The Final Strike... Communication via Messengers The Byzantine Generals Problem Communication System Model Goal G

More information

Failure Detectors. Seif Haridi. S. Haridi, KTHx ID2203.1x

Failure Detectors. Seif Haridi. S. Haridi, KTHx ID2203.1x Failure Detectors Seif Haridi haridi@kth.se 1 Modeling Timing Assumptions Tedious to model eventual synchrony (partial synchrony) Timing assumptions mostly needed to detect failures Heartbeats, timeouts,

More information

Wait-Free Dining Under Eventual Weak Exclusion

Wait-Free Dining Under Eventual Weak Exclusion Wait-Free Dining Under Eventual Weak Exclusion Scott M. Pike, Yantao Song, and Srikanth Sastry Texas A&M University Department of Computer Science College Station, TX 77843-3112, USA {pike,yantao,sastry}@cs.tamu.edu

More information

Concurrent Counting is harder than Queuing

Concurrent Counting is harder than Queuing Concurrent Counting is harder than Queuing Costas Busch Rensselaer Polytechnic Intitute Srikanta Tirthapura Iowa State University 1 rbitrary graph 2 Distributed Counting count count count count Some processors

More information

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour Distributed Algorithms (CAS 769) Week 1: Introduction, Logical clocks, Snapshots Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Distributed Algorithms

More information

Real-Time Course. Clock synchronization. June Peter van der TU/e Computer Science, System Architecture and Networking

Real-Time Course. Clock synchronization. June Peter van der TU/e Computer Science, System Architecture and Networking Real-Time Course Clock synchronization 1 Clocks Processor p has monotonically increasing clock function C p (t) Clock has drift rate For t1 and t2, with t2 > t1 (1-ρ)(t2-t1)

More information

Our Problem. Model. Clock Synchronization. Global Predicate Detection and Event Ordering

Our Problem. Model. Clock Synchronization. Global Predicate Detection and Event Ordering Our Problem Global Predicate Detection and Event Ordering To compute predicates over the state of a distributed application Model Clock Synchronization Message passing No failures Two possible timing assumptions:

More information

Slides 9: Queuing Models

Slides 9: Queuing Models Slides 9: Queuing Models Purpose Simulation is often used in the analysis of queuing models. A simple but typical queuing model is: Queuing models provide the analyst with a powerful tool for designing

More information

Online Packet Routing on Linear Arrays and Rings

Online Packet Routing on Linear Arrays and Rings Proc. 28th ICALP, LNCS 2076, pp. 773-784, 2001 Online Packet Routing on Linear Arrays and Rings Jessen T. Havill Department of Mathematics and Computer Science Denison University Granville, OH 43023 USA

More information

Timeliness, Failure-Detectors, and Consensus Performance

Timeliness, Failure-Detectors, and Consensus Performance Timeliness, Failure-Detectors, and Consensus Performance Idit Keidar Technion idish@ee.technion.ac.il Alexander Shraer Technion shralex@tx.technion.ac.il ABSTRACT We study the implication that various

More information

Correctness of Concurrent Programs

Correctness of Concurrent Programs Correctness of Concurrent Programs Trifon Ruskov ruskov@tu-varna.acad.bg Technical University of Varna - Bulgaria Correctness of Concurrent Programs Correctness of concurrent programs needs to be formalized:

More information

Distributed Algorithms

Distributed Algorithms Distributed Algorithms December 17, 2008 Gerard Tel Introduction to Distributed Algorithms (2 nd edition) Cambridge University Press, 2000 Set-Up of the Course 13 lectures: Wan Fokkink room U342 email:

More information

Distributed Systems Time and Global State

Distributed Systems Time and Global State Distributed Systems Time and Global State Allan Clark School of Informatics University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/ds Autumn Term 2012 Distributed Systems Time and Global State

More information