Lecture 17. Membrane Separations [Ch. 14]

Size: px
Start display at page:

Download "Lecture 17. Membrane Separations [Ch. 14]"

Transcription

1 Lecture 17. embrane Separatons [Ch. 14] embrane Separaton embrane aterals embrane odules Transport n embranes -Bulk flow - Lqud dffuson n pores - Gas dffuson - onporous membranes

2 embrane Separaton Separaton by means of a sempermeable barrer (membrane) through whch one or more speces move faster than another or other speces Characterstcs - The two products are usually mscble - The separatng agent s a sempermeable barrer - A sharp separaton s often dffcult to acheve

3 Hstory of embrane Separaton Large-scale applcatons have only appeared n the past 60 years s: separaton of 235 UF 6 from 238 UF 6 (porous fluorocarbons) s: reverse osmoss for seawater desalnzaton (cellulose acetate), commercal ultrafltraton membranes : hollow-fber membrane for gas separaton (polysulfone) s: commercalzaton of alcohol dehydraton by pervaporaton Replacement of more-common separatons wth membrane - Potental: save large amounts of energy -Requrements producton of hgh-mass-transfer-flux, defect-free, long-lfe membranes on a large scale fabrcaton of the membrane nto compact, economcal modules of hgh surface area

4 Characterstcs of embrane Separaton Dstllaton vs. gas permeaton : energy of separaton for dstllaton s usually heat, but for gas permeaton s the shaft work of gas compresson Emergng (new) unt operaton : mportant progress s stll beng made for effcent membrane materals and packagng embrane separator vs. other separaton equpment - more compact, less captal ntensve, and more easly operated, controlled, and mantaned - usually modular n constructon: many parallel unts requred for large-scale applcatons Desrable characterstcs of membrane (1) good permeablty, (2) hgh selectvty, (3) chemcal and mechancal compatblty, (4) stablty, freedom from foulng, and useful lfe, (5) amenablty, (6) ablty to wthstand large pressure dfferences

5 embrane aterals Typcal membrane materals - atural polymers: wool, rubber, and cellulose - Synthetc polymers - Inorganc materals: mcroporous ceramcs, metals, and carbons Almost all ndustral membrane materals are made from polymers : lmted to temperatures below 200 and chemcally nert mxture Types of polymer membrane - Dense amorphous membrane pores, f any, less than a few Angstroms n dameter dffusng speces must dssolve nto the polymer and then dffuse through the polymer - croporous membrane (mcrofltraton, ultrafltraton, nanofltraton) contans nterconnected pores of μm n dameter for small molecules, permeablty for mcroporous membranes s hgh but selectvty s low

6 Asymmetrc Polymer embrane Asymmetrc membrane - thn dense skn (permselectve layer) about μm n thck formed over a much thcker mcroporous layer (support) Caulked membrane Thn-flm composte (slcone rubber)

7 embrane odules (1) Common membrane shapes Flat asymmetrc or thn-flm composte Tubular Provde a large membrane surface area per unt volume Hollow fber onolthc

8 embrane odules (2) Common membrane modules Plate and flame Spral-wound Four-leaf spral-wound Tubular Hollow-fber onolthc

9 embrane odules (3) Typcal characterstcs of membrane modules Plate and frame Spral-wound Tubular Hollow-fber Packng densty, m 2 /m ,000 Resstance to foulng Good oderate Very good Poor Ease of cleanng Good Far Excellent Poor Relatve cost Hgh Low Hgh Low an applcaton D, RO, PV, UF, F D, RO, GP, UF, F RO, UF D: dalyss, RO: reverse osmoss, GP: gas permeaton, PV: pervaporaton, UF: ultrafltraton, F: mcrofltraton D, RO, GP, UF

10 Transport n embranes olar transmembrane flux P ( drvng force) l P : permeablty, P : Types of membrane: macroporous, mcroporous, dense echansms of transport n membranes Bulk flow through pores o separaton Dffuson through pores P ( drvng force) permeance Restrcted dffuson through pores Sze excluson, sevng Soluton dffuson through dense membranes

