!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!"

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!""

Transcription

1 Homework 4 Solutions 1. (15 points) Bernoulli s equation can be adapted for use in evaluating unsteady flow conditions, such as those encountered during start- up processes. For example, consider the large tank below that is initially filled with water to a depth of 3 m. A pipe is attached with the dimensions shown, and initially capped at point 2. When the cap is removed, water will begin to flow out of the tube, and the velocity of the water in the tube will change over time. We can modify the Bernoulli equation to account for transient effects using!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!" where the last term describes the rate of change of the fluid momentum as we travel along a streamline.!! (a) (5 points) Show that the integrand on the right hand side of the equation has units of pressure. (b) (1 points) Making the assumptions discussed in class, we saw that the above equation can be simplified to give!!!! 2!h! =!" 2! Integrate this equation to find an expression for V 2 (t) and plot the result. You may need to consult a table of integrals (or use computational tools) to evaluate the left hand side.

2 (a) The integrand is!!"!"!", where! has units of kg/m3, the rate of change of the velocity!"!" has units of acceleration, m/s 2, and!" is the differential distance traveled along the path s, and has units of m. Together, kg m m 3 kg m m= s 2 s 2 m 2 = N m 2 =Pa. Thus, the integrand has units of pressure. (b) SOLUTION: Apply the Bernoulli equation to the unsteady flow along a streamline from point 1 to point 2. (5) (6) Governing equation: p 1 V 1 V 2 p gz t ds 1 2 V gz2 2 2 Assumptions: Then 1 (1) Incompressible flow. (2) Frictionless flow. (3) Flow along a streamline from 1 to 2. (4) p 1 p 2 p atm. (5) V 2 1 : (6) z 2. (7) z 1 h constant. (8) Neglect velocity in reservoir, except for small region near the inlet to the tube. In view of assumption (8), the integral becomes In the tube, V V 2 everywhere, so that Z L gz 1 gh V2 2 2 Z 2 ds Z L Z L Z @t ds dv 2 dt ds L dv 2 dt This is the rate of change over time of the momentum (per unit mass) within the pipe; in the long term it will approach zero.

3 Z Z CHEN 32 Fluid Mechanics Spring 211 This is the rate of change over time of the momentum (per unit mass) within the pipe; in the long term it will approach zero. Substituting gives Separating variables, we obtain gh V2 2 2 L dv 2 dt dv 2 2gh V 2 2 dt 2L Integrating between limits V att and V V 2 at t t, Z V2 dv 2gh V 2 pffiffiffiffiffiffiffi 1 tanh 1 V p ffiffiffiffiffiffiffi 2gh 2gh Since tanh 1 (), we obtain 1 pffiffiffiffiffiffiffi tanh 1 V 2 pffiffiffiffiffiffiffi t 2gh 2gh 2L For the given conditions, or V2 V 2 p tanh t ffiffiffiffiffiffiffi 2gh rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffi 2 9:81 m 3m 2gh 7:67 m/s s2 t 2L pffiffiffiffiffiffiffi 2gh 2L ß V 2 ðtþ and t p 2L ffiffiffiffiffiffiffi 2gh t 2 1 6m 7:67 m s :639t The result is then V tanh (.639t) m/s,asshown: V 2 (m/s) V 2 = 7.67 tanh (.639 t) t (s)

4 2. (15 points) Fluid approaches a submerged cylinder with velocity!! = 1 m/s. The cylinder has a radius of! = 55 cm. Using boundary layer theory, it is possible to describe how the fluid velocity changes near the cylinder surface as a function of r and θ, with θ measured as shown below. At the surface of the cylinder, the fluid speed is determined to be! = 2!! sin!.!"!"!!"!" Calculate a s and a n at point A on the surface of the cylinder, where θ = 6.

5

6 3. (2 points) An incompressible, one- dimensional fluid flows from left to right through the circular nozzle shown below. The velocity entering the nozzle is given by! =!! +!! sin!", where!! = 2 m/s,!! = 2 m/s, and! =.3 rad/s. The nozzle is 1 m in length,.4 m in diameter at the entrance, and.2 m in diameter at the exit. (a) (1 points) Determine an equation for the acceleration at the exit of the nozzle as a function of time. (b) (5 points) Plot the acceleration versus time for one complete cycle. (c) (5 points) Now, plot the acceleration at the channel exit if the nozzle has a constant diameter of.4 m (i.e., it is now a cylindrical tube). Explain the difference between the two plots. (a) = sin!" sin 2!" cos!"

