Assessing the Radiative Impact of Clouds of Low Optical Depth

Size: px
Start display at page:

Download "Assessing the Radiative Impact of Clouds of Low Optical Depth"

Transcription

1 Assessing the Radiative Impact of Clouds of Low Optical Depth W. O'Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California C. Gautier Department of Geography and Institute for Computational Earth System Science University of California Santa Barbara, California Introduction Analysis from the International Satellite Cloud Climatology Project (ISCCP) reveals that the global mean cloud optical depth is surprisingly low (i.e., τ = 3.8). While this value is probably dominated by extensive fields of cirrus, the average for liquid water clouds is also likely smaller than expected. It is in this regime (τ <10) where remote measurements of cloud optical thickness or liquid water path (LWP) are most difficult. Microwave radiometers tend to be noisy for low liquid water content and methods relying on solar transmission are complicated by scattering that is somewhere between being singlescattering and primarily diffusive. A new effort is now being launched to improve techniques for retrieving cloud properties for liquid water clouds of low optical depth. The accuracy required for climate studies should be based on how errors in the retrieval of cloud optical depth propagate through the radiative budget. In this study, we investigate the sensitivity of the shortwave and longwave radiative budget to perturbations in cloud optical thickness. This analysis is performed using a radiative transfer model (SBDART) with model inputs guided by observations from the Atmospheric Radiation Measurement (ARM) climate research sites at the Southern Great Plains (SGP), the Tropical Western Pacific (TWP), and North Slope of Alaska (NSA). By using these data the sensitivity analysis is constrained within realistic boundaries. The results should provide a better understanding towards determining the accuracy required for measuring cloud optical thickness as it relates to the radiation reaching the Earth s surface, being reflected back to space and absorbed in the atmospheric column. Cloud Property Retrievals Determining the retrieval accuracy of cloud optical thickness and LWP is a difficult endeavor since insitu measurements of vertically integrated cloud liquid water are presently not possible. The long-term robustness of these retrievals may be appreciated by comparing histograms of LWP measured from the microwave radiometer (MWR) and optical thickness inferred from radiometric observations in the 1

2 visible by the multi-filter rotating shadowband radiometer (MFRSR). From these retrievals, the cloud droplet size distribution can be estimated. The methodology for obtaining these properties for single layered liquid clouds is described in the accompanying flowchart (Figure 1). Cloud optical thickness is estimated from a look up table generated by SBDART that uses atmospheric transmission and surface albedo as input. Observations from the multi-filter radiometer (MFR) combined with the MFRSR provide the surface albedo. Atmospheric transmission is obtained by using MFRSR observations for the surface downwelling irradiance and the Barnmich value-added product for the top of the atmosphere (TOA) flux. The MWR provides cloud LWP. While many years of observations for the MWR and MFRSR are available, the analysis performed here is limited by the TOA flux data for the years Atmospheric profiles are obtained from radiosondes and are used to screen the fields for cirrus and multiple cloud layers. The cloud optical thickness and LWP are used to compute the cloud droplet effective radius. Figure 1. Cloud property retrieval algorithm. 2