11 Bulk Flow Hagen-Poseulle law (for lamnar flow) 2 D v ( P0 PL ) 32L (D: pore dameter L: length of the pore) Pressure dfference P 0 Porosty (vod fracton) nd 2 / 4 (n: pores per unt cross secton) P L Superfcal flud bulk-flow flux (mass velocty) 2 4 D n D v ( P0 PL ) ( P0 PL ) 32l 128l Tortuosty factor, τ If pore length s longer than the membrane thckness, l l (l : membrane thckness)

12 Lqud Dffuson n Pores When dentcal total pressures but dfferent component concentratons exst no bulk flow, but dfferent dffuson rates separaton odfed form of Fck s law De ( c c ) 0 L l Effectve dffusvty Concentraton drvng force D e D d m Restrctve factor Kr 1,( dm / dp) 1 d p effect of pore dameter, d p, n causng nterferng collsons of the dffusng solutes wth the pore wall K r 4 c,o c,l

13 Gas Dffuson If total pressure and temperature on ether sde are equal Dc e ( p p ) 0 Partal-pressure drvng force L Pl De ( p p ) 0 L RTl c, total concentraton of the gas mxture (=P/RT by the deal-gas law) D e 1 ( 1/ D) ( 1/ DK ) Ordnary dffuson Knudsen dffuson Collsons occur prmarly between gas molecules and the pore wall

14 onporous embranes echansm - Absorpton of gas or lqud components nto the membrane - Dffuson through the sold membrane - Desorpton at the downstream face Dffusvtes of water (cm 2 /s at 1 atm, 25 ) - Water vapor n ar : Water n ethanol lqud : Water n cellulose acetate sold : Soluton-dffuson model : The concentratons n the membrane are related to the concentratons or partal pressures n the flud adjacent to the membrane faces thermodynamc equlbrum for the solute between the flud and membrane materal at the nterfaces

15 Soluton-Dffuson for Lqud xtures Porous membrane onporous membrane Concentraton profle s contnuous K If the mass-transfer resstances n the boundary layers are neglgble K D s the permeablty, P, for the soluton-dffuson model o c o L c o K D ( c c ) 0 L l L KD ( c c ) 0 L l KD ( c c ) F P l c c L

16 Soluton-Dffuson for Gas xtures Porous membrane onporous membrane Contnuous partalpressure profle H If the external mass-transfer resstances are neglgble P o HD c p o o c H L p HD ( p p ) 0 L l HD ( p p ) F P l P ( p p ) F P l L L

Lecture 11. Transport in Membranes (1)

Lecture 11. Transport in Membranes (1) ecture 11. Transport n embranes (1) ass Transfer n embranes uk Fow qud Dffuson through ores Gas Dffuson through orous embranes Transport through onporous embranes - Souton-dffuson for qud mxtures - Souton-dffuson

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

Lecture 10. Membrane Separation Materials and Modules

Lecture 10. Membrane Separation Materials and Modules ecture 10. Membrane Separation Materials and Modules Membrane Separation Types of Membrane Membrane Separation Operations - Microporous membrane - Dense membrane Membrane Materials Asymmetric Polymer Membrane

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING Postal Correspondence GATE & PSUs -MT To Buy Postal Correspondence Packages call at 0-9990657855 1 TABLE OF CONTENT S. No. Ttle Page no. 1. Introducton 3 2. Dffuson 10 3. Dryng and Humdfcaton 24 4. Absorpton

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

Solid state reactions. Often defined as reactions between two solids. Here the definition is extended to any reaction involving a solid:

Solid state reactions. Often defined as reactions between two solids. Here the definition is extended to any reaction involving a solid: Sold state reactons Often defned as reactons between two solds Here the defnton s extended to any reacton nvolvng a sold: Sold/sold Sold/gas (Reacton, decomposton) (Sold/lqud) Intercalaton 1 2 Sold-State

More information

Mass transfer in multi-component mixtures

Mass transfer in multi-component mixtures Chapters -0 ex. 7, of 5 of boo See also Krshna & Wesselngh Chem. Eng. Sc. 5(6) 997 86-9 Mass transfer n mult-component mxtures Ron Zevenhoven Åbo Aadem Unversty Thermal and Flow Engneerng Laboratory tel.

