Deep Drilling Program. Lynne Jones LSST Performance Scien2st. LSST All Hands Mee6ng August 13-17, 2012

Size: px
Start display at page:

Download "Deep Drilling Program. Lynne Jones LSST Performance Scien2st. LSST All Hands Mee6ng August 13-17, 2012"

Transcription

1 Deep Drilling Program Lynne Jones LSST Performance Scien2st LSST All Hands Mee6ng August 13-17, 2012

2 Overview Topics to cover Super- quick review of DD request OpSim runs produced in response to request Highlight differences between runs: # of DDFs, field locaeons Coadded & single- visit depth in DD fields, Eme between obs Overall WFD completeness Process for going forward InteracEon between DD WG / OpSim / Science Council UpdaEng DD white papers & summarizing results from each set of opsim runs (iteraeve process) Timeline 2

3 Review of DD program request Large Scale Structure Low exenceon, high galacec laetude, high eclipec laetude, mule- wavelength observaeons ugrizy limit: 28.5 (ugri), 28.0 (z), 27.0 (y) no cadence constraints Weak Lensing ugrizy no cadence constraints limit: 5x main survey Galaxies ugrizy no cadence constraints limit: 28.0 (ugriz), 27.0 (y) Supernova Low exdncdon, high galacdc ladtude, visible to other telescopes with MOS grizy ObservaDons every few days throughout season in all filters Transients and Variable Stars Milky Way and Local Volume Solar System LMC, SMC, IC 4651 (open cluster) gr Dense -me sampling from few minutes to several days South galacdc pole, galacdc andcenter, one of three proposed open clusters ConjuncEon of Neptune and Jupiter Trojan points (in 2022, at RA=19:35, Dec=- 21:38) grizy limit: 29.0 (g), 27.0 (r), 28.9 (i) r limit: 27.0 (r) in each of 8 epochs Varied -me constraints between few minutes to years Tight -me constraints spread over a year 3

4 Review of DD request ExtragalacDc fields Transients/Variable Stars fields Milky Way fields Solar System fields grizy observa-ons in each sequence, every few nights (weighted toward z) Add u band exposures during dark -me grizy observa-ons in each sequence, every few nights (weighted toward z) Add u band exposures during dark -me g band con-nuous for 1 hour, then 7 more hours of observa-ons spaced over next 3 days; repeat in r then repeat in g and r again 30 nights of izy/izy/izy sequences every night gri sequences spread over 2 years 8 nights of 85 minutes of con-nuous r band observa-ons, spaced at par-cular intervals over one year 5 fields with 265 nights of grizy, and addidonal u band hrs 5 fields with 265 nights of grizy, and addidonal u band hrs 6 fields hrs 3 fields hrs 9 fields hrs 4

5 OpSim Runs in response to DD request OpSim runs produced in response to request TVS / Milky Way / Solar System fields not yet included in runs ExtragalacEc fields implemented, including some variaeons.. with full 10 fields, ~1.5x oversubscripeon vs opsim3.61 Run opsim6.24 opsim4.262 opsim8.26 opsim5.211 opsim6.27 opsim6.267 Short Descrip0on No DD fields Updated opsim3.61 (i.e. 6 old strawman DD fields) 4 (sci council) DD fields 4 (sci council) DD fields + 1 more 4 (sci council) DD fields + 6 more (selected by opsim) 4 (sci council) DD fields + 6 more (selected by DD WG) 5