3 Histograms in percent for cloud optical thickness and LWP are computed for the three ARM sites (Figure 2). Interestingly, for vastly different climatic regimes the difference between the mean cloud optical thickness for single layer clouds at the SGP ( τ = 10.7) and TWP ( τ = 11.6) is less than 10%. For the NSA site the clouds are optically thinner ( τ = 8.8). This estimated value is probably too high because of the difficulties of retrieving optical thickness for steep solar zenith angles and often high surface albedos encountered at this site. Assuming an effective radius of 6 microns, the MWR histogram is binned by intervals equivalent to two optical depths. In general, the agreement between the shapes for the two histograms at each site is excellent outside the area where the MWR observations are noisy (light blue shading). The large difference between the histograms for τ <8 and LWP <.0025 cm shows the difficulty in measuring clouds of low optical depth. This problem is further demonstrated in Figure 3 where the mean cloud droplet effective radius is plotted against cloud optical thickness at SGP. Here, the calculated droplet size has a trend opposite the normal assumption that it should scale with optical depth. Sensitivity Analysis The sensitivity analysis is performed for conditions that represent the environments of the SGP, TWP, and NSA. Atmospheric profiles of relative humidity, temperature, and pressure are obtained from the radiosonde observations. Cloud layer locations are a function of the vertical profile of relative humidity. Aerosols and surface albedos are based on the geographical location of the ARM site. Simulations are performed for solar zenith angles of 0.0, 41.41, 60, and 75 degrees. The clouds used in the model runs initially have optical depths of 2, 4, 8, 16, 32, 64, and 128 and effective radii of 5 and 12 um. To simulate the impact of retrieval errors, the optical depth is systematically increased and decreased by 5%, 10%, and 20% and the radiative transfer computations are repeated for each perturbation. For the entire sensitivity analysis approximately 20,000 model runs were performed. In Figure 4, the shortwave fluxes are presented. The thick line represents the percent error in the shortwave TOA upwelling and surface downwelling irradiance and column atmospheric absorption for the various deviations in cloud optical thickness input. The thin line represents the 2-sigma difference. The errors in the longwave are expressed in Wm -2 for downwelling at the surface and TOA upwelling irradiance (Figure 5). For the shortwave, the results show that for the downwelling (upwelling) surface irradiance the sensitivity to cloud optical thickness increases (decreases) as clouds become optically thicker. For clouds of moderate thickness, it requires an approximately 3% change in cloud optical thickness to produce a corresponding 1% change in downwelling or upwelling fluxes. At the NSA site, the spread (i.e., 2-sigma) in the results for the downwelling irradiance is higher than that for the SGP or TWP because of the extreme range of surface albedos used for this location in the model computations. For all sites, atmospheric absorption in the shortwave is very insensitive to perturbations in cloud optical thickness. For the longwave clouds with optical depths between 2 and 8 are most sensitive to perturbations, but the impact is generally much less than 5 Wm -2. 3

4 Figure 2. Histogram in percent for cloud optical thickness retrieved using the MFRSR and cloud liquid water retrieved using the MWR. The shaded blue area in the MWR histogram represents values where the MWR is reported to be inaccurate. 4

5 Figure 3. Cloud optical thickness plotted against computed cloud droplet effective radius averaged over all cases using 2 τ bins. 5

6 Figure 4. Modeled flux errors in percent for shortwave downwelling at the surface, upwelling at the TOA and total column atmospheric absorption. Error is the difference in flux between the radiative field computed for a give optical depth and that field using an optical depth plus or minus a percent deviation. The thick line is the mean error for all cases and the thin line represents the 2-sigma error. 6

7 Figure 5. Same as in Figure 4, but for longwave upwelling and downwelling irradiance error expressed in Wm -2. 7

8 Conclusion The reported problems of retrieving clouds of low optical depth are manifested in the long data record for all three ARM sites. For the SGP and TWP site, the LWP retrieved by the MWR is biased high for values less than cm and at the NSA both retrieval methods have difficulties. For assessing the impact on radiative fluxes, the modeling study can provide some guidance as to the required accuracy needed for retrieving cloud optical thickness or liquid water path. For clouds of τ <10, the retrievals should have an accuracy of 15% to insure that upwelling and downwelling shortwave irradiances are within 5% of their true value. This 15% accuracy will impact estimates in shortwave atmospheric absorption by less than 2%. For the longwave, the 15% retrieval accuracy will limit discrepancies in downwelling and upwelling fluxes to a maximum of 3 Wm -2. Corresponding Author William O Hirok, bill@icess.ucsb.edu, (805)

A Longwave Broadband QME Based on ARM Pyrgeometer and AERI Measurements

A Longwave Broadband QME Based on ARM Pyrgeometer and AERI Measurements A Longwave Broadband QME Based on ARM Pyrgeometer and AERI Measurements Introduction S. A. Clough, A. D. Brown, C. Andronache, and E. J. Mlawer Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

Comparison of Aircraft Observed with Calculated Downwelling Solar Fluxes during ARESE Abstract

Comparison of Aircraft Observed with Calculated Downwelling Solar Fluxes during ARESE Abstract Comparison of Aircraft Observed with Calculated Downwelling Solar Fluxes during ARESE Abstract The objectives of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE) are to

More information

An Annual Cycle of Arctic Cloud Microphysics

An Annual Cycle of Arctic Cloud Microphysics An Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal

More information

Quantifying the magnitude of anomalous solar absorption

Quantifying the magnitude of anomalous solar absorption JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D9, 4273, doi:10.1029/2002jd002674, 2003 Quantifying the magnitude of anomalous solar absorption Thomas P. Ackerman, Donna M. Flynn, and Roger T. Marchand

More information

Shortwave spectral radiative forcing of cumulus clouds from surface observations

Shortwave spectral radiative forcing of cumulus clouds from surface observations GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2010gl046282, 2011 Shortwave spectral radiative forcing of cumulus clouds from surface observations E. Kassianov, 1 J. Barnard, 1 L. K. Berg, 1 C. N.

