FLUID MECHANICS UNIVERSITY OF LEEDS. May/June Examination for the degree of. BEng/ MEng Civil Engineering. Time allowed: 2 hours

Size: px
Start display at page:

Download "FLUID MECHANICS UNIVERSITY OF LEEDS. May/June Examination for the degree of. BEng/ MEng Civil Engineering. Time allowed: 2 hours"

Transcription

1 This question paper consists of printe pages, each of which is ientifie by the Coe Number CIVE 4 UNIVERSITY OF LEEDS May/June Examination for the egree of BEng/ MEng Civil Engineering FLUID MECANICS Time allowe: hours Attempt 4 questions L.9m x.9cos6.45m The gate opens when the moment at the pivot is clockwise. That is when the moment ue to the water > (.45/)w. Useful formulae: Parallel axis theorem I n b b moment of area for a rectangle, I GG, an for a triangle I GG 6 oo IGG + Ax,. A rectangular sluice gate,.9m.m, is fitte at the base of a reservoir wall with a pivot in the arrangement shown in Figure. The gate will open when the the level of water in the reservoir reaches a certain epth. Determine the weight, W, that must be applie at the centre of the gate, if a water level of h.m will just cause the gate to open. Metho Metho Resultant force Force on plane Area Pressure at centroi y Force (..9). ρg / 9.8 ( ) 49 N orizontal force f Area of projection on vertical plane pressure at centroi y f.y. ρg 7N Vertical force weight of water above gate x y V f.x ρg. 79 R f + V 4 N f Figure Point of action of the force centre of pressure

2 b For a rectangle, I GG IGG Sc + x Ax L.9m sin 6.9 x L.859m n moment of area about O Sc st moment of area about O I I + Ax oo GG Sc + x x m Ioo Ax Nee to fin the lever arm, i.e. the istance from the pivot to the centre of pressure specifie by Sc. First fin the position of the pivot, x, from the surface (along the incline plane). A comparison of the sensitivity of epth change to ischarge is to be mae between a rectangular an v-notch a weir. Initially a rectangular notch weir of with.5m an coeeficient of ischarge of.9 is place at the ownstream en of a channel carrying m /s of water. What will be the height above the base of the notch. [8 marks] o The experiment is repeate this time with a 7 V-notch weir with a the coefficient of ischarge of.8. What will be the height above the base of the notch for the same ischarge? [8 marks] When the height above the base in either weir is.5m what will be the percentage increase in flow if the level rises by.m? (Derive all formulae assuming the Bernoulli equation) [7 marks] x L.9.49m Lever arm, x Sc - x m Take moments to fine the weight of the gate, w Rx.5w w 7 N.5 A General Weir Equation Consier a horizontal strip of with b an epth h below the free surface, as shown in the figure below. Elemental strip of flow through a notch Assuming the velocity is only ue to the hea. velocity through the strip, u gh ischarge through the strip, δq Au bδh gh 4 b Integrating from the free surface, h, to the weir crest, h gives the expression for the total theoretical ischarge Q g bh h theoretical This will be ifferent for every ifferently shape weir or notch. To make further use of this equation we nee an expression relating the with of flow across the weir to the epth below the free surface. δh h

3 For a rectangular weir the with oes not change with epth so there is no relationship between b an epth h. We have the equation, b constant B B A rectangular weir Substituting this into the general weir equation gives Q B g h h theoretical B 5 g To calculate the actual ischarge we introuce a coefficient of ischarge, C, which accounts for losses at the eges of the weir an contractions in the area of flow, giving / Qactual C B g For the V notch weir the relationship between with an epth is epenent on the angle of the V. V notch, or triangular, weir geometry. If the angle of the V is θ then the with, b, a epth h from the free surface is So the ischarge is θ b b ( h) tan θ θ / Q g ( h) theoretical tan h h / θ g tan h h g tan 5 θ 5 / The actual ischarge is obtaine by introucing a coefficient of ischarge / 5 / h 8 Qactual C g tan 5 5 Rectangular weir 6 θ / Q (m^/s). C_.9 B (m).5. check Q. V-notch weir Q (m^/s). θ C_.8.8 check Q. Vnotch (m).5 Q (m^/s).4 (m).6 Q (m^/s).69 % increase Rectangular (m).5 Q (m^/s).47 (m).6 Q (m^/s).68 % increase.45