7 (b, c)

8 4. (2 points) A fluid velocity field is given by! =!"!!!"!, where! =.2 s!! and! =.6 m/s. If x and y have units of meters: (a) (a) (5 points) Find a general expression for the acceleration vector (a) as a function of x and y. (b) (1 points) Find the acceleration (a), magnitude of the acceleration ( a ), and the angle the acceleration vector makes with the x- axis (θ) for each of the points (,1.33), (1,2) and (2,4). (c) (5 points) Find an expression for the streamlines, in the form!!,! =!, where C is a constant. Plot this function for values of! = ±.2, ±.4 and ±.8. Draw the acceleration vectors from (b) on your plot. =.4!.12! +.4!! (b) The acceleration at each point is just a evaluated at the x and y coordinates: The magnitude of a, given by! =!!! +!!!. At (x,y) = (, 1.33), a =.131 m/s 2 = (1, 2), a =.113 m/s 2 = (2, 4), a =.164 m/s 2 The angle that a makes with the x- axis is given by! = tan 1!!!!. Therefore, 1.!"## At (x,y) = (, 1.33),! = tan = 23!.!" 1.!"!! = (1, 2),! = tan = 45!.!"!! = (2, 4),! = tan 1.!"#!.!"!! = 76

9 (c)

10 5. (15 points) From Newtonian physics, a particle launched with velocity V at an angle θ with respect to the ground will travel in a parabolic path given by! =!/ 2!!! cos 2!!! + tan!!. The pathline for a stream of water leaving a nozzle is shown on the last page. (a) (1 points) Use the end of the nozzle as the origin, and find the coordinates of several points along the pathline for the stream of water. Plot the coordinates, and fit a curve to the data to show that the shape of the pathline is parabolic, with the general form! =!!!! +!!! (b) (5 points) Use the above equation, and your values of c 1 and c 2, to calculate the angle (with respect to the x- axis) that the water leaves the nozzle, and the initial speed V. (a) Points along the pathline for the stream of water are measured as shown on the figure below. Converting the units to meters, plotting the data and fitting a parabolic model to the points gives!"#$% & ' ( ) * +, -. &/ && &' &( &) &* &+ &, &- &. '/ '& '' '( ') '* ' / / /6//('' /6//&'& /6//+-) /6//('' /6/&/-+ /6//))' /6/&)-- /6//*+( /6/&., /6//*'( /6/')&' /6//)-( /6/',,) /6//(+' /6/(/.+ /6//')& /6/((,, /6//&'& /6/(+.. 7/6///- /6/)/+& 7/6//)/' /6/))+( 7/6//,'( /6/),)) 7/6/&//* /6/*/'* 7/6/&'-+ /6/*'+, 7/6/&+/- /6/**-- 7/6/'/& /6/*-, 7/6/')&' /6/+&*& 7/6/'-*) /6/+)(' 7/6/(((, /6/++,) 7/6/(,,. /6/+.** 7/6/)(-' /6/,&.+ 7/6/)-+) /6/,(-- 7/6/*&/' /6/,)(, 7/6/*(), /6/,*.' 7/6/**&!!"#$! /6/&1 /1 7/6/&1 7/6/'1 7/6/(1 7/6/)1 7/6/* &-6''' ' 191/6+).&1 :;181/6...),1 7/6/+1 /1 /6/&1 /6/'1 /6/(1 /6/)1 /6/*1 /6/+1 /6/,1 /6/-1 "!"#$! The high value of R 2 indicates good agreement between the data points and the parabolic model.

11 (b) From the model fit in Excel, we obtain the coefficients!! = 18.2 m - 1 and!! =.65. From the equation given in the problem statement,!! =.65 = tan! thus,! = 33, which appears reasonable in comparison with the figure above. We can now find the velocity from!! = 18.2! m =!!!!! cos2! or!! =!.!" m/s 2!!".! m!! cos 2!! =.62 m/s

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines. 4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,

More information

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s. CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1-D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines

More information

Lecture 2 Flow classifications and continuity

Lecture 2 Flow classifications and continuity Lecture 2 Flow classifications and continuity Dr Tim Gough: t.gough@bradford.ac.uk General information 1 No tutorial week 3 3 rd October 2013 this Thursday. Attempt tutorial based on examples from today

More information

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

More information

CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys

CEE 3310 Control Volume Analysis, Oct. 10, = dt. sys CEE 3310 Control Volume Analysis, Oct. 10, 2018 77 3.16 Review First Law of Thermodynamics ( ) de = dt Q Ẇ sys Sign convention: Work done by the surroundings on the system < 0, example, a pump! Work done