More information

Effect of clouds on the calculated vertical distribution of shortwave absorption in the tropics

Effect of clouds on the calculated vertical distribution of shortwave absorption in the tropics Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009791, 2008 Effect of clouds on the calculated vertical distribution of shortwave absorption in the tropics Sally

More information

New Insights into Aerosol Asymmetry Parameter

New Insights into Aerosol Asymmetry Parameter New Insights into Aerosol Asymmetry Parameter J.A. Ogren, E. Andrews, A. McComiskey, P. Sheridan, A. Jefferson, and M. Fiebig National Oceanic and Atmospheric Administration/ Earth System Research Laboratory

More information

An Overview of the Radiation Budget in the Lower Atmosphere

An Overview of the Radiation Budget in the Lower Atmosphere An Overview of the Radiation Budget in the Lower Atmosphere atmospheric extinction irradiance at surface P. Pilewskie 300 University of Colorado Laboratory for Atmospheric and Space Physics Department

More information

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Dave Turner University of Wisconsin-Madison Pacific Northwest National Laboratory 8 May 2003

More information

Surface Radiation Budget from ARM Satellite Retrievals

Surface Radiation Budget from ARM Satellite Retrievals Surface Radiation Budget from ARM Satellite Retrievals P. Minnis, D. P. Kratz, and T. P. charlock Atmospheric Sciences National Aeronautics and Space Administration Langley Research Center Hampton, Virginia

More information

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1 Lecture 3. Changes in planetary albedo. Is there a clear signal caused by aerosols and clouds? Outline: 1. Background materials. 2. Papers for class discussion: Palle et al., Changes in Earth s reflectance

More information

Investigating anomalous absorption using surface measurements

Investigating anomalous absorption using surface measurements JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D24, 4761, doi:10.1029/2003jd003411, 2003 Investigating anomalous absorption using surface measurements M. Sengupta 1 and T. P. Ackerman Pacific Northwest

More information

Development of a Ground Based Remote Sensing Approach for Direct Evaluation of Aerosol-Cloud Interaction

Development of a Ground Based Remote Sensing Approach for Direct Evaluation of Aerosol-Cloud Interaction Atmosphere 212, 3, 468-494; doi:1.339/atmos34468 OPEN ACCESS atmosphere ISSN 273-4433 www.mdpi.com/journal/atmosphere Article Development of a Ground Based Remote Sensing Approach for Direct Evaluation

More information

AIRS and IASI Precipitable Water Vapor (PWV) Absolute Accuracy at Tropical, Mid-Latitude, and Arctic Ground-Truth Sites

AIRS and IASI Precipitable Water Vapor (PWV) Absolute Accuracy at Tropical, Mid-Latitude, and Arctic Ground-Truth Sites AIRS and IASI Precipitable Water Vapor (PWV) Absolute Accuracy at Tropical, Mid-Latitude, and Arctic Ground-Truth Sites Robert Knuteson, Sarah Bedka, Jacola Roman, Dave Tobin, Dave Turner, Hank Revercomb

More information

Observed Southern Ocean Cloud Properties and Shortwave Reflection

Observed Southern Ocean Cloud Properties and Shortwave Reflection Observed Southern Ocean Cloud Properties and Shortwave Reflection Daniel T McCoy* 1, Dennis L Hartmann 1, and Daniel P Grosvenor 2 University of Washington 1 University of Leeds 2 *dtmccoy@atmosuwedu Introduction

More information

The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols

The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols S. Schmidt, B. Kindel, & P. Pilewskie Laboratory for Atmospheric and Space Physics University of Colorado SORCE Science Meeting, 13-16

More information

Changes in Earth s Albedo Measured by satellite

Changes in Earth s Albedo Measured by satellite Changes in Earth s Albedo Measured by satellite Bruce A. Wielicki, Takmeng Wong, Norman Loeb, Patrick Minnis, Kory Priestley, Robert Kandel Presented by Yunsoo Choi Earth s albedo Earth s albedo The climate