4 . Water flows through a cm iameter pipe at.6m/s. Calculate the Reynols number an fin also the velocity require to give the same Reynols number when the pipe is transporting air. [5 marks] Assuming the pressure loss along a pipe, p, can be expresse in terms of the following flui ensity ρ kinematic viscosity ν iameter velocity u show that the pressure loss can be expresse as: p ρu φ Re ( ) ence fin the ratio of pressure rops in the same length of pipe for both cases. [ marks] You will nee to use these physical properties: variable Water air ρ kg/m.9kg/m ν. 6 m /s 5. 6 m /s Draw up the table of values you have for each variable: variable water air u.6m/s u air p p water p air ρ kg/m.9kg/m ν. 6 m /s 5. 6 m /s.m.m Kinematic viscosity is ynamic viscosity over ensity ν µ/ρ. ρu u The Reynols number Re µ ν Reynols number when carrying water: u 6.. Re water ν. To calculate Re air we know, Re water Reair uair u 8. 44m/ s air To obtain the ratio of pressure rops we must obtain an expression for the pressure rop in terms of governing variables. Choose the three recurring (governing) variables; u,, ρ. From Buckinghams π theorem we have m-n 5 - non-imensional groups. 7 φ ( u,, ρ, ν, p) φπ (, π ) a b c π u ρ ν a b c π u ρ p As each π group is imensionless then consiering the imensions, for the first group, π : a b c M L T ( LT ) ( L) ( ML ) L T M] c L] a + b - c + - a + b T] -a - a - b - π u ρ ν ν u An the secon group π : (note p is a pressure (force/area) with imensions ML - T - ) a b c M L T ( LT ) ( L) ( ML ) MT L M] c + c - L] a + b - c - - a + b T] -a - a - b π u ρ p p ρu So the physical situation is escribe by this function of nonimensional numbers, φπ ( π ) φ ν,, p u ρu p φre, ρu p ρu φ ( Re) For ynamic similarity these non-imensional numbers are the same for the both water an air in the pipe. π π air water π π air water We are intereste in the relationship involving the pressure i.e. π p p ρu ρu air water pwater ρwateruwater pair ρairuair

5 4 Describe with the ai of iagrams the following phenomena explaining why an when they occur. (Each part requires at least a half page escription of the phenomenon plus iagrams.) (i) The laminar bounary layer (ii) The turbulent bounary layer (iii) The laminar sublayer (iv) Bounary layer separation (v) Methos to prevent bounary layer separation 5. Water flows horizontally along a mm pipeline fitte with a 9 o ben that moves the water vertically upwars. The iameter at the outlet of the ben is mm an it is.5m above the centreline of the inlet. If the flow through the ben is 5 litres/s, calculate the magnitue an irection of the resultant force the ben support must withstan. The volume of the ben is.m an the pressure at the outlet is kn/m. [5 marks] mm Answer: As the question says - EAC PART REQUIRES AT LEAST ALF A PAGE DESCRIPTION PLUS DIAGRAMS - take from lecture notes AND other books. p kn/m mm Figure Force on a pipe ben question Enter values in the yellow boxes Pressure in (kn/m^) Inflow (litres/s) 5 Volume of ben (m^). Ben angle (egrees) 9 eight ifference (m).5 ea loss in ben (m) Inlet iameter (m). outlet iameter (m). Q (m^/s).5 inlet area (m^).4 outlet area (m^).785 inlet vel (m/s) outlet vel (m/s) Angle (ra) Total force Ftx (N) Fty (N) Pressure force P outlet (N/m^) Fpx Fpy Boy force Fbx. Fby -98. Resultant force