6 Download links on science wiki - see DD pages hlps:// hlps:// 6

7 Opsim (6 DDFs, old obs request) 7

8 Opsim 8.26 (4 SC DDFs) 8

9 Opsim (4 SC DDFs + 1) 9

10 Opsim 6.27 (4 SC DDFs + 6 more) 10

11 Opsim (4 SC DDFs + 6 more from DDWG) 11

12 Opsim (6 DDFs, old obs request) 12

13 Opsim 8.26 (4 SC DDFs) 13

14 Opsim (4 SC DDFs + 1) 14

15 Opsim 6.27 (4 SC DDFs + 6 more) 15

16 Opsim (4 SC DDFs + 6 more from DDWG) 16

17 Opsim (6 DDFs, old obs request) 17

18 Opsim 8.26 (4 SC DDFs) 18

19 Opsim (4 SC DDFs + 1) 19

20 Opsim 6.27 (4 SC DDFs + 6 more) 20

21 Opsim (4 SC DDFs + 6 more from DDWG) 21

22 Opsim (6 DDFs, old obs request) 22

23 Opsim 8.26 (4 SC DDFs) 23

24 Opsim (4 SC DDFs + 1) 24

25 Opsim 6.27 (4 SC DDFs + 6 more) 25

26 Opsim (4 SC DDFs + 6 more from DDWG) 26

27 Effect on WFD - reduced completeness Description No DD 6 old DDFs 4 SC DDFs 4 SC SC + 6 more 4 SC + 6 DD WG Run Name opsim6.24 opsim4.262 opsim8.26 opsim5.211 opsim6.27 opsim4.267 Total Visits* 2,307,343 2,272,508 2,310,444 2,334,341 2,372,537 2,479,519 Average Slew Time 9.59 s 8.51 s 7.51 s 7.10 s 6.62 s 6.36 s 100 <= P <= P <= P <= P <= P <= P <= P <= P <= P <= P < P

28 Opsim 6.24 (no DDFs) 28

29 Opsim (6 DDFs, old obs request) 29

30 Opsim 8.26 (4 SC DDFs) 30

31 Opsim (4 SC DDFs + 1) 31

32 Opsim 6.27 (4 SC DDFs + 6 more) 32

33 Opsim (4 SC DDFs + 6 more from DDWG) 33

34 Effect on WFD + other mini- surveys Compare runs with metrics captured in SSTAR report and other OpSim tools 34

35 So what s next? Process for going forward InteracEon between DD WG / OpSim / Science Council Update DD white papers & summarizing results from each set of opsim runs EvaluaEng DD runs for DD science - DDWG EvaluaEng DD runs for general science - OpSim General report on each iteraeon, recommendaeons & guide for further development SC can provide feedback if necessary Timeline General rule: delay choices as long as possible (first light) Do we need to pick more fields on an earlier Emescale? Review before end of commissioning period 35

36 Feedback

Present and Future Large Optical Transient Surveys. Supernovae Rates and Expectations

Present and Future Large Optical Transient Surveys. Supernovae Rates and Expectations Present and Future Large Optical Transient Surveys Supernovae Rates and Expectations Phil Marshall, Lars Bildsten, Mansi Kasliwal Transients Seminar Weds 12th December 2007 Many surveys designed to find

More information

An end-to-end simulation framework for the Large Synoptic Survey Telescope Andrew Connolly University of Washington

An end-to-end simulation framework for the Large Synoptic Survey Telescope Andrew Connolly University of Washington An end-to-end simulation framework for the Large Synoptic Survey Telescope Andrew Connolly University of Washington LSST in a nutshell The LSST will be a large, wide-field, ground-based optical/near-ir

More information

The Yale/ODI Survey(s)

The Yale/ODI Survey(s) The Yale/ODI Survey(s) High-level goals & parameters of survey Science cases (more in specific area talks) Management structure, kinds of survey project Goals of this meeting Strawman observing strategy

More information

Tier 1 proposal and runs

Tier 1 proposal and runs Tier 1 proposal and runs Zeljko s proposal: h5ps://confluence.lsstcorp.org/pages/viewpage.ac>on?>tle=cadence +Considera>ons+for+August+2014+workshop&spaceKey=PS Table of runs (with links to SSTAR analyses)

More information

The Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope The Large Synoptic Survey Telescope Philip A. Pinto Steward Observatory University of Arizona for the LSST Collaboration 17 May, 2006 NRAO, Socorro Large Synoptic Survey Telescope The need for a facility

More information

Large Synoptic Survey Telescope

Large Synoptic Survey Telescope Large Synoptic Survey Telescope Željko Ivezić University of Washington Santa Barbara, March 14, 2006 1 Outline 1. LSST baseline design Monolithic 8.4 m aperture, 10 deg 2 FOV, 3.2 Gpix camera 2. LSST science

More information

LCO Global Telescope Network: Operations and policies for a time-domain facility. Todd Boroson

LCO Global Telescope Network: Operations and policies for a time-domain facility. Todd Boroson LCO Global Telescope Network: Operations and policies for a time-domain facility Todd Boroson Network Concept Eighteen robotic telescopes ultimately ~27 2-meter, 1-meter, 40-cm Eight high-quality sites