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

AER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes

AER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes AER210 VECTOR CALCULUS and FLUID MECHANICS Quiz 4 Duration: 70 minutes 26 November 2012 Closed Book, no aid sheets Non-programmable calculators allowed Instructor: Alis Ekmekci Family Name: Given Name:

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 15B - Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National

More information

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS - THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

The Bernoulli Equation

The Bernoulli Equation The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

Chapter 3 Bernoulli Equation

Chapter 3 Bernoulli Equation 1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

3.8 The First Law of Thermodynamics and the Energy Equation

3.8 The First Law of Thermodynamics and the Energy Equation CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1-D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and

More information

Unit C-1: List of Subjects

Unit C-1: List of Subjects Unit C-: List of Subjects The elocity Field The Acceleration Field The Material or Substantial Derivative Steady Flow and Streamlines Fluid Particle in a Flow Field F=ma along a Streamline Bernoulli s

More information

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

More information

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION AMEE 0 Introduction to Fluid Mechanics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION. Conventional spray-guns operate by achieving a low pressure

More information

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Rate of Flow Quantity of fluid passing through any section (area) per unit time Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

More information

Physics 4C Spring 2017 Test 1

Physics 4C Spring 2017 Test 1 Physics 4C Spring 017 Test 1 Name: April 19, 017 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must give your answer in terms of the variables

More information

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M. Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Scalo Prof. Vlachos

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

Chapter 11 - Fluids in Motion. Sections 7-9

Chapter 11 - Fluids in Motion. Sections 7-9 Chapter - Fluids in Motion Sections 7-9 Fluid Motion The lower falls at Yellowstone National Park: the water at the top of the falls passes through a narrow slot, causing the velocity to increase at that

More information

Page 1. Chapters 2, 3 (linear) 9 (rotational) Final Exam: Wednesday, May 11, 10:05 am - 12:05 pm, BASCOM 272

Page 1. Chapters 2, 3 (linear) 9 (rotational) Final Exam: Wednesday, May 11, 10:05 am - 12:05 pm, BASCOM 272 Final Exam: Wednesday, May 11, 10:05 am - 12:05 pm, BASCOM 272 The exam will cover chapters 1 14 The exam will have about 30 multiple choice questions Consultations hours the same as before. Another review

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Page 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.)

Page 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Vlachos Prof. Ardekani

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Department of Mechanical Engineering.5 Advanced Fluid Mechanics Problem 4.05 This problem is from Advanced Fluid Mechanics Problems by A.H. Shapiro and A.A. Sonin Consider the frictionless, steady

More information

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass),

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass), Chapter 6 MOMENTUM PRINCIPLE Review: Last time, we derived the Reynolds Transport Theorem: where B is any extensive property (proportional to mass), and b is the corresponding intensive property (B / m

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics For Friday, October 26 th Start reading the handout entitled Notes on finite-volume methods. Review Chapter 7 on Dimensional Analysis

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then: Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing

More information

3.25 Pressure form of Bernoulli Equation

3.25 Pressure form of Bernoulli Equation CEE 3310 Control Volume Analysis, Oct 3, 2012 83 3.24 Review The Energy Equation Q Ẇshaft = d dt CV ) (û + v2 2 + gz ρ d + (û + v2 CS 2 + gz + ) ρ( v n) da ρ where Q is the heat energy transfer rate, Ẇ

More information

Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Chapter 5 Control Volume Approach and Continuity Equation

Chapter 5 Control Volume Approach and Continuity Equation Chapter 5 Control Volume Approach and Continuity Equation Lagrangian and Eulerian Approach To evaluate the pressure and velocities at arbitrary locations in a flow field. The flow into a sudden contraction,

More information

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0. bernoulli_11 In which of the following scenarios is applying the following form of Bernoulli s equation: p V z constant! g + g + = from point 1 to point valid? a. 1 stagnant column of water steady, inviscid,

More information

ME Thermodynamics I

ME Thermodynamics I HW-03 (25 points) i) Given: for writing Given, Find, Basic equations Rigid tank containing nitrogen gas in two sections initially separated by a membrane. Find: Initial density (kg/m3) of nitrogen gas

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 3B: Conservation of Mass C3B: Conservation of Mass 1 3.2 Governing Equations There are two basic types of governing equations that we will encounter in this course Differential

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015 skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

More information

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

More information

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet Experiment 4 Impact of a Jet Purpose The purpose of this experiment is to demonstrate and verify the integral momentum equation. The force generated by a jet of water deflected by an impact surface is

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Stream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1