6 Frx Fry Fr Angle (egrees) -.56 Force acting on ben (N) (a) Starting with the Bernoulli an Continuity equations erive the following expression that can be use to measure flow rate with a Venturi meter. Q actual C A A p p g + z A A z Also show that when the pressure ifference is measure using a manometer the following expression can be use ρman gh ρ Qactual C AA A A [5 marks] (b) A venturimeter is use to measure the flow of water in a pipe of iameter mm. The throat iameter of the venturimeter is 6mm an it has a coefficient of ischarge of.9. When a flow of litres/s is flowing the attache maonmeter shows a hea ifference of 6cm, what is the ensity of the manometric flui of the manometer? 6(a): Applying Bernoulli along the streamline from point to point in the narrow throat of the Venturi meter we have p g ug z p u g g z ρ + + ρ + + By the using the continuity equation we can eliminate the velocity u, Q u A u A u ua A Substituting this into an rearranging the Bernoulli equation we get p p ρg u A + z z g A u g p p + z z A A A g p p + z z A + A To get the theoretical ischarge this is multiplie by the area. To get the actual ischarge taking in to account the losses ue to friction, we inclue a coefficient of ischarge

7 Q u A Q C Q C u A Q ieal actual ieal actual C A A This can also be expresse in terms of the manometer reaings p p ρg g p p + z z A A p + ρgz p + ρ gh+ ρg( z h) man ρman + z z h ρ Thus the ischarge can be expresse in terms of the manometer reaing:: 6 (b) ρ man Q A A ρ + C A A gh c.9 rho man (kg/m^)? rho (kg/m^) (mm) (mm) 6 a (m^).7854 a (m^).87 Q (m^/s). Q actual C A A ρman gh ρ A A out h (m).6 rho man (kg/m^) 58.5 in z z h atum 4

Problem 1 (20 points)

Problem 1 (20 points) ME 309 Fall 01 Exam 1 Name: C Problem 1 0 points Short answer questions. Each question is worth 5 points. Don t spen too long writing lengthy answers to these questions. Don t use more space than is given.

More information

If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body

If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

absolute gauge atmospheric 2

absolute gauge atmospheric 2 Pressure and Manometers. Wat will be te (a) te gauge pressure and (b) te absolute pressure of water at dept m below te surface? ρ water 000 kg/m, and p atmospere 0kN/m. [7.7 kn/m, 8.7 kn/m ] a) b) p gauge

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

M E 320 Professor John M. Cimbala Lecture 27

M E 320 Professor John M. Cimbala Lecture 27 M E 30 Professor John M. Cimbala Lecture 7 Toay, we will: Do some examples of complex piping networks (multiple pipes with branches, etc.) Briefly mention flow meters an velocity measurement Complex piping

More information

To understand how scrubbers work, we must first define some terms.

To understand how scrubbers work, we must first define some terms. SRUBBERS FOR PARTIE OETION Backgroun To unerstan how scrubbers work, we must first efine some terms. Single roplet efficiency, η, is similar to single fiber efficiency. It is the fraction of particles

More information

CE2253- APPLIED HYDRAULIC ENGINEERING (FOR IV SEMESTER)

CE2253- APPLIED HYDRAULIC ENGINEERING (FOR IV SEMESTER) CE5-APPLIED HYDRAULIC ENGINEERING/UNIT-II/UNIFORM FLOW CE5- APPLIED HYDRAULIC ENGINEERING (FOR IV SEMESTER) UNIT II- UNIFORM FLOW CE5-APPLIED HYDRAULIC ENGINEERING/UNIT-II/UNIFORM FLOW CE5- APPLIED HYDRAULIC

More information

Exercise 4 - Hydraulic Systems

Exercise 4 - Hydraulic Systems Exercise 4 - Hyraulic Systems 4.1 Hyraulic Systems Hyraulic systems are, in general, escribe by the Navier-Stokes equations as you might have learne in flui ynamics courses. In orer to simplify the moeling

More information

Fluid Kinematics. by Dr. Nor Azlina binti Alias Faculty of Civil and Earth Resources Engineering