More information

THE DARK ENERGY SURVEY: 3 YEARS OF SUPERNOVA

THE DARK ENERGY SURVEY: 3 YEARS OF SUPERNOVA THE DARK ENERGY SURVEY: 3 YEARS OF SUPERNOVA IN

More information

Dark Sky Observing Preview. BSA Troop 4 Pasadena, CA

Dark Sky Observing Preview. BSA Troop 4 Pasadena, CA Dark Sky Observing Preview BSA Troop 4 Pasadena, CA Topics Finding Dark sky Observing etiquette Observing basics Things to see Resources Finding Dark Sky To see faint objects, you want the darkest sky

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1 MULTIPLE CHOICE (Right answers are reported in red) 1.. A solar system contains a. primarily planets. b. large amounts of gas and dust

More information

telescopes resolve it into many faint (i.e. distant) stars What does it tell us?

telescopes resolve it into many faint (i.e. distant) stars What does it tell us? The Milky Way From a dark site the Milky Way can be seen as a broad band across the sky What is it? telescopes resolve it into many faint (i.e. distant) stars What does it tell us? that we live in a spiral

More information

From the Big Bang to Big Data. Ofer Lahav (UCL)

From the Big Bang to Big Data. Ofer Lahav (UCL) From the Big Bang to Big Data Ofer Lahav (UCL) 1 Outline What is Big Data? What does it mean to computer scientists vs physicists? The Alan Turing Institute Machine learning examples from Astronomy The

More information

MIDTERM PRACTICE EXAM ANSWERS

MIDTERM PRACTICE EXAM ANSWERS MIDTERM PRACTICE EXAM ANSWERS 1. (2) Location B shows that the altitude of the noon Sun increases between Dec 21. and June 21. Location B also shows that the Dec. 21 noon Sun is at an altitude of approximately

More information

LSST Science. Željko Ivezić, LSST Project Scientist University of Washington

LSST Science. Željko Ivezić, LSST Project Scientist University of Washington LSST Science Željko Ivezić, LSST Project Scientist University of Washington LSST@Europe, Cambridge, UK, Sep 9-12, 2013 OUTLINE Brief overview of LSST science drivers LSST science-driven design Examples

More information

The Dark Energy Survey Public Data Release 1

The Dark Energy Survey Public Data Release 1 The Dark Energy Survey Public Data Release 1 Matias Carrasco Kind (NCSA/UIUC) and the DR1 Release Team https://des.ncsa.illinois.edu/ Near-Field Cosmology with DES DR1 and Beyond Workshop, June 27-29th,

More information

SkyMapper and the Southern Sky Survey

SkyMapper and the Southern Sky Survey SkyMapper and the Southern Sky Survey Stefan Keller Mt. Stromlo Observatory Brian Schmidt, Mike Bessell and Patrick Tisserand SkyMapper 1.35m telescope with a 5.7 sq. degree field of view located at Siding

More information

Assignment #12 The Milky Way

Assignment #12 The Milky Way Name Date Class Assignment #12 The Milky Way For thousands of years people assumed that the stars they saw at night were the entire universe. Even after telescopes had been invented, the concept of a galaxy

More information

SkyMapper and the Southern Sky Survey

SkyMapper and the Southern Sky Survey and the Southern Sky Survey, Brian Schmidt and Mike Bessell Slide 1 What is? 1.35m telescope with a 5.7 sq. degree field of view To reside at Siding Spring Observatory, NSW To conduct the Southern Sky

More information

The Earth Orbits the Sun Student Question Sheet (Advanced)

The Earth Orbits the Sun Student Question Sheet (Advanced) The Earth Orbits the Sun Student Question Sheet (Advanced) Author: Sarah Roberts - Faulkes Telescope Project Introduction This worksheet contains questions and activities which will test your knowledge

More information

Astro 301/ Fall 2006 (50405) Introduction to Astronomy

Astro 301/ Fall 2006 (50405) Introduction to Astronomy Astro 301/ Fall 2006 (50405) Introduction to Astronomy http://www.as.utexas.edu/~sj/a301-fa06 Instructor: Professor Shardha Jogee TAs: Biqing For, Candace Gray, Irina Marinova Lecture 6: Tu Sep 19 Recent

More information

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox Suppose the Universe were not expanding, but was in some kind of steady state. How should galaxy recession velocities correlate with distance? They should a) be directly proportional to distance. b) reverse

More information

What Objects Are Part of the Solar System?