More information

Practical aspects of membrane performance testing and interpretation

Practical aspects of membrane performance testing and interpretation Catalyss Engneerng lunch meetng 8 November 218 Practcal aspects of membrane performance testng and nterpretaton Freek Kaptejn Catalyss Engneerng Delft Unversty of Technology 8/11/218 1 What you can expect..

More information

ChE 512: Topic 1 Reactions at a fluid non-porous solid interface. P.A. Ramachandran

ChE 512: Topic 1 Reactions at a fluid non-porous solid interface. P.A. Ramachandran he 512: Topc 1 Reactons at a flud non-porous sold nterface P.. Ramachandran rama@wustl.edu OUTLIE External Transport: Flm oncept Mass transfer coeffcents Effect of transport on reacton multaneous heat

More information

4.2 Chemical Driving Force

4.2 Chemical Driving Force 4.2. CHEMICL DRIVING FORCE 103 4.2 Chemcal Drvng Force second effect of a chemcal concentraton gradent on dffuson s to change the nature of the drvng force. Ths s because dffuson changes the bondng n a

More information

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products modelng of equlbrum and dynamc mult-component adsorpton n a two-layered fxed bed for purfcaton of hydrogen from methane reformng products Mohammad A. Ebrahm, Mahmood R. G. Arsalan, Shohreh Fatem * Laboratory

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Diffusion Mass Transfer

Diffusion Mass Transfer Dffuson Mass Transfer General onsderatons Mass transfer refers to mass n transt due to a speces concentraton gradent n a mture. Must have a mture of two or more speces for mass transfer to occur. The speces

More information

Turbulent Nonpremixed Flames

Turbulent Nonpremixed Flames School of Aerospace Engneerng Turbulent Nonpremxed Flames Jerry Setzman. 5 Mole Fracton.15.1.5 CH4 HO HCO x 1 Temperature Methane Flame.1..3 Dstance (cm) 15 1 5 Temperature (K) TurbulentNonpremxed -1 School

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

Wilbur and Ague 4 WILBUR AND AGUE; APPENDIX DR1. Two-dimensional chemical maps as well as chemical profiles were done at 15 kv using

Wilbur and Ague 4 WILBUR AND AGUE; APPENDIX DR1. Two-dimensional chemical maps as well as chemical profiles were done at 15 kv using DR2006139 Wlbur and Ague 4 WILBUR AND AGUE; APPENDIX DR1 MINERAL ANALYSES Two-dmensonal chemcal maps as well as chemcal profles were done at 15 kv usng the JEOL JXA-8600 electron mcroprobe at Yale Unversty

More information

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns Influence Of Operatng Condtons To The Effectveness Of Extractve Dstllaton Columns N.A. Vyazmna Moscov State Unversty Of Envrnmental Engneerng, Department Of Chemcal Engneerng Ul. Staraya Basmannaya 21/4,

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

CFD Simulation of Dense Gas Extraction through Polymeric Membranes

CFD Simulation of Dense Gas Extraction through Polymeric Membranes Vol:4, No:1, 010 CF Smulaton of ense Gas Extracton through Polymerc Membranes Azam Marjan*, Saeed Shrazan Internatonal Scence Index, Chemcal and Molecular Engneerng Vol:4, No:1, 010 waset.org/publcaton/430

More information

Substance and heat transfer in multistage systems

Substance and heat transfer in multistage systems aa Ivanovc-Kneevc Internatonal Journal of Appled Physcs http://www.aras.org/aras/ournals/ap Substance and heat transfer n multstage systems AJA IVANOVIC-KNEZEVIC Faculty of Technology and etallurgy, The

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

Fundamental Considerations of Fuel Cells for Mobility Applications

Fundamental Considerations of Fuel Cells for Mobility Applications Fundamental Consderatons of Fuel Cells for Moblty Applcatons Davd E. Foster Engne Research Center Unversty of Wsconsn - Madson Future Engnes and Ther Fuels ERC 2011 Symposum June 9, 2011 Motvaton Reducng

More information

The Dissolution and Transport of Radionuclides from Used Nuclear Fuel in an Underground Repository