Fluid Kinematics. by Dr. Nor Azlina binti Alias Faculty of Civil and Earth Resources Engineering Flui Kinematics by Nor A Alias For upate ersion, please click on http://ocw.ump.eu.my Flui Kinematics by Dr. Nor Azlina binti Alias Faculty of Ciil an Earth Resources Enineerin azlina@ump.eu.my Flui Kinematics

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

inflow outflow Part I. Regular tasks for MAE598/494 Task 1

inflow outflow Part I. Regular tasks for MAE598/494 Task 1 MAE 494/598, Fall 2016 Project #1 (Regular tasks = 20 points) Har copy of report is ue at the start of class on the ue ate. The rules on collaboration will be release separately. Please always follow the

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C. Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

Tutorial Test 5 2D welding robot

Tutorial Test 5 2D welding robot Tutorial Test 5 D weling robot Phys 70: Planar rigi boy ynamics The problem statement is appene at the en of the reference solution. June 19, 015 Begin: 10:00 am En: 11:30 am Duration: 90 min Solution.

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

SOE2156: Fluids Lecture 7

SOE2156: Fluids Lecture 7 Weirs and SOE2156: Fluids Lecture 7 Vee Vee Last lecture { assumed the channel was uniform (constant depth, shape, slope etc.) { steady uniform Found that : location of free surface to be determined 2

More information

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

Single Arm, Centrifugal, Water Turbine for Low Head and Low Flow Application: Part 1- Theory and Design

Single Arm, Centrifugal, Water Turbine for Low Head and Low Flow Application: Part 1- Theory and Design Energy an Power 2018, 8(2): 51-55 DOI: 10.5923/j.ep.20180802.03 Single Arm, Centrifugal, Water Turbine for Low ea an Low Flow Application: Part 1- Theory an Design Kiplangat C. Kononen 1, Augustine B.

More information

This section outlines the methodology used to calculate the wave load and wave wind load values.

This section outlines the methodology used to calculate the wave load and wave wind load values. COMPUTERS AND STRUCTURES, INC., JUNE 2014 AUTOMATIC WAVE LOADS TECHNICAL NOTE CALCULATION O WAVE LOAD VALUES This section outlines the methoology use to calculate the wave loa an wave win loa values. Overview

More information

2.20 Marine Hydrodynamics Lecture 3

2.20 Marine Hydrodynamics Lecture 3 2.20 Marine Hyroynamics, Fall 2018 Lecture 3 Copyright c 2018 MIT - Department of Mechanical Engineering, All rights reserve. 1.7 Stress Tensor 2.20 Marine Hyroynamics Lecture 3 1.7.1 Stress Tensor τ ij

More information

five moments Moments Moments Moments 8 a force acting at a different point causes a different moment:

five moments Moments Moments Moments 8 a force acting at a different point causes a different moment: ELEENTS O RCHITECTURL STRUCTURES: OR, EHVIOR, ND DESIGN DR. NNE NICHOLS SPRING 2014 forces have the tenency to make a boy rotate about an ais lecture five moments http://www.physics.um.eu same translation

More information

1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring Problem Set 4 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

More information

ES2A7 - Fluid Mechanics Example Classes Example Questions (Set IV)

ES2A7 - Fluid Mechanics Example Classes Example Questions (Set IV) ESA7 - Flui Mechanics Eample Classes Eample Quesions (Se IV) Quesion : Dimensional analysis a) I is observe ha he velociy V of a liqui leaving a nozzle epens upon he pressure rop P an is ensiy ρ. Show

More information

A new identification method of the supply hole discharge coefficient of gas bearings

A new identification method of the supply hole discharge coefficient of gas bearings Tribology an Design 95 A new ientification metho of the supply hole ischarge coefficient of gas bearings G. Belforte, F. Colombo, T. Raparelli, A. Trivella & V. Viktorov Department of Mechanics, Politecnico

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM. Common mistakes made on the final exam and how to avoid them

HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM. Common mistakes made on the final exam and how to avoid them HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM Common mistakes made on the final exam and how to avoid them HOW TO GET A GOOD GRADE ON THE MME 2273B EXAM Introduction You now have a lot

More information

Lecture 3 The energy equation

Lecture 3 The energy equation Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

More information

Fluid Mechanics EBS 189a. Winter quarter, 4 units, CRN Lecture TWRF 12:10-1:00, Chemistry 166; Office hours TH 2-3, WF 4-5; 221 Veihmeyer Hall.