Stream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1 Stream Tube A region of the moving fluid bounded on the all sides by streamlines is called a tube of flow or stream tube. As streamline does not intersect each other, no fluid enters or leaves across the

More information

Physics 207 Lecture 25. Lecture 25. HW11, Due Tuesday, May 6 th For Thursday, read through all of Chapter 18. Angular Momentum Exercise

Physics 207 Lecture 25. Lecture 25. HW11, Due Tuesday, May 6 th For Thursday, read through all of Chapter 18. Angular Momentum Exercise Lecture 5 Today Review: Exam covers Chapters 14-17 17 plus angular momentum, rolling motion & torque Assignment HW11, Due Tuesday, May 6 th For Thursday, read through all of Chapter 18 Physics 07: Lecture

More information

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer King Fahd University of Petroleum and Minerals Department of Physics MSK Final Exam 041 Answer key - First choice is the correct answer Q1 A 20 kg uniform ladder is leaning against a frictionless wall

More information

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation:

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation: Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key The next three problems refer to the following situation: Two masses, m 1 and m 2, m 1 > m 2, are suspended by a massless rope over a

More information

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016 Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 7

Classical Mechanics III (8.09) Fall 2014 Assignment 7 Classical Mechanics III (8.09) Fall 2014 Assignment 7 Massachusetts Institute of Technology Physics Department Due Wed. November 12, 2014 Mon. November 3, 2014 6:00pm (This assignment is due on the Wednesday

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex. BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over

More information

In steady flow the velocity of the fluid particles at any point is constant as time passes.

In steady flow the velocity of the fluid particles at any point is constant as time passes. Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

More information

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009 Physics 111 Lecture 30 (Walker: 15.6-7) Fluid Dynamics April 15, 2009 Midterm #2 - Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8)

More information

4 Mechanics of Fluids (I)

4 Mechanics of Fluids (I) 1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

LECTURE NOTES - III. Prof. Dr. Atıl BULU

LECTURE NOTES - III. Prof. Dr. Atıl BULU LECTURE NOTES - III «FLUID MECHANICS» Istanbul Technical University College of Civil Engineering Civil Engineering Department Hydraulics Division CHAPTER KINEMATICS OF FLUIDS.. FLUID IN MOTION Fluid motion

More information

except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation)

except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation) Homework 5 Due date: Thursday, Mar. 3 hapter 7 Problems 1. 7.88. 7.9 except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation) 3.

More information

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B. CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s) Fluid Mechanics Flow Rate and Continuity Equation If you have a pipe that is flowing a liquid you will have a flow rate. The flow rate is the volume of fluid that passes any particular point per unit of

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA PAGE NO.: 1 of 6 + Formula Sheet Equal marks for all questions. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics Exam Cardiovascular Fluid Mechanics (8W9) page 1/4 Monday March 1, 8, 14-17 hour Maximum score

More information

Chapter (4) Motion of Fluid Particles and Streams

Chapter (4) Motion of Fluid Particles and Streams Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.

More information

Department of Physics

Department of Physics Department of Physics PHYS101-051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts

More information

New Website: M P E il Add. Mr. Peterson s Address:

New Website:   M P E il Add. Mr. Peterson s  Address: Brad Peterson, P.E. New Website: http://njut009fall.weebly.com M P E il Add Mr. Peterson s Email Address: bradpeterson@engineer.com If 6 m 3 of oil weighs 47 kn calculate its If 6 m 3 of oil weighs 47

More information

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V When the mass m of the control volume remains nearly constant, the first term of the Eq. 6 8 simply becomes mass times acceleration since 39 CHAPTER 6 d(mv ) CV m dv CV CV (ma ) CV Therefore, the control

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN Physics 6B - MWF - Midterm 1 Test #: A Name: Perm #: Section (10-11 or 12-1): You MUST put the TEST # in the first answer bubble. The TA will explain. YOU MUST do this or the test will not be graded. WRITE

More information

Chapter 5: Mass, Bernoulli, and Energy Equations

Chapter 5: Mass, Bernoulli, and Energy Equations Chapter 5: Mass, Bernoulli, and Energy Equations Introduction This chapter deals with 3 equations commonly used in fluid mechanics The mass equation is an expression of the conservation of mass principle.

More information

MAE 224 Notes #4a Elements of Thermodynamics and Fluid Mechanics

MAE 224 Notes #4a Elements of Thermodynamics and Fluid Mechanics MAE 224 Notes #4a Elements of Thermodynamics and Fluid Mechanics S. H. Lam February 22, 1999 1 Reading and Homework Assignments The problems are due on Wednesday, March 3rd, 1999, 5PM. Please submit your

More information