The Dissolution and Transport of Radionuclides from Used Nuclear Fuel in an Underground Repository Presented at the COMSOL Conference 2010 Boston The Dssoluton and Transport of adonucldes from Used Nuclear Fuel n an Underground epostory Y A N N I C K B E A U E G A D 1 M A K G O B I E N 2 F A N K G A

More information

PERVAPORATION OF SOLVENT MIXTURES USING POLYMERIC AND ZEOLITIC MEMBRANES: SEPARATION STUDIES AND MODELING

PERVAPORATION OF SOLVENT MIXTURES USING POLYMERIC AND ZEOLITIC MEMBRANES: SEPARATION STUDIES AND MODELING Unversty of Kentucky UKnowledge Unversty of Kentucky Doctoral Dssertatons Graduate School 2001 PERVAPORATION OF SOLVENT MIXTURES USING POLYMERIC AND ZEOLITIC MEMBRANES: SEPARATION STUDIES AND MODELING

More information

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process Equaton of State Modelng of Phase Equlbrum n the Low-Densty Polyethylene Process H. Orbey, C. P. Boks, and C. C. Chen Ind. Eng. Chem. Res. 1998, 37, 4481-4491 Yong Soo Km Thermodynamcs & Propertes Lab.

More information

Effect of Ion Sizes on Separation Characteristics of Nanofiltration Membrane Systems

Effect of Ion Sizes on Separation Characteristics of Nanofiltration Membrane Systems J. Kng Saud Unv., Vol. 19, Eng. Sc. (1), pp. 1-19, Ryadh (1427H./2006) Effect of Ion Szes on Separaton Characterstcs of Nanofltraton Membrane Systems A. A. Hussan, M. E. E. Abashar and I. S. Al-Mutaz Chemcal

More information

Ph.D. Qualifying Examination in Kinetics and Reactor Design

Ph.D. Qualifying Examination in Kinetics and Reactor Design Knetcs and Reactor Desgn Ph.D.Qualfyng Examnaton January 2006 Instructons Ph.D. Qualfyng Examnaton n Knetcs and Reactor Desgn January 2006 Unversty of Texas at Austn Department of Chemcal Engneerng 1.

More information

Electrochemical Equilibrium Electromotive Force

Electrochemical Equilibrium Electromotive Force CHM465/865, 24-3, Lecture 5-7, 2 th Sep., 24 lectrochemcal qulbrum lectromotve Force Relaton between chemcal and electrc drvng forces lectrochemcal system at constant T and p: consder Gbbs free energy

More information

PORE STRUCTURE AND THERMAL CONDUCTIVITY OF BURNT CLAY BRICKS INTRODUCTION

PORE STRUCTURE AND THERMAL CONDUCTIVITY OF BURNT CLAY BRICKS INTRODUCTION PORE STRUCTURE AND THERMAL CONDUCTIVITY OF BURNT CLAY BRICKS Olga Koronthalyova, Peter Matasovsky Insttute of Constructon and Archtecture, Slovak Academy of Scences, Dubravska 9, 845 43 Bratslava, Slovaka.

More information

KINETICS OF GAS HYDRATE FORMATION FROM PYROLYSIS GAS IN WATER-IN-OIL EMULSION SYSTEM

KINETICS OF GAS HYDRATE FORMATION FROM PYROLYSIS GAS IN WATER-IN-OIL EMULSION SYSTEM Proceedngs of the 7th Internatonal Conference on Gas Hydrates (ICGH 211), Ednburgh, Scotland, Unted Kngdom, July 17-21, 211. KINETICS OF GAS HYDRATE FORMATION FROM PYROLYSIS GAS IN WATER-IN-OIL EMULSION

More information

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation Measurement of Radaton: Exposure George Starkschall, Ph.D. Department of Radaton Physcs U.T. M.D. Anderson Cancer Center Purpose To ntroduce the concept of radaton exposure and to descrbe and evaluate

More information

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly)

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly) Lecture 8 Chapter 5 - Thermodynamc Web - Departure Functons - Revew Equatons of state (chapter 4, brefly) Chapter 6 - Equlbrum (chemcal potental) * Pure Component * Mxtures Chapter 7 - Fugacty (chemcal