Fluid Mechanics EBS 189a. Winter quarter, 4 units, CRN Lecture TWRF 12:10-1:00, Chemistry 166; Office hours TH 2-3, WF 4-5; 221 Veihmeyer Hall. Flui Mechanics EBS 189a. Winter quarter, 4 units, CRN 52984. Lecture TWRF 12:10-1:00, Chemistry 166; Office hours TH 2-3, WF 4-5; 221 eihmeyer Hall. Course Description: xioms of flui mechanics, flui statics,

More information

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector Multivariable Calculus: Chapter 13: Topic Guie an Formulas (pgs 800 851) * line segment notation above a variable inicates vector The 3D Coorinate System: Distance Formula: (x 2 x ) 2 1 + ( y ) ) 2 y 2

More information

1.2 - Stress Tensor Marine Hydrodynamics Lecture 3

1.2 - Stress Tensor Marine Hydrodynamics Lecture 3 13.021 Marine Hyroynamics, Fall 2004 Lecture 3 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserve. 1.2 - Stress Tensor 13.021 Marine Hyroynamics Lecture 3 Stress Tensor τ ij:. The

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of bonary layer Thickness an classification Displacement an momentm Thickness Development of laminar an trblent flows in circlar pipes Major an

More information

Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics Testbank By David Admiraal Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M. Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Scalo Prof. Vlachos

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 MODULE NO: CIE4009 Date: Saturday 14 January

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Long-istance coherent coupling in a quantum ot array Floris R. Braakman 1, Pierre Barthelemy 1, Christian Reichl, Werner Wegscheier, Lieven M.K. Vanersypen 1 1 Kavli Institute of Nanoscience, TU Delft,

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

Problem Set 2: Solutions

Problem Set 2: Solutions UNIVERSITY OF ALABAMA Department of Physics an Astronomy PH 102 / LeClair Summer II 2010 Problem Set 2: Solutions 1. The en of a charge rubber ro will attract small pellets of Styrofoam that, having mae

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - III RAPIDLY VARIED FLOW

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - III RAPIDLY VARIED FLOW CE 6 APPLIED HYDRAULIC ENGINEERING UNIT - III RAPIDLY VARIED FLOW Application of the energy equation for RVF - Critical epth an velocity - Critical, Sub-critical an Super-critical flow - Application of

More information

A SIMPLE ENGINEERING MODEL FOR SPRINKLER SPRAY INTERACTION WITH FIRE PRODUCTS

A SIMPLE ENGINEERING MODEL FOR SPRINKLER SPRAY INTERACTION WITH FIRE PRODUCTS International Journal on Engineering Performance-Base Fire Coes, Volume 4, Number 3, p.95-3, A SIMPLE ENGINEERING MOEL FOR SPRINKLER SPRAY INTERACTION WITH FIRE PROCTS V. Novozhilov School of Mechanical

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

Sourabh V. Apte. 308 Rogers Hall

Sourabh V. Apte. 308 Rogers Hall Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

AIR BUBBLE ENTRAINMENT IN HYDRAULIC JUMPS: PHYSICAL MODELING AND SCALE EFFECTS

AIR BUBBLE ENTRAINMENT IN HYDRAULIC JUMPS: PHYSICAL MODELING AND SCALE EFFECTS AIR BUBBLE ENTRAINMENT IN HYDRAULIC JUMPS: PHYSICAL MODELING AND SCALE EFFECTS Hubert CHANSON Professor in Civil Engineering The University of Queenslan Brisbane QLD 4072 Australia Ph.: (6 7) 3365 463

More information

ARCH 614 Note Set 5 S2012abn. Moments & Supports

ARCH 614 Note Set 5 S2012abn. Moments & Supports RCH 614 Note Set 5 S2012abn Moments & Supports Notation: = perpenicular istance to a force from a point = name for force vectors or magnitue of a force, as is P, Q, R x = force component in the x irection