More information

Moderate Spectral Resolution Radiative Transfer Modeling Based on Modified Correlated-k Method

Moderate Spectral Resolution Radiative Transfer Modeling Based on Modified Correlated-k Method Moderate Spectral Resolution Radiative Transfer Modeling Based on Modified Correlated-k Method S. Yang, P. J. Ricchiazzi, and C. Gautier University of California, Santa Barbara Santa Barbara, California

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Climate Dynamics (PCC 587): Feedbacks & Clouds

Climate Dynamics (PCC 587): Feedbacks & Clouds Climate Dynamics (PCC 587): Feedbacks & Clouds DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 6: 10-14-13 Feedbacks Climate forcings change global temperatures directly

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D14, 4412, doi: /2002jd002818, 2003

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D14, 4412, doi: /2002jd002818, 2003 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D14, 4412, doi:10.1029/2002jd002818, 2003 Absorption of shortwave radiation in a cloudy atmosphere: Observed and theoretical estimates during the second Atmospheric

More information

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2214 Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds Y.-C. Chen, M. W. Christensen, G. L. Stephens, and J. H. Seinfeld

More information

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA. James Liljegren

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA. James Liljegren Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA James Liljegren Ames Laboratory Ames, IA 515.294.8428 liljegren@ameslab.gov Introduction In the Arctic water vapor and clouds influence

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds

Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005jd006136, 2005 Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds Qilong Min and Minzheng Duan Atmospheric

More information

J. Michalsky and L. Harrison Atmospheric Sciences Research Center University at Albany, State University of New York Albany, New York

J. Michalsky and L. Harrison Atmospheric Sciences Research Center University at Albany, State University of New York Albany, New York Technical Progress Report: Completion of Spectral Rotating Shadowband Radiometers and Analysis of Atmospheric Radiation Measurement Spectral Shortwave Data J. Michalsky and L. Harrison Atmospheric Sciences

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D17, 4547, doi: /2003jd003385, 2003

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D17, 4547, doi: /2003jd003385, 2003 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D17, 4547, doi:10.1029/2003jd003385, 2003 Validation of surface retrieved cloud optical properties with in situ measurements at the Atmospheric Radiation

More information

1.0 BACKGROUND 1.1 Surface Radiation

1.0 BACKGROUND 1.1 Surface Radiation 1.0 BACKGROUND 1.1 Surface Radiation Meteorologists have utilized recent advances in computer speeds and atmospheric models to create increasingly accurate models of the environment. The computational

More information

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius A. S. Frisch and G. Feingold Cooperative Institute for Research in the Atmosphere National Oceanic and Atmospheric

More information

Instrument Cross-Comparisons and Automated Quality Control of Atmospheric Radiation Measurement Data

Instrument Cross-Comparisons and Automated Quality Control of Atmospheric Radiation Measurement Data Instrument Cross-Comparisons and Automated Quality Control of Atmospheric Radiation Measurement Data S. Moore and G. Hughes ATK Mission Research Santa Barbara, California Introduction Within the Atmospheric

More information

Shortwave Radiative Transfer in the Earth s Atmosphere: Current Models and Validation

Shortwave Radiative Transfer in the Earth s Atmosphere: Current Models and Validation Shortwave Radiative Transfer in the Earth s Atmosphere: Current Models and Validation Jennifer Delamere, Eli Mlawer, and Tony Clough Atmospheric & Environmental Research, Inc. Summary AER builds radiative

More information

Radiation Fluxes During ZCAREX-99: Measurements and Calculations

Radiation Fluxes During ZCAREX-99: Measurements and Calculations Radiation Fluxes During ZCAREX-99: Measurements and Calculations G. S. Golitsyn, P. P. Anikin, E. M. Feigelson, I. A. Gorchakova, I. I. Mokhov, E. V. Romashova, M. A. Sviridenkov, and T. A. Tarasova Oboukhov

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

Evidence of Clear-Sky Daylight Whitening: Are we already conducting geoengineering?