What Objects Are Part of the Solar System? What Objects Are Part of the Solar System? Lesson 1 Quiz Josleen divided some of the planets into two main groups. The table below shows how she grouped them. Paul created a poster showing the solar system.

More information

What does the universe look like?

What does the universe look like? EXPLORATION 2: PORTRAIT OF THE UNIVERSE What does the universe look like? The challenge It's a big universe out there. What does it look like? Use the telescope to image different kinds of objects in the

More information

CIBER Measurements of the Mean Intensity of the NIR background

CIBER Measurements of the Mean Intensity of the NIR background CIBER Measurements of the Mean Intensity of the NIR background Shuji Matsuura (ISAS, JAXA) for the CIBER CollaboraDon Near Infrared Background and the Epoch of Reioniza6on AusDn, Texas May 14, 2012 ObservaDonal

More information

Exploring the Depths of the Universe

Exploring the Depths of the Universe Exploring the Depths of the Universe Jennifer Lotz Hubble Science Briefing Jan. 16, 2014 Hubble is now observing galaxies 97% of the way back to the Big Bang, during the first 500 million years 2 Challenge:

More information

Mapping Document. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Mapping Document. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) Mapping Document GCSE (9-1) Astronomy Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) GCSE (9-1) Astronomy Mapping document This document is designed to help you compare the existing 2011

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

Synergies between and E-ELT

Synergies between and E-ELT Synergies between and E-ELT Aprajita Verma & Isobel Hook 1) E- ELT Summary 2) E- ELT Project Status 3) Parameter space 4) Examples of scientific synergies The World s Biggest Eye on the Sky 39.3m diameter,

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves Chapter 23: Dark Matter, Dark Energy & Future of the Universe Galactic rotation curves Orbital speed as a function of distance from the center: rotation_of_spiral_galaxy.htm Use Kepler s Third Law to get

More information

V. Astronomy Section

V. Astronomy Section EAS 100 Planet Earth Lecture Topics Brief Outlines V. Astronomy Section 1. Introduction, Astronomical Distances, Solar System Learning objectives: Develop an understanding of Earth s position in the solar

More information

The Universe and Galaxies. Adapted from:

The Universe and Galaxies. Adapted from: The Universe and Galaxies Adapted from: http://www.west-jefferson.k12.oh.us/earthandspacescience.aspx Astronomy The study of objects and matter outside the Earth s atmosphere and of their physical and

More information

[FILE] MILKY WAY AT HOME EBOOK

[FILE] MILKY WAY AT HOME EBOOK 29 May, 2018 [FILE] MILKY WAY AT HOME EBOOK Document Filetype: PDF 244.76 KB 0 [FILE] MILKY WAY AT HOME EBOOK The galaxy contains about 400 billion stars, with a 4-billion-solar-mass black hole at its

More information

Imaging with SPIRIT Exposure Guide

Imaging with SPIRIT Exposure Guide Imaging with SPIRIT Exposure Guide SPIRIT optical telescopes utilise extremely sensitive cameras to record the light from distant astronomical objects. Even so, exposures of several seconds up to a few

More information

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr.

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr. Outline: Part I Outline: Part II The end of the dark ages Dark ages First stars z 20 30 t Univ 100 200 Myr First galaxies z 10 15 t Univ 300 500 Myr Current observational limit: HST and 8 10 m telescopes

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Galaxies and the Universe

Galaxies and the Universe Standard 7.3.1: Recognize and describe that the Sun is a medium-sized star located near the edge of a diskshaped galaxy of stars and that the universe contains many billions of galaxies and each galaxy

More information

2. Very generally, describe how the Milky Way Galaxy formed. (Words or labeled picture)

2. Very generally, describe how the Milky Way Galaxy formed. (Words or labeled picture) Potter Name: Date: Hour: Score: /11 Learning Check 2.1 LT 2.1 Galaxy Formation: I am able to describe the formation of the Milky Way Galaxy and our solar system and model earth s position in each. 1. Label

More information

It is a very human trait to wonder where we are in this universe. Usually, the only hint of the vastness of the universe comes at night.