More information

CE2253-APPLIED HYDRAULIC ENGINEERING OPEN CHANNEL FLOW

CE2253-APPLIED HYDRAULIC ENGINEERING OPEN CHANNEL FLOW CE5-APPLIED HYDRAULIC ENGINEERING (FOR IV SEMESTER) UNIT - I OPEN CHANNEL FLOW M.SUGANYA., B.E., LECTURER DEPARTMENT OF CIVIL ENGINEERING FATIMA MICHAEL ENGINEERING COLLEGE MADURAI UNIT I OPEN CHANNEL

More information

CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.)

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS I LAB MANUAL Prepared By Prof. L. K. Kokate Lab Incharge Approved By Dr.

More information

Comparative Approaches of Calculation of the Back Water Curves in a Trapezoidal Channel with Weak Slope

Comparative Approaches of Calculation of the Back Water Curves in a Trapezoidal Channel with Weak Slope Proceeings of the Worl Congress on Engineering Vol WCE, July 6-8,, Lonon, U.K. Comparative Approaches of Calculation of the Back Water Curves in a Trapezoial Channel with Weak Slope Fourar Ali, Chiremsel

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

V = Flow velocity, ft/sec

V = Flow velocity, ft/sec 1 Drag Coefficient Preiction Chapter 1 The ieal force acting on a surface positione perpenicular to the airflow is equal to a ynamic pressure, enote by q, times the area of that surface. Dynamic pressure

More information

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet Exp. Title FLUID MECHANICS- I LAB Syllabus FM-I Semester-4 th Page No. 1 of 1 Internal Marks: 25 L T P External Marks: 25 0 0 2 Total Marks: 50 1. To determine the met centric height of a floating body

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface. Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest. - A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,

More information

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, FLUID MECHANICS LABORATORY MANUAL

MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, FLUID MECHANICS LABORATORY MANUAL MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS LABORATORY MANUAL Prepared By Mr. L. K. Kokate Lab Incharge Approved By

More information

Lecture 2 - First order linear PDEs and PDEs from physics

Lecture 2 - First order linear PDEs and PDEs from physics 18.15 - Introuction to PEs, Fall 004 Prof. Gigliola Staffilani Lecture - First orer linear PEs an PEs from physics I mentione in the first class some basic PEs of first an secon orer. Toay we illustrate

More information

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments Problem F U L W D g m 3 2 s 2 0 0 0 0 2 kg 0 0 0 0 0 0 Table : Dimension matrix TMA 495 Matematisk moellering Exam Tuesay December 6, 2008 09:00 3:00 Problems an solution with aitional comments The necessary

More information

Center of Gravity and Center of Mass

Center of Gravity and Center of Mass Center of Gravity an Center of Mass 1 Introuction. Center of mass an center of gravity closely parallel each other: they both work the same way. Center of mass is the more important, but center of gravity

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 190 Chapter 3 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 190 Lecture Notes Section 3.1 Section 3.1 Derivatives of Polynomials an Exponential Functions Derivative of a Constant Function

More information

DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS ( )

DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS ( ) DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS (2141906) Sr. No. Experiment Start Date End Date Sign Remark 1. To understand pressure measurement procedure and related instruments/devices.

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

The Ekman Layer. Chapter Shear turbulence

The Ekman Layer. Chapter Shear turbulence Chapter 8 The Ekman Layer (July 12, 2006) SUMMARY: Frictional forces, neglecte in the previous chapter, are now investigate. Their main effect is to create horizontal bounary layers that support a flow

More information

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions 015 Question 1 (a) (i) State Newton s secon law of motion. Force is proportional to rate of change of momentum (ii) What is the

More information

m (ft-lb/ft). Using the point-slope

m (ft-lb/ft). Using the point-slope ENGR 1990 Engineering athematics pplications of Derivatives E 560, E 570 Eample #1 Consier a long slener beam of length with a concentrate loa acting at istance a from the left en. Due to this loa, the

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

More information

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences Australian Journal of Basic an Applie Sciences, 9(1) January 015, Pages: 38-45 AENSI Journals Australian Journal of Basic an Applie Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Velocity

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

PREPARATION OF THE NATIONAL MAGNETIC FIELD STANDARD IN CROATIA

PREPARATION OF THE NATIONAL MAGNETIC FIELD STANDARD IN CROATIA n IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE June 15-17, 11, Cavtat, Dubrovni Riviera, Croatia PREPARATION OF THE NATIONAL MAGNETIC FIELD STANDARD IN CROATIA A. Pavić 1, L.Ferović,

More information

!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!"