More information

McCabe-Thiele Diagrams for Binary Distillation

McCabe-Thiele Diagrams for Binary Distillation McCabe-Thele Dagrams for Bnary Dstllaton Tore Haug-Warberg Dept. of Chemcal Engneerng August 31st, 2005 F V 1 V 2 L 1 V n L n 1 V n+1 L n V N L N 1 L N L 0 VN+1 Q < 0 D Q > 0 B FIGURE 1: Smplfed pcture

More information

Sample Preparation. Primary Sample Preparation Techniques

Sample Preparation. Primary Sample Preparation Techniques Sample Preparaton Prmary Sample Preparaton Technques Wherever you see ths symbol, t s mportant to access the on-lne course as there s nteractve materal that cannot be fully shown n ths reference manual.

More information

The Theory of HPLC. Band Broadening

The Theory of HPLC. Band Broadening The Theory of HPLC Band Broadenng Wherever you see ths symbol, t s mportant to access the on-lne course as there s nteractve materal that cannot be fully shown n ths reference manual. Ams and Objectves

More information

Quantitative Discrimination of Effective Porosity Using Digital Image Analysis - Implications for Porosity-Permeability Transforms

Quantitative Discrimination of Effective Porosity Using Digital Image Analysis - Implications for Porosity-Permeability Transforms 2004, 66th EAGE Conference, Pars Quanttatve Dscrmnaton of Effectve Porosty Usng Dgtal Image Analyss - Implcatons for Porosty-Permeablty Transforms Gregor P. Eberl 1, Gregor T. Baechle 1, Ralf Weger 1,

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

Irreversible thermodynamics, a.k.a. Non-equilibrium thermodynamics (an introduction)

Irreversible thermodynamics, a.k.a. Non-equilibrium thermodynamics (an introduction) Process Engneernghermodynamcs course # 44304.0 v. 05 Irreversble thermodynamcs, a.k.a. Non-equlbrum thermodynamcs (an ntroducton) Ron Zevenhoven Åbo Akadem Unversty hermal and Flow Engneerng aboratory

More information

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning European Symposum on Computer Arded Aded Process Engneerng 15 L. Pugjaner and A. Espuña (Edtors) 2005 Elsever Scence B.V. All rghts reserved. Three-Phase Dstllaton n Packed Towers: Short-Cut Modellng and

More information

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model Process Modelng Improvng or understandng chemcal process operaton s a major objectve for developng a dynamc process model Balance equatons Steady-state balance equatons mass or energy mass or energy enterng

More information

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz SYSTM CHAPTR 7 NRGY BALANCS 1 7.1-7. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy - Knetc energy (K) K 1 mv - Potental energy (P) P mgz - Internal energy (U) * Total nergy,

More information

POROUS PLATES INFLUENCE ON EFFECTIVE DRAINAGE RATES IN CAPILLARY PRESSURE EXPERIMENTS

POROUS PLATES INFLUENCE ON EFFECTIVE DRAINAGE RATES IN CAPILLARY PRESSURE EXPERIMENTS POROUS PLATES INFLUENCE ON EFFECTIVE DRAINAGE RATES IN CAPILLARY PRESSURE EXPERIMENTS Ove Bjørn Wlson and Bjørn Gunnar Tjetland, Reservor Laboratores AS and Arne Skauge, Norsk Hydro ABSTRACT Capllary dsplacement

More information

Properties of the living organism. Interaction between living organism and the environment. Processing informations. Definitions

Properties of the living organism. Interaction between living organism and the environment. Processing informations. Definitions thermodynamcs energy materal Interacton between lvng organsm and the envronment Propertes of the lvng organsm Separaton from the envroment: Strctly controlled energy and materal transport. Changng n the

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

EXAM I Comparative Animal Physiology ZOO 424 Fall 2002

EXAM I Comparative Animal Physiology ZOO 424 Fall 2002 EXAM I Comparatve Anmal Physology ZOO 424 Fall 2002 V Eq = RT X o. ln( [ zf [ X ) RT p K[K o pna[na o pcl[cl V = m ln F pk[k pna[na pcl[cl o I = g(v m V eq. ) Q = C m V m Drvng Force = V m V eq. Ionc Speces