It is a very human trait to wonder where we are in this universe. Usually, the only hint of the vastness of the universe comes at night. Chapter 01 Part 1 Our Place in Space We all wonder It is a very human trait to wonder where we are in this universe. Usually, the only hint of the vastness of the universe comes at night. There seems to

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

The Science Cases for CSTAR, AST3, and KDUST

The Science Cases for CSTAR, AST3, and KDUST The Science Cases for CSTAR, AST3, and KDUST Lifan Wang CCAA & TAMU CSTAR A pathfinder telescope Sky background and transmission - See Zhou Xu s talk Time domain astronomy - Variable stars A wide area

More information

Introduction to the Universe. What makes up the Universe?

Introduction to the Universe. What makes up the Universe? Introduction to the Universe What makes up the Universe? Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy) - understanding

More information

Griffith Observatory Field Trip Guide

Griffith Observatory Field Trip Guide To enter the Griffith Observatory you must make a reservation for a seat on a shuttle. There is a cost associated with each shuttle ticket and it is $8.00. There is no other way to enter Griffith Observatory!

More information

BENCHMARK SC.E.1.2.1

BENCHMARK SC.E.1.2.1 SC.E.1.2.1 BENCHMARK SC.E.1.2.1 Benchmark SC.E.1.2.1 The student knows that the tilt of the Earth on its own axis as it rotates and revolves around the sun causes changes in season, length of day, and

More information

Let s Observe M31 and M45!

Let s Observe M31 and M45! IYA 2009 You are Galileo Project Observation and Sketch An 18 century French Astronomer, Charles Messier made a catalogue of celestial objects that appeared blurry. These objects were later called by their

More information

Astroimaging From Easy to Less Than Easy. S. Douglas Holland

Astroimaging From Easy to Less Than Easy. S. Douglas Holland Amateur Astrophotography Made possible by advances in: 1. Camera technology 2. High quality amateur telescopes 3. Telescope mounts 4. Computer technology 5. Astroimaging software What You Can Expect: Types

More information

Summer Messier List Observing Club

Summer Messier List Observing Club Summer Messier List Observing Club Raleigh Astronomy Club Version 1.1 24 November 2012 Introduction Welcome to the Summer Messier List Observing Club. The objects on this list represent many of the most

More information

The Space Around Us. A quick overview of the solar system. Reid Pierce Lincoln Jr. High Bentonville, Arkansas

The Space Around Us. A quick overview of the solar system. Reid Pierce Lincoln Jr. High Bentonville, Arkansas The Space Around Us A quick overview of the solar system Reid Pierce Lincoln Jr. High Bentonville, Arkansas The Universe The Universe is defined as the summation of all particles and energy that exist

More information

Current Status of MIRIS

Current Status of MIRIS Current Status of MIRIS Jeonghyun Pyo, MIRIS Team (KASI) Survey Science Group Workshop High 1 Resort 2015 January 26 Members of MIRIS Team Development Team 한원용 (PI), 이대희 (PM), 가능현, 김일중, 남욱원, 문봉곤, 박성준,

More information

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford LSST Cosmology and LSSTxCMB-S4 Synergies Elisabeth Krause, Stanford LSST Dark Energy Science Collaboration Lots of cross-wg discussions and Task Force hacks Junior involvement in talks and discussion Three

More information

CST Prep- 8 th Grade Astronomy

CST Prep- 8 th Grade Astronomy CST Prep- 8 th Grade Astronomy Chapter 15 (Part 1) 1. The theory of how the universe was created is called the 2. Which equation states that matter and energy are interchangeable? 3. All matter in the

More information

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe 16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage?

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage? CHAPTER 15 2 SECTION Stars, Galaxies, and the Universe The Life Cycle of Stars BEFORE YOU READ After you read this section, you should be able to answer these questions: How do stars change over time?

More information

A. The moon B. The sun C. Jupiter D. Earth A. 1 B. 2 C. 3 D. 4. Sky Science Unit Review Konrad. Here is a selection of PAT style questions.

A. The moon B. The sun C. Jupiter D. Earth A. 1 B. 2 C. 3 D. 4. Sky Science Unit Review Konrad. Here is a selection of PAT style questions. Sky Science Unit Review Konrad Here is a selection of PAT style questions. Use the following information to answer the next question 1. 2. The source of light that allows astronimors to see Jupitor through

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

How do telescopes "see" on Earth and in space?

