Observed Southern Ocean Cloud Properties and Shortwave Reflection

Size: px
Start display at page:

Download "Observed Southern Ocean Cloud Properties and Shortwave Reflection"

Transcription

1 Observed Southern Ocean Cloud Properties and Shortwave Reflection Daniel T McCoy* 1, Dennis L Hartmann 1, and Daniel P Grosvenor 2 University of Washington 1 University of Leeds 2 *dtmccoy@atmosuwedu

2 Introduction The Southern Ocean ( S 6 S) Dominant cloud cover is low (Haynes et al, 211) Robust strong negative cloud optical depth feedback (Zelinka et al, 213) Feedback is thought to be contributed to by transition from icy to liquid clouds with warming

3 Outline We present observations of cloud properties that influence SW SW consistent with these observations is calculated Sensitivity of SW to seasonal variability in each cloud property is tested A simple calculation of the increased SW due to a ice to liquid transition is performed Sensitivity in this increased SW is found to both the mean-climate r e and the assumed future CCN behavior

4 Obs Cloud Fraction Summer time peak in EIS (Wood and Bretherton, 26) peak in low cloud fraction Enhanced winter synoptic activity upper level cloud peak Data shown is from MISR

5 Obs Effective Radius Near cloud-top effective radius from MODIS Minima in summer EffectiveRadius

6 Obs Effective Radius Effective radius from MODIS filtering described in Grosvenor and Wood (21) (SZA< 65 liquid CF> ) Persistent minimum in summer across retrieval bands+filtering µ m Collection µ m 21 µ m 37 µ m J A S O N D J F M A M J

7 Obs In-Cloud Water Path (P > 6hPa) IWP Low :2C-ICE Lat (a) Low level in cloud IWP 12 J A S O N D J F M A M J g/m 2 LWP Low :ISC Lat (a) Low level in cloud LWP 12 J A S O N D J F M A M J g/m 2 Efficient LW cooling in winter promotes buoyant production of turbulence and (b) Mid level in cloud IWP (b) Mid level in cloud LWP an increase in TWP fall and winter time peaks in liquid and ice (Morrison 5 1 et al, 211; Solomon et al, 211) Lat Lat 5 1

8 SISYPHUS Calculating SW 1732 JOURNAL OF CLIMATE The area-averaged cloud properties (example on the right) and the distribution of clouds in terms of τ and CTH (example on the left) MISR CTH-OD (Marchand et al, 21) Area-averaged data (LWP,IWP,r e) example from: (O Dell et al, 2) FIG 6 Mean values of LWP averaged over the years for (a) January, (b Black pixels denote land, while gray pixels denote missing data, either from the presen of land These are combined to create plane-parallel clouds consistent with observed cloud properties RRTMG is then used to calculate SW It is also instructive to compare our results with those those from ERA- from reanalysis products in order to identify potential NCAR reanalysis is model deficiencies or issues with the derived LWP observations does not contain th In particular, we compare our results with that the LWP produ

9 SISYPHUS Reflectivity (R 65) 55 Seasonal Cycle 27 2 SW (R 95) 2 Seasonal Cycle Reflectivity 5 Upwelling SW (W m 2 ) J A S O N D J F M A M J 2 J A S O N D J F M A M J Comparison to CERES EBAF 26r Dashed lines show the uncertainty due to input uncertainty

10 Methodology 12 1 Contribution to SW by seasonal cycles CF r e Phase(r e =const) Phase(Nd=const) 6 Wm J A S O N D J F M A M J Contributions calculated by setting each cloud property equal to annual mean and recalculating SW Phase contribution assumes TWP=constant and shifts LWP IWP Must also assume microphysics (eg CCN concentration) Strength highly dependent on assumed microphysics

11 Methodology Calculation of SW change due to transition from ice to liquid with warming The seasonal cycle of phase contributes to summertime brightening Let s calculate how much SW would increase from a ice liquid transition in warming climate and compare to the overall cloud optical depth feedback We assume: TWP is constant The seasonal cycle of LWP (T ) is analogous to the ice liquid transition IWP in a warmed climate Microphysics in a future climate (eg the future CCN concentrations in the Southern Ocean) We compare this to the optical depth feedback that it contributes to

12 Methodology Changes in thermodynamic phase (1K warming) Change in SW due to altering LWP/IWP of similar magnitude to τ feedback Increased reflectivity is shown as negative Change in SW sensitive to microphysics Increasingreflectivity ConstantNd Constan tr e OpticalDepthFeedback

13 W m 2 K Observations Methodology 6 Changes in thermodynamic phase (1K warming) 1 Constant r e Constant N d CFMIP1 CFMIP2 16 µ m 21 µ m 37 µ m r e at cloud top adiabatic profile of r e Change in SW due to altered LWP/IWP is sensitive to microphysics assumed (eg CCN) and mean state r e r e decreasing OpticalDepthFeedback