Evidence of Clear-Sky Daylight Whitening: Are we already conducting geoengineering? Evidence of Clear-Sky Daylight Whitening: Are we already conducting geoengineering? Chuck Long (NOAA ESRL GMD/CIRES) Jim Barnard & Connor Flynn (PNNL) Are we already conducting geoengineering? We think

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Single-Column Modeling, General Circulation Model Parameterizations, and Atmospheric Radiation Measurement Data

Single-Column Modeling, General Circulation Model Parameterizations, and Atmospheric Radiation Measurement Data Single-Column ing, General Circulation Parameterizations, and Atmospheric Radiation Measurement Data S. F. Iacobellis, D. E. Lane and R. C. J. Somerville Scripps Institution of Oceanography University

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres

PUBLICATIONS. Journal of Geophysical Research: Atmospheres PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: The CERES-MODIS retrieved cloud microphysical properties agree well with ARM retrievals under both snow-free and snow

More information

Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations

Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations P-1 Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations Nobuhiro Kikuchi, Hiroshi Kumagai and Hiroshi Kuroiwa

More information

Simultaneous spectral albedo measurements near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) central facility

Simultaneous spectral albedo measurements near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) central facility JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D8, 4254, doi:10.1029/2002jd002906, 2003 Simultaneous spectral albedo measurements near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP)

More information

Analysis of Cloud-Radiation Interactions Using ARM Observations and a Single-Column Model

Analysis of Cloud-Radiation Interactions Using ARM Observations and a Single-Column Model Analysis of Cloud-Radiation Interactions Using ARM Observations and a Single-Column Model S. F. Iacobellis, R. C. J. Somerville, D. E. Lane, and J. Berque Scripps Institution of Oceanography University

More information

Radiative Effects of Contrails and Contrail Cirrus

Radiative Effects of Contrails and Contrail Cirrus Radiative Effects of Contrails and Contrail Cirrus Klaus Gierens, DLR Oberpfaffenhofen, Germany Contrail-Cirrus, other Non-CO2 Effects and Smart Flying Workshop, London, 22 Oktober 2015 Two closely related

More information

Assessment of a three dimensional model for atmospheric radiative transfer over heterogeneous land cover

Assessment of a three dimensional model for atmospheric radiative transfer over heterogeneous land cover Assessment of a three dimensional model for atmospheric radiative transfer over heterogeneous land cover A. McComiskey Department of Geography, University of California, Santa Barbara Currently: Cooperative

More information

Spectral signature of column solar radiation absorption during the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE)

Spectral signature of column solar radiation absorption during the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. D13, PAGES 17,471 17,480, JULY 16, 2000 Spectral signature of column solar radiation absorption during the Atmospheric Radiation Measurement Enhanced Shortwave

More information

Global Energy and Water Budgets

Global Energy and Water Budgets Global Energy and Water Budgets 1 40 10 30 Pressure (hpa) 100 Pure radiative equilibrium Dry adiabatic adjustment 20 Altitude (km) 6.5 C/km adjustment 10 1000 0 180 220 260 300 340 Temperature (K)

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval

Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval Atmosphere 2014, 5, 597-621; doi:10.3390/atmos5030597 Article OPEN ACCESS atmosphere ISSN 2073-4433 www.mdpi.com/journal/atmosphere Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission

More information

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations G.J. Zhang Center for Atmospheric Sciences Scripps Institution

More information

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth I. The arth as a Whole (Atmosphere and Surface Treated as One Layer) Longwave infrared (LWIR) radiation earth to space by the earth back to space Incoming solar radiation Top of the Solar radiation absorbed

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

Cloud property retrievals for climate monitoring:

Cloud property retrievals for climate monitoring: X-1 ROEBELING ET AL.: SEVIRI & AVHRR CLOUD PROPERTY RETRIEVALS Cloud property retrievals for climate monitoring: implications of differences between SEVIRI on METEOSAT-8 and AVHRR on NOAA-17 R.A. Roebeling,

More information

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay NSF 2005 CPT Report Jeffrey T. Kiehl & Cecile Hannay Introduction: The focus of our research is on the role of low tropical clouds in affecting climate sensitivity. Comparison of climate simulations between

More information

indices for supercooled water clouds Department of Chemistry, University of Puget Sound, 1500 N. Warner, Tacoma, WA, 98416

indices for supercooled water clouds Department of Chemistry, University of Puget Sound, 1500 N. Warner, Tacoma, WA, 98416 Supplementary information for radiative consequences of low-temperature infrared refractive indices for supercooled water clouds Penny M. Rowe* 1, Steven Neshyba 2 & Von P. Walden 1 1 Department of Geography,