How do telescopes see on Earth and in space? How do telescopes "see" on Earth and in space? By NASA, adapted by Newsela staff on 03.28.17 Word Count 933 Level 970L TOP IMAGE: The Hubble Space Telescope orbiting in space over Earth. SECOND IMAGE:

More information

1. Galaxy (a) the length of a planet s day. 2. Rotational Period (b) dust and gases floating in space

1. Galaxy (a) the length of a planet s day. 2. Rotational Period (b) dust and gases floating in space Vocabulary: Match the vocabulary terms on the left with the definitions on the right 1. Galaxy (a) the length of a planet s day 2. Rotational Period (b) dust and gases floating in space 3. Orbital Period

More information

The Milky Way & Galaxies

The Milky Way & Galaxies The Milky Way & Galaxies The Milky Way Appears as a milky band of light across the sky A small telescope reveals that it is composed of many stars (Galileo again!) Our knowledge of the Milky Way comes

More information

Outline 8: History of the Universe and Solar System

Outline 8: History of the Universe and Solar System Outline 8: History of the Universe and Solar System The Andromeda Galaxy One of hundreds of billions of galaxies, each with hundreds of billions of stars A warped spiral galaxy, 150 MLY away and 100,000

More information

Plan. Questions? Syllabus; administrative details. Some Definitions. An Idea of Scale

Plan. Questions? Syllabus; administrative details. Some Definitions. An Idea of Scale Plan Questions? Syllabus; administrative details Some Definitions An Idea of Scale All material available from http://astroweb.case.edu/ssm/astr101/ which is the primary document for the course (not Canvas).

More information

Introduction to the Universe

Introduction to the Universe What makes up the Universe? Introduction to the Universe Book page 642-644 Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy)

More information

Class 5 Cosmology Large-Scale Structure of the Universe What do we see? Big Bang Cosmology What model explains what we see?

Class 5 Cosmology Large-Scale Structure of the Universe What do we see? Big Bang Cosmology What model explains what we see? Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

3. The diagram below shows the Moon at four positions in its orbit around Earth as viewed from above the North Pole.

3. The diagram below shows the Moon at four positions in its orbit around Earth as viewed from above the North Pole. 1. Which object orbits Earth in both the Earth-centered (geocentric) and Sun-centered (heliocentric) models of our solar system? (1) Polaris (3) the Sun (2) Venus (4) the Moon 2. A cycle of Moon phases

More information

Contents. Part I Developing Your Skills

Contents. Part I Developing Your Skills Contents Part I Developing Your Skills 1 Accessing and Developing Your Observing Skills... 3 1.1 Stargazer or Amateur Astronomer?... 3 1.2 Perceptions and Expectations... 7 1.3 Assessing Your Skills and

More information

Observational Astronomy Astro-25. Professor Meyer-Canales Saddleback College

Observational Astronomy Astro-25. Professor Meyer-Canales Saddleback College Observational Astronomy Astro-25 Professor Meyer-Canales Saddleback College Astronomy Courses Offered at Saddleback College Astronomy 20 - General Astronomy Survey/Lecture course Astronomy 21 - Solar System

More information

Understanding Exoplanets and Other Variable Sources. in Sparsely-Sampled Time Domain Surveys. Michael B. Lund. Dissertation

Understanding Exoplanets and Other Variable Sources. in Sparsely-Sampled Time Domain Surveys. Michael B. Lund. Dissertation Understanding Exoplanets and Other Variable Sources in Sparsely-Sampled Time Domain Surveys By Michael B. Lund Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial

More information

refractors satellite electromagnetic radiation

refractors satellite electromagnetic radiation Chapter 19 Exploring Space space probe reflectors mirror refractors satellite electromagnetic radiation light lens thrust 1. All radiation is classified by wavelength in the. 2. Two types of telescopes

More information

Astronomy Universe: all of space and everything in it

Astronomy Universe: all of space and everything in it Astronomy Universe: all of space and everything in it Most (90%) of the universe is made up of: dark matter: stuff we think is there due to amount of mass we think is there but is not detected by the instruments

More information

Strong gravitational lenses in the 2020s

Strong gravitational lenses in the 2020s Strong gravitational lenses in the 2020s Masamune Oguri University of Tokyo 2014/7/18 TMT science forum @ Tucson Strong gravitational lenses are rare wide-field surveys find strong gravitational lenses

More information

Énergie noire Formation des structures. N. Regnault C. Yèche

Énergie noire Formation des structures. N. Regnault C. Yèche Énergie noire Formation des structures N. Regnault C. Yèche Outline Overview of DE probes (and recent highlights) Hubble Diagram of supernovae Baryon accoustic oscillations Lensing Matter clustering (JLA)

More information

Age-redshift relation. The time since the big bang depends on the cosmological parameters.