14 CF + r e: Seasonal variations in cloud fraction and cloud effective radius both significantly affect reflected solar radiation Ice Liquid (Seasonal): The seasonal variation of the ice to liquid fraction significantly affects reflected solar radiation Very dependent on assumed microphysics Ice Liquid (+1K all year): The observed dependence of the ice to liquid fraction on temperature implies a significant response of reflected shortwave to warming Very dependent on assumed microphysics and mean-climate r e Overall: These results imply that better understanding of cloud microphysical processes is needed to better constrain optical depth feedback

15 Grosvenor, D P and Wood, R (21) The effect of solar zenith angle on modis cloud optical and microphysical retrievals Atmos Chem Phys Discuss, 1: Haynes, J M, Jakob, C, Rossow, W B, Tselioudis, G, and Brown, J (211) Major characteristics of southern ocean cloud regimes and their effects on the energy budget Journal of Climate, 2:561 5 Korhonen, H, Carslaw, K S, Spracklen, D V, Mann, G W, and Woodhouse, M T (2) Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote southern hemisphere oceans: A global model study Journal of Geophysical Research-Atmospheres, 113 Marchand, R, Ackerman, T, Smyth, M, and Rossow, W B (21) A review of cloud top height and optical depth histograms from misr, isccp, and modis Journal of Geophysical Research-Atmospheres, 115 Morrison, H, de Boer, G, Feingold, G, Harrington, J, Shupe, M D, and Sulia, K (211) Resilience of persistent arctic mixed-phase clouds Nature Geoscience, 5:11 17 O Dell, C W, Wentz, F J, and Bennartz, R (2) Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans Journal of Climate, 21: Solomon, A, Shupe, M D, Persson, P O G, and Morrison, H (211) Moisture and dynamical interactions maintaining decoupled arctic mixed-phase stratocumulus in the presence of a humidity inversion Atmospheric Chemistry and Physics, 11: Wood, R and Bretherton, C S (26) On the relationship between stratiform low cloud cover and lower-tropospheric stability Journal of Climate, 19: Zelinka, M D, Klein, S A, Taylor, K E, Andrews, T, Webb, M J, Gregory, J M, and Forster, P M (213) Contributions of different cloud types to feedbacks and rapid adjustments in cmip5* Journal of Climate, 26:57 527

16 Wintertime brightening In-cloud LWP Low W m LWP Low 1 δ=21(3) 5 δ =56(59) J A S O N D J F M A M J % In-cloud IWP Low W m IWP Low δ= 92( 3) δ =2(17) J A S O N D J F M A M J %

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2214 Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds Y.-C. Chen, M. W. Christensen, G. L. Stephens, and J. H. Seinfeld

More information

Differences from CERES EBAF

Differences from CERES EBAF Summary of Session 3 (16 talks) A. Protat, S. Siems, R. Marchand Talk 1: Kalli Furtado (UKMO) SO SST bias linked to lack of SLW clouds in the UM model Developed a new parameterization using turbulence

More information

Towards a global climatology of cloud microphysical properties and why MODIS does not like sunsets (nor sunrise!)

Towards a global climatology of cloud microphysical properties and why MODIS does not like sunsets (nor sunrise!) Towards a global climatology of cloud microphysical properties and why MODIS does not like sunsets (nor sunrise!) Daniel Grosvenor & Robert Wood (U. Washington) Using scattered solar radiation to infer

More information

Assessing the Radiative Impact of Clouds of Low Optical Depth

Assessing the Radiative Impact of Clouds of Low Optical Depth Assessing the Radiative Impact of Clouds of Low Optical Depth W. O'Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California C. Gautier

More information

ESA Cloud-CCI Phase 1 Results Climate Research Perspective

ESA Cloud-CCI Phase 1 Results Climate Research Perspective ESA Cloud-CCI Phase 1 Results Climate Research Perspective Claudia Stubenrauch Laboratoire de Météorologie Dynamique, France and Cloud-CCI Team Outline Ø Challenges to retrieve cloud properties Ø What

More information

Ice clouds observed by passive remote sensing :

Ice clouds observed by passive remote sensing : Ice clouds observed by passive remote sensing : What did we learn from the GEWEX Cloud Assessment? Claudia Stubenrauch Laboratoire de Météorologie Dynamique, IPSL/CNRS, France Clouds are extended objects

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay NSF 2005 CPT Report Jeffrey T. Kiehl & Cecile Hannay Introduction: The focus of our research is on the role of low tropical clouds in affecting climate sensitivity. Comparison of climate simulations between

More information

Constraining Model Predictions of Arctic Sea Ice With Observations. Chris Ander 27 April 2010 Atmos 6030

Constraining Model Predictions of Arctic Sea Ice With Observations. Chris Ander 27 April 2010 Atmos 6030 Constraining Model Predictions of Arctic Sea Ice With Observations Chris Ander 27 April 2010 Atmos 6030 Main Sources Boe et al., 2009: September sea-ice cover in the Arctic Ocean projected to vanish by

More information

Extratropical and Polar Cloud Systems

Extratropical and Polar Cloud Systems Extratropical and Polar Cloud Systems Gunilla Svensson Department of Meteorology & Bolin Centre for Climate Research George Tselioudis Extratropical and Polar Cloud Systems Lecture 1 Extratropical cyclones