More information

Seeking a consistent view of energy and water flows through the climate system

Seeking a consistent view of energy and water flows through the climate system Seeking a consistent view of energy and water flows through the climate system Robert Pincus University of Colorado and NOAA/Earth System Research Lab Atmospheric Energy Balance [Wm -2 ] 340.1±0.1 97-101

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

Remote sensing of ice clouds

Remote sensing of ice clouds Remote sensing of ice clouds Carlos Jimenez LERMA, Observatoire de Paris, France GDR microondes, Paris, 09/09/2008 Outline : ice clouds and the climate system : VIS-NIR, IR, mm/sub-mm, active 3. Observing

More information

Antonio Aguirre Jr. Office of Science, Faculty and Student Team Internship Program. New York City College of Technology, Brooklyn

Antonio Aguirre Jr. Office of Science, Faculty and Student Team Internship Program. New York City College of Technology, Brooklyn Retrieval of Optical and Size Parameters of Aerosols Utilizing a Multi-Filter Rotating Shadowband Radiometer and Inter-comparison with CIMEL and Microtops Sun Photometers Antonio Aguirre Jr. Office of

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Physical Basics of Remote-Sensing with Satellites

Physical Basics of Remote-Sensing with Satellites - Physical Basics of Remote-Sensing with Satellites Dr. K. Dieter Klaes EUMETSAT Meteorological Division Am Kavalleriesand 31 D-64295 Darmstadt dieter.klaes@eumetsat.int Slide: 1 EUM/MET/VWG/09/0162 MET/DK

More information

Bulk aerosol optical properties over the western North Pacific estimated by MODIS and CERES measurements : Coastal sea versus Open sea

Bulk aerosol optical properties over the western North Pacific estimated by MODIS and CERES measurements : Coastal sea versus Open sea Bulk aerosol optical properties over the western North Pacific estimated by MODIS and CERES measurements : Coastal sea versus Open sea Hye-Ryun Oh 1, Yong-Sang Choi 1, Chang-Hoi Ho 1, Rokjin J. Park 1,

More information

ARM Climate Research Facility: Goals and Objectives

ARM Climate Research Facility: Goals and Objectives ARM Climate Research Facility: Goals and Objectives Provide the national and international scientific community with the infrastructure needed for scientific research on global change Global change research

More information

Radiation Quantities in the ECMWF model and MARS

Radiation Quantities in the ECMWF model and MARS Radiation Quantities in the ECMWF model and MARS Contact: Robin Hogan (r.j.hogan@ecmwf.int) This document is correct until at least model cycle 40R3 (October 2014) Abstract Radiation quantities are frequently

More information

Follow this and additional works at: Part of the Engineering Commons

Follow this and additional works at:   Part of the Engineering Commons University of Wyoming Wyoming Scholars Repository Atmospheric Science Faculty Publications Atmospheric Science 11-18-013 An A - train satellite based stratiform mixed - phase cloud retrieval algorithm

More information

UKCA_RADAER Aerosol-radiation interactions

UKCA_RADAER Aerosol-radiation interactions UKCA_RADAER Aerosol-radiation interactions Nicolas Bellouin UKCA Training Workshop, Cambridge, 8 January 2015 University of Reading 2014 n.bellouin@reading.ac.uk Lecture summary Why care about aerosol-radiation

More information

Chapter 3- Energy Balance and Temperature

Chapter 3- Energy Balance and Temperature Chapter 3- Energy Balance and Temperature Understanding Weather and Climate Aguado and Burt Influences on Insolation Absorption Reflection/Scattering Transmission 1 Absorption An absorber gains energy

More information

Interannual variability of top-ofatmosphere. CERES instruments

Interannual variability of top-ofatmosphere. CERES instruments Interannual variability of top-ofatmosphere albedo observed by CERES instruments Seiji Kato NASA Langley Research Center Hampton, VA SORCE Science team meeting, Sedona, Arizona, Sep. 13-16, 2011 TOA irradiance

More information

Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors

Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors AeroCom Meeting, Reykjavik, Island 10/10/2008 Philip Stier Atmospheric,