Age-redshift relation. The time since the big bang depends on the cosmological parameters. Age-redshift relation The time since the big bang depends on the cosmological parameters. Lyman Break Galaxies High redshift galaxies are red or absent in blue filters because of attenuation from the neutral

More information

Station #1 Galaxy Cards. Standard 4a: Students know galaxies are clusters of billions of stars and may have different shapes.

Station #1 Galaxy Cards. Standard 4a: Students know galaxies are clusters of billions of stars and may have different shapes. Station #1 Galaxy Cards Standard 4a: Students know galaxies are clusters of billions of stars and may have different shapes. Materials: Galaxy cards, your textbook Using your text book answers the following

More information

Land Surface Data AssimilaEon: DART and CLM

Land Surface Data AssimilaEon: DART and CLM Land Surface Data AssimilaEon: DART and CLM Yongfei Zhang: University of Texas Aus2n Tim Hoar, Bill Sacks, Tony Craig, Jeff Anderson: Na2onal Center for Atmospheric Research Andrew Fox: Na2onal Ecological

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Welcome to Astronomy 402/602

Welcome to Astronomy 402/602 Welcome to Astronomy 402/602 Introductions Syllabus Telescope proposal Coordinate Systems (Lecture) Coordinate System Exercise Light (Lecture) Telescopes (Lecture) Syllabus Course goals Course expectations

More information

The WFIRST High La/tude Survey. Christopher Hirata, for the SDT November 18, 2014

The WFIRST High La/tude Survey. Christopher Hirata, for the SDT November 18, 2014 The WFIRST High La/tude Survey Christopher Hirata, for the SDT November 18, 2014 1 Outline Recap of HLS parameters Examples of currently open trades & issues 2 High La/tude Survey Overview 3 Summary ü

More information

Figure 69.01a. Formation of Stars

Figure 69.01a. Formation of Stars 1. One cloud many clumps 2. Up to 1000 cores can form within 1 clump 3. Core: begins to build a star by attracting material from the cloud 4. Protostar, MS star 5. Up to 1000 stars 6. Stars usually form

More information

arxiv: v1 [astro-ph.im] 15 Nov 2018

arxiv: v1 [astro-ph.im] 15 Nov 2018 arxiv:1811.06542v1 [astro-ph.im] 15 Nov 2018 Active Galaxy Science in the LSST Deep-Drilling Fields: Footprints, Cadence Requirements, and Total-Depth Requirements W.N. Brandt (Penn State), Q. Ni (Penn

More information

NIRSpec Multi-Object Spectroscopy of Distant Galaxies

NIRSpec Multi-Object Spectroscopy of Distant Galaxies NIRSpec Multi-Object Spectroscopy of Distant Galaxies Pierre Ferruit & the NIRSpec GTO team & the NIRCam-NIRSpec galaxy assembly collaboration Proposal Planning Workshop STScI 15 May 2017 ESA UNCLASSIFIED

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

Planets in other Star Systems

Planets in other Star Systems Planets in other Star Systems test out how planets are formed with more examples first extrasolar planet observed in 1995. In Jan 2000, 28 observed and now >3700 confirmed (3/2018). Many systems with 2

More information

Wednesday Jan. 22. Syllabus and class notes are at: go to courses, AST301 Introduction to Astronomy Lacy

Wednesday Jan. 22. Syllabus and class notes are at:   go to courses, AST301 Introduction to Astronomy Lacy Wednesday Jan. 22 Syllabus and class notes are at: www.as.utexas.edu go to courses, AST301 Introduction to Astronomy Lacy Homework is due on Friday. If you didn t measure the Moon last weekend you can

More information

Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017

Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017 Test Name: 09.LCW.0352.SCIENCE.GR7.2017.Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: 243920 Date: 09/21/2017 Section 1.1 - According to the Doppler Effect, what happens to the wavelength of light as galaxies