More information

Characterization of the Present-Day Arctic Atmosphere in CCSM4

Characterization of the Present-Day Arctic Atmosphere in CCSM4 Characterization of the Present-Day Arctic Atmosphere in CCSM4 Gijs de Boer 1, Bill Chapman 2, Jennifer Kay 3, Brian Medeiros 3, Matthew Shupe 4, Steve Vavrus, and John Walsh 6 (1) (2) (3) (4) ESRL ()

More information

Using Satellite Simulators to Diagnose Cloud-Processes in CMIP5 Models

Using Satellite Simulators to Diagnose Cloud-Processes in CMIP5 Models Using Satellite Simulators to Diagnose Cloud-Processes in CMIP5 Models Stephen A. Klein Program for Climate Model Diagnosis and Intercomparison / LLNL Alejandro Bodas-Salcedo & Mark Webb United Kingdom

More information

The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere

The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 388 392, doi:1.12/grl.575, 213 The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere

More information

Modelling aerosol-cloud interations in GCMs

Modelling aerosol-cloud interations in GCMs Modelling aerosol-cloud interations in GCMs Ulrike Lohmann ETH Zurich Institute for Atmospheric and Climate Science Reading, 13.11.2006 Acknowledgements: Sylvaine Ferrachat, Corinna Hoose, Erich Roeckner,

More information

Influence of clouds on radiative fluxes in the Arctic. J. English, J. Kay, A. Gettelman CESM Workshop / PCWG Meeting June 20, 2012

Influence of clouds on radiative fluxes in the Arctic. J. English, J. Kay, A. Gettelman CESM Workshop / PCWG Meeting June 20, 2012 Influence of clouds on radiative fluxes in the Arctic J. English, J. Kay, A. Gettelman CESM Workshop / PCWG Meeting June 20, 2012 The complexity of arctic clouds Arctic Mixed-Phase Clouds Morrison et al.,

More information

How surface latent heat flux is related to lower-tropospheric stability in southern subtropical marine stratus and stratocumulus regions

How surface latent heat flux is related to lower-tropospheric stability in southern subtropical marine stratus and stratocumulus regions Cent. Eur. J. Geosci. 1(3) 2009 368-375 DOI: 10.2478/v10085-009-0028-1 Central European Journal of Geosciences How surface latent heat flux is related to lower-tropospheric stability in southern subtropical

More information

On the relationships among cloud cover, mixed-phase partitioning, and planetary

On the relationships among cloud cover, mixed-phase partitioning, and planetary 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs Daniel T. McCoy* 1, Ivy Tan 2, Dennis L. Hartmann

More information

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Cécile Hannay, Dave Williamson, Jerry Olson, Rich Neale, Andrew Gettelman,

More information

Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies

Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies David H. Bromwich, Aaron Wilson, Lesheng Bai, Zhiquan Liu POLAR2018 Davos, Switzerland Arctic System Reanalysis Regional reanalysis

More information

Climate impacts of ice nucleation

Climate impacts of ice nucleation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jd017950, 2012 Climate impacts of ice nucleation A. Gettelman, 1,2 X. Liu, 3 D. Barahona, 4,5 U. Lohmann, 2 and C. Chen 1 Received 16 April 2012;

More information

Sensitivity to the CAM candidate schemes in climate and forecast runs along the Pacific Cross-section

Sensitivity to the CAM candidate schemes in climate and forecast runs along the Pacific Cross-section Sensitivity to the CAM candidate schemes in climate and forecast runs along the Pacific Cross-section Cécile Hannay, Dave Williamson, Jerry Olson, Jim Hack, Jeff Kiehl, Richard Neale and Chris Bretherton*

More information

Robert Wood C. S. Bretherton and D. L. Hartmann University of Washington, Seattle, Washington

Robert Wood C. S. Bretherton and D. L. Hartmann University of Washington, Seattle, Washington P2.14 DIURNAL CYCLE OF LIQUID WATER PATH OVER THE SUBTROPICAL AND TROPICAL OCEANS Robert Wood C. S. Bretherton and D. L. Hartmann University of Washington, Seattle, Washington 1. INTRODUCTION For numerical

More information

Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models.

Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. Daniel T. McCoy* 1, Dennis L. Hartmann 1, Mark D. Zelinka 2, Paulo Ceppi 13, Daniel P. Grosvenor 4 *dtmccoy@atmos.uw.edu 1

More information

An Annual Cycle of Arctic Cloud Microphysics

An Annual Cycle of Arctic Cloud Microphysics An Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal

More information

Analysis of Cloud-Radiation Interactions Using ARM Observations and a Single-Column Model

Analysis of Cloud-Radiation Interactions Using ARM Observations and a Single-Column Model Analysis of Cloud-Radiation Interactions Using ARM Observations and a Single-Column Model S. F. Iacobellis, R. C. J. Somerville, D. E. Lane, and J. Berque Scripps Institution of Oceanography University

More information

How is precipitation from low clouds important for climate?