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

8. Clouds and Climate

8. Clouds and Climate 8. Clouds and Climate 1. Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few

More information

Comparison of spectral direct and diffuse solar irradiance measurements and

Comparison of spectral direct and diffuse solar irradiance measurements and Comparison of spectral direct and diffuse solar irradiance measurements and calculations for cloud-free conditions Eli J. Mlawer, Patrick D. Brown, Shepard A. Clough Atmospheric and Environmental Research,

More information

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB)

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB) Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB) Shani Tiwari Graduate School of Environmental Studies Nagoya University, Nagoya, Japan Email: pshanitiwari@gmail.com

More information

Sensitivity of climate forcing and response to dust optical properties in an idealized model

Sensitivity of climate forcing and response to dust optical properties in an idealized model Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007198, 2007 Sensitivity of climate forcing and response to dust optical properties in an idealized model Karen

More information

Comparison of Stratus Cloud Properties Deduced from Surface, GOES, and Aircraft Data during the March 2000 ARM Cloud IOP

Comparison of Stratus Cloud Properties Deduced from Surface, GOES, and Aircraft Data during the March 2000 ARM Cloud IOP VOL. 59, NO. 23 JOURNAL OF THE ATMOSPHERIC SCIENCES 1DECEMBER 2002 Comparison of Stratus Cloud Properties Deduced from Surface, GOES, and Aircraft Data during the March 2000 ARM Cloud IOP XIQUAN DONG,*,

More information

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI APPLICATIONS WITH METEOROLOGICAL SATELLITES by W. Paul Menzel Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI July 2004 Unpublished Work Copyright Pending TABLE OF CONTENTS

More information

2. Illustration of Atmospheric Greenhouse Effect with Simple Models

2. Illustration of Atmospheric Greenhouse Effect with Simple Models 2. Illustration of Atmospheric Greenhouse Effect with Simple Models In the first lecture, I introduced the concept of global energy balance and talked about the greenhouse effect. Today we will address

More information

Satellite remote sensing of aerosols & clouds: An introduction

Satellite remote sensing of aerosols & clouds: An introduction Satellite remote sensing of aerosols & clouds: An introduction Jun Wang & Kelly Chance April 27, 2006 junwang@fas.harvard.edu Outline Principals in retrieval of aerosols Principals in retrieval of water

More information

Clouds, Haze, and Climate Change

Clouds, Haze, and Climate Change Clouds, Haze, and Climate Change Jim Coakley College of Oceanic and Atmospheric Sciences Earth s Energy Budget and Global Temperature Incident Sunlight 340 Wm -2 Reflected Sunlight 100 Wm -2 Emitted Terrestrial

More information

P607 Climate and Energy (Dr. H. Coe)

P607 Climate and Energy (Dr. H. Coe) P607 Climate and Energy (Dr. H. Coe) Syllabus: The composition of the atmosphere and the atmospheric energy balance; Radiative balance in the atmosphere; Energy flow in the biosphere, atmosphere and ocean;

More information

Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility doi:10.5194/amt-4-1713-2011 Author(s) 2011. CC Attribution 3.0 License. Atmospheric Measurement Techniques Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains

More information

How Accurate is the GFDL GCM Radiation Code? David Paynter,

How Accurate is the GFDL GCM Radiation Code? David Paynter, Radiation Processes in the GFDL GCM: How Accurate is the GFDL GCM Radiation Code? David Paynter, Alexandra Jones Dan Schwarzkopf, Stuart Freidenreich and V.Ramaswamy GFDL, Princeton, New Jersey 13th June

More information

Net Surface Shortwave Radiation from GOES Imagery Product Evaluation Using Ground-Based Measurements from SURFRAD

Net Surface Shortwave Radiation from GOES Imagery Product Evaluation Using Ground-Based Measurements from SURFRAD Remote Sens. 2015, 7, 10788-10814; doi:10.3390/rs70810788 Article OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Net Surface Shortwave Radiation from GOES Imagery Product

More information

A FIRST INVESTIGATION OF TEMPORAL ALBEDO DEVELOPMENT OVER A MAIZE PLOT

A FIRST INVESTIGATION OF TEMPORAL ALBEDO DEVELOPMENT OVER A MAIZE PLOT 1 A FIRST INVESTIGATION OF TEMPORAL ALBEDO DEVELOPMENT OVER A MAIZE PLOT Robert Beyer May 1, 2007 INTRODUCTION Albedo, also known as shortwave reflectivity, is defined as the ratio of incoming radiation