More information

Osmotic pressure and protein binding

Osmotic pressure and protein binding Osmotc pressure and proten bndng Igor R. Kuznetsov, KochLab Symposum talk 5/15/09 Today we take a closer look at one of the soluton thermodynamcs key ponts from Steve s presentaton. Here t s: d[ln(k off

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling Overhead Sldes for Chapter 18, Part 1 of Fundamentals of Atmospherc Modelng by Mark Z. Jacobson Department of Cvl & Envronmental Engneerng Stanford Unversty Stanford, CA 94305-4020 January 30, 2002 Types

More information

FUNDAMENTALS OF CHEMISTRY Vol. II - Microkinetics Versus Macrokinetics: The Role of Transport Phenomena in Determining Reaction Rates - Rota R.

FUNDAMENTALS OF CHEMISTRY Vol. II - Microkinetics Versus Macrokinetics: The Role of Transport Phenomena in Determining Reaction Rates - Rota R. MICROKINETIC VERU MACROKINETIC: THE ROLE OF TRANPORT PHENOMENA IN DETERMINING REACTION RATE Rota R Poltecnco d Mlano, Italy Keywords: reacton rate, chemcal knetcs, transport phenomena, mcroknetcs, macroknetcs,

More information

Properties of the living organism. Interaction between living organism and the enviroment. Processing informations. Definitions

Properties of the living organism. Interaction between living organism and the enviroment. Processing informations. Definitions thermodynamcs energy materal Interacton between lvng organsm and the envroment Propertes of the lvng organsm Separaton from the envroment: Strctly controlled energy and materal transport. Changng n the

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

MASS TRANSFER Lesson 1 BY DR. ARI SEPPÄLÄ AALTO UNIVERSITY

MASS TRANSFER Lesson 1 BY DR. ARI SEPPÄLÄ AALTO UNIVERSITY SS TRNSFER 2015 Lesson 1 BY DR. RI SEPPÄLÄ LTO UNIVERSITY Structure of the course 6 lessons by r Seälä and Tuula Noonen 5 excercse lessons (one homework roblem n each excercse) by Votto Kotaho (1/6 onts)

More information

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal.

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal. Name ID # 1 CHEMISTRY 212, Lect. Sect. 002 Dr. G. L. Roberts Exam #1/Sprng 2000 Thursday, February 24, 2000 CLOSED BOOK EXM No notes or books allowed. Calculators may be used. tomc masses of nterest are

More information

V. Electrostatics. Lecture 25: Diffuse double layer structure

V. Electrostatics. Lecture 25: Diffuse double layer structure V. Electrostatcs Lecture 5: Dffuse double layer structure MIT Student Last tme we showed that whenever λ D L the electrolyte has a quas-neutral bulk (or outer ) regon at the geometrcal scale L, where there

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017 EXAMPLES of THEORETICAL PROBLEMS n the COURSE MMV03 HEAT TRANSFER, verson 207 a) What s eant by sotropc ateral? b) What s eant by hoogeneous ateral? 2 Defne the theral dffusvty and gve the unts for the

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Modeling of CO 2 Cut in CBM Production

Modeling of CO 2 Cut in CBM Production Modelng of CO Cut n CBM Producton A study by: - Kamal Morad - Davd Dunn - ous Mattar Fekete Assocates Inc. Mult-Component Gas n Coalbed Methane Coalbed Methane has dfferent characterstcs from conventonal

More information

CALCULATION OF DIFFUSION COEFFICIENT OF ION IN MULTICOMPONENT SOLUTION FOR ION MOVEMENT IN CONCRETE

CALCULATION OF DIFFUSION COEFFICIENT OF ION IN MULTICOMPONENT SOLUTION FOR ION MOVEMENT IN CONCRETE CALCULATION OF DIFFUSION COEFFICIENT OF ION IN MULTICOMPONENT SOLUTION FOR ION MOVEMENT IN CONCRETE Worapatt RITTHICHAUY *1, Takafum SUGIYAMA * and Yukkazu TSUJI *3 ABSTRACT: A method for calculatng the