How is precipitation from low clouds important for climate? How is precipitation from low clouds important for climate? CloudSat estimated precipitation rate from low clouds Low clouds over the SE Pacific, Nov 11 th 2014 Robert Wood, University of Washington With

More information

Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic

Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic 1/23 Remote sensing of atmospheric aerosol, clouds and aerosol-cloud interactions. Bremen, 16-19 December 2013 Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic

More information

Consistent estimates from satellites and models for the first aerosol indirect forcing

Consistent estimates from satellites and models for the first aerosol indirect forcing GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051870, 2012 Consistent estimates from satellites and models for the first aerosol indirect forcing Joyce E. Penner, 1 Cheng Zhou, 1 and Li Xu

More information

Exploration of California High Resolution Snowpack Modeling with Realistic Surface-Atmospheric Radiation Physics

Exploration of California High Resolution Snowpack Modeling with Realistic Surface-Atmospheric Radiation Physics Exploration of California High Resolution Snowpack Modeling with Realistic Surface-Atmospheric Radiation Physics Chaincy Kuo, Alan Rhoades, Daniel Feldman Lawrence Berkeley National Laboratory AMS 15th

More information

Standalone simulations: CAM3, CAM4 and CAM5

Standalone simulations: CAM3, CAM4 and CAM5 Standalone simulations: CAM3, and CAM5 CAM5 Model Development Team Cécile Hannay, Rich Neale, Andrew Gettelman, Sungsu Park, Joe Tribbia, Peter Lauritzen, Andrew Conley, Hugh Morrison, Phil Rasch, Steve

More information

Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models

Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models PUBLICATIONS RESEARCH ARTICLE Key Points: GCMs partition condensate phase dependent upon temperature 20 80% of GCM LWP response to warming is due to the repartitioning of condensate Model spread in LWP

More information

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1 Lecture 3. Changes in planetary albedo. Is there a clear signal caused by aerosols and clouds? Outline: 1. Background materials. 2. Papers for class discussion: Palle et al., Changes in Earth s reflectance

More information

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Cécile Hannay, Dave Williamson, Jerry Olson, Rich Neale, Andrew Gettelman,

More information

Arctic Boundary Layer

Arctic Boundary Layer Annual Seminar 2015 Physical processes in present and future large-scale models Arctic Boundary Layer Gunilla Svensson Department of Meteorology and Bolin Centre for Climate Research Stockholm University,

More information

Boundary layer parameterization and climate. Chris Bretherton. University of Washington

Boundary layer parameterization and climate. Chris Bretherton. University of Washington Boundary layer parameterization and climate Chris Bretherton University of Washington Some PBL-related climate modeling issues PBL cloud feedbacks on tropical circulations, climate sensitivity and aerosol

More information

Climate Dynamics (PCC 587): Feedbacks & Clouds

Climate Dynamics (PCC 587): Feedbacks & Clouds Climate Dynamics (PCC 587): Feedbacks & Clouds DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 6: 10-14-13 Feedbacks Climate forcings change global temperatures directly

More information

Cloud Brightening and Climate Change

Cloud Brightening and Climate Change Cloud Brightening and Climate Change 89 Hannele Korhonen and Antti-Ilari Partanen Contents Definitions... 778 Aerosols and Cloud Albedo... 778 Cloud Brightening with Sea-Salt Aerosol... 779 Climate Effects

More information

Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution

Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D24, 4781, doi:10.1029/2002jd002259, 2002 Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial

More information

Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations

Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Erica K. Dolinar Xiquan Dong and Baike Xi University of North Dakota This talk is based on Dolinar

More information

Interannual Variations of Arctic Cloud Types:

Interannual Variations of Arctic Cloud Types: Interannual Variations of Arctic Cloud Types: Relationships with Sea Ice and Surface Temperature Ryan Eastman Stephen Warren University of Washington Department of Atmospheric Sciences Changes in Arctic

More information

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Dave Turner University of Wisconsin-Madison Pacific Northwest National Laboratory 8 May 2003

More information

How Will Low Clouds Respond to Global Warming?

How Will Low Clouds Respond to Global Warming? How Will Low Clouds Respond to Global Warming? By Axel Lauer & Kevin Hamilton CCSM3 UKMO HadCM3 UKMO HadGEM1 iram 2 ECHAM5/MPI OM 3 MIROC3.2(hires) 25 IPSL CM4 5 INM CM3. 4 FGOALS g1. 7 GISS ER 6 GISS

More information

Seeking a consistent view of energy and water flows through the climate system

Seeking a consistent view of energy and water flows through the climate system Seeking a consistent view of energy and water flows through the climate system Robert Pincus University of Colorado and NOAA/Earth System Research Lab Atmospheric Energy Balance [Wm -2 ] 340.1±0.1 97-101

More information

The MODIS Cloud Data Record

The MODIS Cloud Data Record The MODIS Cloud Data Record Brent C. Maddux 1,2 Steve Platnick 3, Steven A. Ackerman 1 Paul Menzel 1, Kathy Strabala 1, Richard Frey 1, 1 Cooperative Institute for Meteorological Satellite Studies, 2 Department