More information

The difficult art of evaluation clouds and convection representation in GCM s

The difficult art of evaluation clouds and convection representation in GCM s The difficult art of evaluation clouds and convection representation in GCM s Motivation Configuration Results Roel Neggers Pier Siebesma thanks to many others at KNMI Evaluation Strategy Large Eddy Simulation

More information

Radiative effects of desert dust on weather and climate

Radiative effects of desert dust on weather and climate UNIVERSITY OF ATHENS SCHOOL OF PHYSICS, DIVISION OF ENVIRONMENT AND METEOROLOGY ATMOSPHERIC MODELING AND WEATHER FORECASTING GROUP Radiative effects of desert dust on weather and climate Christos Spyrou,

More information

Overview of The CALIPSO Mission

Overview of The CALIPSO Mission Overview of The CALIPSO Mission Dave Winker NASA-LaRC LaRC,, PI Jacques Pelon IPSL/CNRS, co-pi Research Themes Improved understanding of the Earth s climate system is a primary goal of the Scientific Community

More information

Tropical cirrus and water vapor: an effective Earth infrared iris feedback?

Tropical cirrus and water vapor: an effective Earth infrared iris feedback? Atmos. Chem. Phys.,, 31 3, www.atmos-chem-phys.org/acp//31/ Atmospheric Chemistry and Physics Tropical cirrus and water vapor: an effective Earth infrared iris feedback? Q. Fu, M. Baker, and D. L. Hartmann

More information

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5 G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Total possible points: 40 number of pages: 5 Part A: Short Answer & Problems (12), Fill in the Blanks (6).

More information

Earth s Energy Balance and the Atmosphere

Earth s Energy Balance and the Atmosphere Earth s Energy Balance and the Atmosphere Topics we ll cover: Atmospheric composition greenhouse gases Vertical structure and radiative balance pressure, temperature Global circulation and horizontal energy

More information

(1) AEMET (Spanish State Meteorological Agency), Demóstenes 4, Málaga, Spain ABSTRACT

(1) AEMET (Spanish State Meteorological Agency), Demóstenes 4, Málaga, Spain ABSTRACT COMPARISON OF GROUND BASED GLOBAL RADIATION MEASUREMENTS FROM AEMET RADIATION NETWORK WITH SIS (SURFACE INCOMING SHORTWAVE RADIATION) FROM CLIMATE MONITORING-SAF Juanma Sancho1, M. Carmen Sánchez de Cos1,

More information

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2 JP1.10 On the Satellite Determination of Multilayered Multiphase Cloud Properties Fu-Lung Chang 1 *, Patrick Minnis 2, Sunny Sun-Mack 1, Louis Nguyen 1, Yan Chen 2 1 Science Systems and Applications, Inc.,

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 11, NOVEMBER 2008 3601 Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines Vivienne H. Payne, Jennifer S. Delamere, Karen

More information

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT - Principles of Radiative Transfer Principles of Remote Sensing Marianne König EUMETSAT marianne.koenig@eumetsat.int Remote Sensing All measurement processes which perform observations/measurements of

More information

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation Review of Remote Sensing Fundamentals Allen Huang Cooperative Institute for Meteorological Satellite Studies Space Science & Engineering Center University of Wisconsin-Madison, USA Topics: Visible & Infrared

More information

Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick limit

Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick limit JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jd009769, 2008 Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick

More information

Importance of Accurate Liquid Water Path for Estimation of Solar Radiation in Warm Boundary Layer Clouds: An Observational Study

Importance of Accurate Liquid Water Path for Estimation of Solar Radiation in Warm Boundary Layer Clouds: An Observational Study 2997 Importance of Accurate Liquid Water Path for Estimation of Solar Radiation in Warm Boundary Layer Clouds: An Observational Study MANAJIT SENGUPTA Pacific Northwest National Laboratory, Richland, Washington

More information

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003 Christian Sutton Microwave Water Radiometer measurements of tropospheric moisture ATOC 5235 Remote Sensing Spring 23 ABSTRACT The Microwave Water Radiometer (MWR) is a two channel microwave receiver used

More information

Aerosol Effects on Water and Ice Clouds

Aerosol Effects on Water and Ice Clouds Aerosol Effects on Water and Ice Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Contributions from Johann Feichter, Johannes Hendricks,

More information