More information

JEWELS of the COSMIC DEEP Messier's first guide to the night sky

JEWELS of the COSMIC DEEP Messier's first guide to the night sky JEWELS of the COSMIC DEEP Messier's first guide to the night sky Shane L. Larson USU Physics & Cache Valley Stargazers s.larson@usu.edu Cache Valley Stargazers 12 March 2010 M78 IN ORION 1 Storyline What

More information

Supernovae with Euclid

Supernovae with Euclid Supernovae with Euclid Isobel Hook University of Oxford and INAF (Obs. Roma) Thanks to R. Nichol, M. Della Valle, F. Mannucci, A. Goobar, P. Astier, B. Leibundgut, A. Ealet Euclid Conference 17 18 Nov

More information

The Evolution of Massive Galaxies at 3 < z < 7 (The Hawaii 20 deg 2 Survey H2O)

The Evolution of Massive Galaxies at 3 < z < 7 (The Hawaii 20 deg 2 Survey H2O) D. Sanders, I. Szapudi, J. Barnes, K. Chambers, C. McPartland, A. Repp (Hawaii) P. Capak, I. Davidson (Caltech), S. Toft (Copenhagen), B. Mobasher (UCRiverside) The Evolution of Massive Galaxies at 3

More information

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3 An Introduction to Galaxies and Cosmology Jun 29, 2005 Chap.2.1~2.3 2.1 Introduction external galaxies normal galaxies - majority active galaxies - 2% high luminosity (non-stellar origin) variability

More information

The Kepler Mission. NASA Discovery Mission # 10: Are there other planets, orbiting other stars, with characteristics similar to Earth?

The Kepler Mission. NASA Discovery Mission # 10: Are there other planets, orbiting other stars, with characteristics similar to Earth? Kepler Update: 2016 http://www.nasa.gov/sites/default/files/styles/side_image/public/thumbnails/imag e/286257main_07-3348d1-kepler-4x3_226-170.jpg?itok=hvzfdmjc The Kepler Mission NASA Discovery Mission

More information

Time Domain Astronomy in the 2020s:

Time Domain Astronomy in the 2020s: Time Domain Astronomy in the 2020s: Developing a Follow-up Network R. Street Las Cumbres Observatory Workshop Movies of the Sky Vary in depth, sky region, wavelengths, cadence Many will produce alerts

More information

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Dark Baryons and their Hidden Places Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Contents History Inconsistent Matter Inventory Dark Baryon vs. Dark Matter Possible Hidden Places Search

More information

Apache Point Observatory

Apache Point Observatory Capabilities Relevant to Time-Domain Astronomy Nancy Chanover (NMSU), Director Ben Williams (UW), Deputy Director 1 From Friday Night! Boyajian s Star 5/20/17 10:34 UTC Brett Morris (UW grad student) triggered

More information

Microlensing (planet detection): theory and applications

Microlensing (planet detection): theory and applications Microlensing (planet detection): theory and applications Shude Mao Jodrell Bank Centre for Astrophysics University of Manchester (& NAOC) 19/12/2009 @ KIAA Outline What is (Galactic) microlensing? Basic

More information

Milky Way Structure. Nucleus Disk Halo Sun is about 30,000 LY from center

Milky Way Structure. Nucleus Disk Halo Sun is about 30,000 LY from center Milky Way Galaxy Milky Way spiral galaxy - flattened disk 150,000 LY in diameter with about 400 billion stars we sit in a gas/dust arm - active star formation - absorbs visible light study using IR/radio/gamma

More information

Space Test Review. Unit Test on Thursday April 17

Space Test Review. Unit Test on Thursday April 17 Space Test Review Unit Test on Thursday April 17 True/False 1. A(n) asteroid is a massive collection of gases in space that emits large amounts of energy. 2. A(n) moon is a large, round celestial object

More information

Science Benchmark: 06 : 04 Standard 04: Stargazing universe, the light-year, speed of light Grade Benchmark Standard Page

Science Benchmark: 06 : 04 Standard 04: Stargazing universe, the light-year, speed of light Grade Benchmark Standard Page Science Benchmark: 06 : 04 The sun is one of billions of stars in the Milky Way Galaxy, that is one of billions of galaxies in the universe. Scientists use a variety of tools to investigate the nature

More information

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator)

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) The Gaia-ESO Survey http://www.gaia-eso.eu Public spectroscopic

More information