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres

PUBLICATIONS. Journal of Geophysical Research: Atmospheres PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: Both ceilometer and MPL define the cloud bases for the Arctic mixed-phase cloud The stronger the humidity inversion,

More information

Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section

Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section Cécile Hannay, Jeff Kiehl, Dave Williamson, Jerry Olson, Jim Hack, Richard Neale and Chris Bretherton*

More information

The Arctic Energy Budget

The Arctic Energy Budget The Arctic Energy Budget The global heat engine [courtesy Kevin Trenberth, NCAR]. Differential solar heating between low and high latitudes gives rise to a circulation of the atmosphere and ocean that

More information

Evaluating parameterized variables in the Community Atmospheric Model along the GCSS Pacific cross-section

Evaluating parameterized variables in the Community Atmospheric Model along the GCSS Pacific cross-section Evaluating parameterized variables in the Community Atmospheric Model along the GCSS Pacific cross-section Cécile Hannay, Dave Williamson, Rich Neale, Jerry Olson, Dennis Shea National Center for Atmospheric

More information

Tropical cirrus and water vapor: an effective Earth infrared iris feedback?

Tropical cirrus and water vapor: an effective Earth infrared iris feedback? Atmos. Chem. Phys.,, 31 3, www.atmos-chem-phys.org/acp//31/ Atmospheric Chemistry and Physics Tropical cirrus and water vapor: an effective Earth infrared iris feedback? Q. Fu, M. Baker, and D. L. Hartmann

More information

Trends in ISCCP, MISR, and MODIS cloud-top-height and optical-depth histograms

Trends in ISCCP, MISR, and MODIS cloud-top-height and optical-depth histograms JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 1941 1949, doi:10.1002/jgrd.50207, 2013 Trends in ISCCP, MISR, and MODIS cloud-top-height and optical-depth histograms Roger Marchand 1 Received

More information

Article Title: Cloud feedback mechanisms and their representation in global climate models. Article Type: Advanced Review

Article Title: Cloud feedback mechanisms and their representation in global climate models. Article Type: Advanced Review Article Title: Cloud feedback mechanisms and their representation in global climate models Article Type: Advanced Review Authors: Paulo Ceppi Department of Meteorology, University of Reading, Reading,

More information

Oceanic Eddies in the VOCALS Region of the Southeast Pacific Ocean

Oceanic Eddies in the VOCALS Region of the Southeast Pacific Ocean Oceanic Eddies in the VOCALS Region of the Southeast Pacific Ocean Outline: Overview of VOCALS Dudley B. Chelton Oregon State University Overview of the oceanographic component of VOCALS Preliminary analysis

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) What processes control

More information

Clouds in the Climate System: Why is this such a difficult problem, and where do we go from here?

Clouds in the Climate System: Why is this such a difficult problem, and where do we go from here? Clouds in the Climate System: Why is this such a difficult problem, and where do we go from here? Joel Norris Scripps Institution of Oceanography CERES Science Team Meeting April 29, 2009 Collaborators

More information

WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity

WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity Schloss Ringberg, 3700 Rottach-Egern, Germany March 24-28, 2014 This work was performed under the auspices of the U.S. Department

More information

Arctic Atmospheric Rivers: Linking Atmospheric Synoptic Transport, Cloud Phase, Surface Energy Fluxes and Sea-Ice Growth

Arctic Atmospheric Rivers: Linking Atmospheric Synoptic Transport, Cloud Phase, Surface Energy Fluxes and Sea-Ice Growth Arctic Atmospheric Rivers: Linking Atmospheric Synoptic Transport, Cloud Phase, Surface Energy Fluxes and Sea-Ice Growth Ola Persson Cooperative Institute for the Research in the Environmental Sciences,

More information

13.10 RECENT ARCTIC CLIMATE TRENDS OBSERVED FROM SPACE AND THE CLOUD-RADIATION FEEDBACK

13.10 RECENT ARCTIC CLIMATE TRENDS OBSERVED FROM SPACE AND THE CLOUD-RADIATION FEEDBACK 13.10 RECENT ARCTIC CLIMATE TRENDS OBSERVED FROM SPACE AND THE CLOUD-RADIATION FEEDBACK Xuanji Wang 1 * and Jeffrey R. Key 2 1 Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison

More information

(1) (2) (3) Gijs de Boer (1), Edwin W. Eloranta (1), Matthew D. Shupe (2), Taneil Uttal (2), Jennifer Kay (3) ESRL

(1) (2) (3) Gijs de Boer (1), Edwin W. Eloranta (1), Matthew D. Shupe (2), Taneil Uttal (2), Jennifer Kay (3) ESRL Multi-Year Statistics of Mixed-Phase Arctic Stratus at Barrow and Eureka: Process Studies, Assessment of CloudSAT Detection, and Applications to Models Gijs de Boer (1), Edwin W. Eloranta (1), Matthew

More information

Consequences for Climate Feedback Interpretations

Consequences for Climate Feedback Interpretations CO 2 Forcing Induces Semi-direct Effects with Consequences for Climate Feedback Interpretations Timothy Andrews and Piers M. Forster School of Earth and Environment, University of Leeds, Leeds, LS2 9JT,