!! +! 2!! +!!! =!! +! 2!! +!!! +!!!! Homework 4 Solutions 1. (15 points) Bernoulli s equation can be adapted for use in evaluating unsteady flow conditions, such as those encountered during start- up processes. For example, consider the large

More information

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 004 Problem Solving 4 Solutions: Magnetic Force, Torque, an Magnetic Moments OJECTIVES 1. To start with the magnetic force on a moving

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

The continuity equation

The continuity equation Chapter 6 The continuity equation 61 The equation of continuity It is evient that in a certain region of space the matter entering it must be equal to the matter leaving it Let us consier an infinitesimal

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Dimensional Analysis (Partial Analysis)

Dimensional Analysis (Partial Analysis) Dimensional Analysis (Partial Analysis) DA is a mathematical method of considerable value to problems in science and engineering especially physics and fluid mechanics. All physical quantities can usually

More information

Development of the Vortex Mass Flowmeter with Wall Pressure Measurement

Development of the Vortex Mass Flowmeter with Wall Pressure Measurement 10.478/msr-01-000 MEASUREMENT SCIENCE REVIEW, Volume 1, No. 1, 01 Development of the Vortex Mass Flowmeter with Wall Pressure Measurement Zhiyong Li 1,, Zhiqiang Sun 1, 1 School of Energy Science an Engineering,

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

6. Friction and viscosity in gasses

6. Friction and viscosity in gasses IR2 6. Friction an viscosity in gasses 6.1 Introuction Similar to fluis, also for laminar flowing gases Newtons s friction law hols true (see experiment IR1). Using Newton s law the viscosity of air uner

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

M E 320 Professor John M. Cimbala Lecture 16

M E 320 Professor John M. Cimbala Lecture 16 M E 320 Professor John M. Cimbala Lecture 16 Toay, we will: Do some more example problems lear CV momentum equation Discuss the control volume equation for angular momentum E. The Lear Momentum Equation

More information

Numerical Investigation of Non-Stationary Parameters on Effective Phenomena of a Pitching Airfoil at Low Reynolds Number

Numerical Investigation of Non-Stationary Parameters on Effective Phenomena of a Pitching Airfoil at Low Reynolds Number Journal of Applie Flui Mechanics, Vol. 9, No. 2, pp. 643-651, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. Numerical Investigation of Non-Stationary Parameters on Effective

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Calculus I Homework: Related Rates Page 1

Calculus I Homework: Related Rates Page 1 Calculus I Homework: Relate Rates Page 1 Relate Rates in General Relate rates means relate rates of change, an since rates of changes are erivatives, relate rates really means relate erivatives. The only

More information

ME338A CONTINUUM MECHANICS

ME338A CONTINUUM MECHANICS global vs local balance equations ME338A CONTINUUM MECHANICS lecture notes 11 tuesay, may 06, 2008 The balance equations of continuum mechanics serve as a basic set of equations require to solve an initial

More information

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation.

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation. 174 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y y 1 = 1+ 1+8Fr 1 8.1 Rapidly Varied Flows Weirs 8.1.1 Broad-Crested Weir Consider the

More information

Question Details Box Stretch 1 [ ]

Question Details Box Stretch 1 [ ] Lesson 63 Prouct Rule (5414789) Due: Mon Mar 3 2014 07:30 AM MST Question 1 2 3 4 5 6 7 8 9 10 11 12 Instructions Rea toay's Notes an Learning Goals 1. Question Details Box Stretch 1 [2715846] Suppose

More information