More information

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations G.J. Zhang Center for Atmospheric Sciences Scripps Institution

More information

Interannual variability of top-ofatmosphere. CERES instruments

Interannual variability of top-ofatmosphere. CERES instruments Interannual variability of top-ofatmosphere albedo observed by CERES instruments Seiji Kato NASA Langley Research Center Hampton, VA SORCE Science team meeting, Sedona, Arizona, Sep. 13-16, 2011 TOA irradiance

More information

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius A. S. Frisch and G. Feingold Cooperative Institute for Research in the Atmosphere National Oceanic and Atmospheric

More information

1. INTRODUCTION. investigating the differences in actual cloud microphysics.

1. INTRODUCTION. investigating the differences in actual cloud microphysics. MICROPHYSICAL PROPERTIES OF DEVELOPING VERSUS NON-DEVELOPING CLOUD CLUSTERS DURING TROPICAL CYCLOGENESIS 4B.5 Nathan D. Johnson,* William C. Conant, and Elizabeth A. Ritchie Department of Atmospheric Sciences,

More information

Coupling between clouds and their environment: using observations to constrain models

Coupling between clouds and their environment: using observations to constrain models Coupling between clouds and their environment: using observations to constrain models Louise Nuijens ECMWF Annual Seminar 2015 Brian Medeiros, Irina Sandu and Maike Alhgrimm Photograph: Frederic Batier

More information

The Interaction between Climate Forcing and Feedbacks From the global scale to the process level

The Interaction between Climate Forcing and Feedbacks From the global scale to the process level The Interaction between Climate Forcing and Feedbacks From the global scale to the process level A. Gettelman (NCAR), L. Lin (U. Lanzhou), B. Medeiros, J. Olson (NCAR) The interaction of Forcing & Feedbacks

More information

THE ARCTIC SYSTEM REANALYSIS D. H. Bromwich et al. Presented by: J. Inoue

THE ARCTIC SYSTEM REANALYSIS D. H. Bromwich et al. Presented by: J. Inoue THE ARCTIC SYSTEM REANALYSIS D. H. Bromwich et al. Presented by: J. Inoue MOSAiC Implementation Workshop St. Petersburg: Nov. 13, 2017 Arctic System Reanalysis Description Regional reanalysis of the Greater

More information

- global radiative energy balance

- global radiative energy balance (1 of 14) Further Reading: Chapter 04 of the text book Outline - global radiative energy balance - insolation and climatic regimes - composition of the atmosphere (2 of 14) Introduction Last time we discussed

More information

SINGLE-COLUMN MODEL SIMULATIONS OF ARCTIC CLOUDINESS AND SURFACE RADIATIVE FLUXES DURING THE SURFACE HEAT BUDGET OF ARCTIC (SHEBA) EXPERIMENT

SINGLE-COLUMN MODEL SIMULATIONS OF ARCTIC CLOUDINESS AND SURFACE RADIATIVE FLUXES DURING THE SURFACE HEAT BUDGET OF ARCTIC (SHEBA) EXPERIMENT SINGLE-COLUMN MODEL SIMULATIONS OF ARCTIC CLOUDINESS AND SURFACE RADIATIVE FLUXES DURING THE SURFACE HEAT BUDGET OF ARCTIC (SHEBA) EXPERIMENT By Cécile Hannay RECOMMENDED: Advisory Committee Chair Department

More information

Photo courtesy National Geographic

Photo courtesy National Geographic Welcome to the Polar Climate WG! Quick update: 1. CSL proposal (~85% allocation awarded, 16 month POP starts October 1) 2. All NCAR CMIP5 data on ESG within next month 3. Observational needs/uses living

More information

RADIATIVE INFLUENCES ON THE GLACIATION TIME-SCALES OF ARCTIC MIXED-PHASE CLOUDS

RADIATIVE INFLUENCES ON THE GLACIATION TIME-SCALES OF ARCTIC MIXED-PHASE CLOUDS P1.26 RADIATIVE INFLUENCES ON THE GLACIATION TIME-SCALES OF ARCTIC MIXED-PHASE CLOUDS Zach Lebo, Nat Johnson, and Jerry Y. Harrington * Department of Meteorology, Pennsylvania State University, University

More information

Using volcanic eruptions to unlock the secrets of aerosol-cloud interactions. Jim Haywood

Using volcanic eruptions to unlock the secrets of aerosol-cloud interactions. Jim Haywood Using volcanic eruptions to unlock the secrets of aerosol-cloud interactions Jim Haywood Malavelle, F., et al., Strong constraints on aerosol-cloud interactions from volcanic eruptions, Nature, June 22

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres

PUBLICATIONS. Journal of Geophysical Research: Atmospheres PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: The CERES-MODIS retrieved cloud microphysical properties agree well with ARM retrievals under both snow-free and snow

More information

A synthesis of published VOCALS studies on marine boundary layer and cloud structure along 20S

A synthesis of published VOCALS studies on marine boundary layer and cloud structure along 20S A synthesis of published VOCALS studies on marine boundary layer and cloud structure along 20S Chris Bretherton Department of Atmospheric Sciences University of Washington VOCALS RF05, 72W 20S Work summarized

More information

Warm rain and climate: VOCALS, CloudSat, Models. Robert Wood University of Washington

Warm rain and climate: VOCALS, CloudSat, Models. Robert Wood University of Washington Warm rain and climate: VOCALS, CloudSat, Models Robert Wood University of Washington Warm rain a missing climatology Image: NASA GSFC Shipboard remote sensing shows frequent precipitation from shallow

More information

National Center for Atmospheric Research,* Boulder, Colorado S. J. GHAN. Pacific Northwest National Laboratory, Richland, Washington

National Center for Atmospheric Research,* Boulder, Colorado S. J. GHAN. Pacific Northwest National Laboratory, Richland, Washington 3660 J O U R N A L O F C L I M A T E VOLUME 21 A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results

More information

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1 Climate Modeling Lecture 8 Radiative-Convective Models Manabe and Strickler (1964) Course Notes chapter 5.1 The Hydrological Cycle Hadley Circulation Prepare for Mid-Term (Friday 9 am) Review Course Notes

More information

The strength of the tropical inversion and its response to climate change in 18 CMIP5 models

The strength of the tropical inversion and its response to climate change in 18 CMIP5 models The strength of the tropical inversion and its response to climate change in 18 CMIP5 models Xin Qu and Alex Hall Department of Atmospheric and Oceanic Sciences University of California at Los Angeles

More information

Climate Models and Snow: Projections and Predictions, Decades to Days

Climate Models and Snow: Projections and Predictions, Decades to Days Climate Models and Snow: Projections and Predictions, Decades to Days Outline Three Snow Lectures: 1. Why you should care about snow 2. How we measure snow 3. Snow and climate modeling The observational

More information

The role of cloud heating within the atmosphere on the high cloud amount and top-of-atmosphere cloud radiative effect

The role of cloud heating within the atmosphere on the high cloud amount and top-of-atmosphere cloud radiative effect JAMES, VOL.???, XXXX, DOI:./, The role of cloud heating within the atmosphere on the high cloud amount and top-of-atmosphere cloud radiative effect Bryce E. Harrop, Dennis L. Hartmann, Key Points. ACRE

More information

Improving the representation of the Greater Arctic with ASRv2. D. H. Bromwich and many collaborators

Improving the representation of the Greater Arctic with ASRv2. D. H. Bromwich and many collaborators Improving the representation of the Greater Arctic with ASRv2 D. H. Bromwich and many collaborators 5 th International Conference on Reanalysis (ICR5) Rome, Italy 14 November 2017 Importance of an Arctic-focused

More information

Radiative Control of Deep Tropical Convection

Radiative Control of Deep Tropical Convection Radiative Control of Deep Tropical Convection Dennis L. Hartmann with collaboration of Mark Zelinka and Bryce Harrop Department of Atmospheric Sciences University of Washington Outline Review Tropical

More information

Journal of the Meteorological Society of Japan, Vol. 75, No. 1, pp , Day-to-Night Cloudiness Change of Cloud Types Inferred from

Journal of the Meteorological Society of Japan, Vol. 75, No. 1, pp , Day-to-Night Cloudiness Change of Cloud Types Inferred from Journal of the Meteorological Society of Japan, Vol. 75, No. 1, pp. 59-66, 1997 59 Day-to-Night Cloudiness Change of Cloud Types Inferred from Split Window Measurements aboard NOAA Polar-Orbiting Satellites

More information

Extreme, transient Moisture Transport in the high-latitude North Atlantic sector and Impacts on Sea-ice concentration:

Extreme, transient Moisture Transport in the high-latitude North Atlantic sector and Impacts on Sea-ice concentration: AR conference, June 26, 2018 Extreme, transient Moisture Transport in the high-latitude North Atlantic sector and Impacts on Sea-ice concentration: associated Dynamics, including Weather Regimes & RWB

More information

Atmospheric Boundary Layer over Land, Ocean, and Ice. Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona

Atmospheric Boundary Layer over Land, Ocean, and Ice. Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona Atmospheric Boundary Layer over Land, Ocean, and Ice Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona xubin@email.arizona.edu 24 October 2017 Future of ABL Observations Workshop

More information

How Accurate is the GFDL GCM Radiation Code? David Paynter,

How Accurate is the GFDL GCM Radiation Code? David Paynter, Radiation Processes in the GFDL GCM: How Accurate is the GFDL GCM Radiation Code? David Paynter, Alexandra Jones Dan Schwarzkopf, Stuart Freidenreich and V.Ramaswamy GFDL, Princeton, New Jersey 13th June

More information

How not to build a Model: Coupling Cloud Parameterizations Across Scales. Andrew Gettelman, NCAR

How not to build a Model: Coupling Cloud Parameterizations Across Scales. Andrew Gettelman, NCAR How not to build a Model: Coupling Cloud Parameterizations Across Scales Andrew Gettelman, NCAR All models are wrong. But some are useful. -George E. P. Box, 1976 (Statistician) The Treachery of Images,

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21804, doi: /2006gl027150, 2006

GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21804, doi: /2006gl027150, 2006 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21804, doi:10.1029/2006gl027150, 2006 Influence of aerosols on the shortwave cloud radiative forcing from North Pacific oceanic clouds:

More information

Clouds on Mars Cloud Classification

Clouds on Mars Cloud Classification Lecture Ch. 8 Cloud Classification Descriptive approach to clouds Drop Growth and Precipitation Processes Microphysical characterization of clouds Complex (i.e. Real) Clouds Examples Curry and Webster,

More information

Transpose-AMIP. Steering committee: Keith Williams (chair), David Williamson, Steve Klein, Christian Jakob, Catherine Senior

Transpose-AMIP. Steering committee: Keith Williams (chair), David Williamson, Steve Klein, Christian Jakob, Catherine Senior Transpose-AMIP Steering committee: Keith Williams (chair), David Williamson, Steve Klein, Christian Jakob, Catherine Senior WGNE - THORPEX-PDP workshop, Zurich, 08/07/10 What is Transpose-AMIP? Basically,

More information

Atmospheric Water Vapour in the Climate System: Climate Models 2/3

Atmospheric Water Vapour in the Climate System: Climate Models 2/3 Atmospheric Water Vapour in the Climate System: Climate Models 2/3 Evaluating Climate Models and Feedbacks Richard P. Allan University of Reading Atmospheric Water Vapour in the Climate System: Climate

More information

Observed Trends in Wind Speed over the Southern Ocean

Observed Trends in Wind Speed over the Southern Ocean GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051734, 2012 Observed s in over the Southern Ocean L. B. Hande, 1 S. T. Siems, 1 and M. J. Manton 1 Received 19 March 2012; revised 8 May 2012;

More information

Seasonal Variation of Cloud Systems over ARM SGP

Seasonal Variation of Cloud Systems over ARM SGP JULY 2008 W U E T A L. 2107 Seasonal Variation of Cloud Systems over ARM SGP XIAOQING WU AND SUNWOOK PARK Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa QILONG MIN

More information

Upper Tropospheric Cloud Systems. what can be achieved? A GEWEX Perspective

Upper Tropospheric Cloud Systems. what can be achieved? A GEWEX Perspective Upper Tropospheric Cloud Systems from Satellite Observations: what can be achieved? A GEWEX Perspective Global Energy & Water EXchanges Claudia Stubenrauch, Graeme Stephens IPSL LMD, Paris, France, NASA

More information

Antarctic Cloud Radiative Forcing at the Surface Estimated from the AVHRR Polar Pathfinder and ISCCP D1 Datasets,

Antarctic Cloud Radiative Forcing at the Surface Estimated from the AVHRR Polar Pathfinder and ISCCP D1 Datasets, JUNE 2003 PAVOLONIS AND KEY 827 Antarctic Cloud Radiative Forcing at the Surface Estimated from the AVHRR Polar Pathfinder and ISCCP D1 Datasets, 1985 93 MICHAEL J. PAVOLONIS Cooperative Institute for

More information

Ground-Based Observations of Clouds in the Arctic --

Ground-Based Observations of Clouds in the Arctic -- Ground-Based Observations of Clouds in the Arctic -- Implications for CloudSATrelated studies Gijs de Boer () Edwin W. Eloranta (), Gregory J. Tripoli (), Jennifer Kay (2), Matthew D. Shupe (3) () (2)

More information

VOCALS Cloud-Drizzle-Aerosol Theme

VOCALS Cloud-Drizzle-Aerosol Theme VOCALS Cloud-Drizzle-Aerosol Theme Understanding and modeling aerosol indirect effects Is drizzle important to Sc synoptic variability and climatology? IPCC, 2007 AEROSOL-CLOUD-PRECIPITATION HYPOTHESES

More information

An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis

An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jd013948, 2010 An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis Wenying Su, 1 Norman

More information

Recent trends in energy flows through the Arctic climate system. Michael Mayer Leo Haimberger

Recent trends in energy flows through the Arctic climate system. Michael Mayer Leo Haimberger Recent trends in energy flows through the Arctic climate system Michael Mayer Leo Haimberger Motivation and outline Arctic climate system is subject to rapid changes and large interannual variability How

More information

Are Cosmic Rays Changing our Climate? Jose Cardoza University of Utah Atmospheric Science Department Tuesday, February 16, 2010

Are Cosmic Rays Changing our Climate? Jose Cardoza University of Utah Atmospheric Science Department Tuesday, February 16, 2010 Are Cosmic Rays Changing our Climate? Jose Cardoza University of Utah Atmospheric Science Department Tuesday, February 16, 2010 OUTLINE Cosmic rays in the atmosphere The supporters The skeptics Summary

More information

The effect of ocean mixed layer depth on climate in slab ocean aquaplanet ABSTRACT

The effect of ocean mixed layer depth on climate in slab ocean aquaplanet ABSTRACT Climate Dynamics manuscript No. (will be inserted by the editor) 1 2 The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. 3 Aaron Donohoe Dargan Frierson 4 5 Manuscript

More information