More information

Chapter 3 Thermochemistry of Fuel Air Mixtures

Chapter 3 Thermochemistry of Fuel Air Mixtures Chapter 3 Thermochemstry of Fuel Ar Mxtures 3-1 Thermochemstry 3- Ideal Gas Model 3-3 Composton of Ar and Fuels 3-4 Combuston Stochometry t 3-5 The1 st Law of Thermodynamcs and Combuston 3-6 Thermal converson

More information

INFLUENCE OF AXIAL MIXING AND PARTICLE SIZE NON-UNIFORMITY ON PERFORMANCE OF CHROMATOGRAPHIC REACTORS

INFLUENCE OF AXIAL MIXING AND PARTICLE SIZE NON-UNIFORMITY ON PERFORMANCE OF CHROMATOGRAPHIC REACTORS 14 th European onference on Mxng Warszawa, 1-13 September 1 INFUENE OF XI MIXING N PRTIE SIZE NON-UNIFORMITY ON PERFORMNE OF HROMTOGRPHI RETORS Eugenusz Molga, Mchał ewak, nna Ostanewcz-ydzk Warsaw Unversty

More information

Selective Paraffin Removal from Olefin/Paraffin Mixtures by Adsorption to Aluminum Methylphosphate-α: A Molecular Simulation Study

Selective Paraffin Removal from Olefin/Paraffin Mixtures by Adsorption to Aluminum Methylphosphate-α: A Molecular Simulation Study Selectve Paraffn Removal from Olefn/Paraffn Mxtures by Adsorpton to Alumnum Methylphosphate-α: A Molecular Smulaton Study Maake C. Kroon 1,3, Carmelo Herdes and Lourdes F. Vega,3* 1 Process Equpment, Department

More information

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011 Interface Energy Couplng between -tungsten Nanoflm and Few-layered Graphene Meng Han a, Pengyu Yuan a, Jng Lu a, Shuyao S b, Xaolong Zhao b, Yanan Yue c, Xnwe Wang a,*, Xangheng Xao b,* a 2010 Black Engneerng

More information

PRESUMABLE CAUSE OF TORNADO EVOLUTION.

PRESUMABLE CAUSE OF TORNADO EVOLUTION. P10.7 PRESUMABLE CAUSE OF TORNAO EVOLUTION. A.Gus kov, (guskov@ssp.ac.ru) Insttute of Sold State Physcs RAS, Chernogolovka, Russa. INTROUCTION. We have obtaned the dependences of perod of eutectc pattern

More information

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables Insttuto Tecnologco de Aguascalentes From the SelectedWorks of Adran Bonlla-Petrcolet 2 Predcton of steady state nput multplctes for the reactve flash separaton usng reactonnvarant composton varables Jose

More information

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities a for save as PDF Chemstry 163B Introducton to Multcomponent Systems and Partal Molar Quanttes 1 the problem of partal mmolar quanttes mx: 10 moles ethanol C 2 H 5 OH (580 ml) wth 1 mole water H 2 O (18

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

E.g.: cell membrane, kidneys, dialysis, fuel cells, liquid junction (beween

E.g.: cell membrane, kidneys, dialysis, fuel cells, liquid junction (beween Membranes and ons [cd www;mz donnan.html] 1/21 Sempermeable membrane; glass frt; daphragm concentratons of ons on both sdes dffer dfferent permeabltes of ons mechansms: = s proportonal on channels (n cell

More information

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass 17 Molar mass: There are dfferent ways to report a molar mass lke (a) Number average molar mass, (b) mass average molar mass, (c) Vscosty average molar mass, (d) Z- Average molar mass Number Average Molar

More information

Multicomponent Flows

Multicomponent Flows Mole Fracton emperature (K) ransport School of Aerospace Engneerng Equatons for Multcomponent Flows Jerry Setzman.2 25.15 2.1.5 CH4 H2O HCO x 1 emperature Methane Flame.1.2.3 Dstance (cm) 15 1 5 ransport

More information

Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas

Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas Energes 2014, 7, 4381-4396; do:10.3390/en7074381 Artcle OPEN ACCESS energes ISSN 1996-1073 www.mdp.com/journal/energes Modelng of Proton-Conductng Sold Oxde Fuel Cells Fueled wth Syngas Meng N 1, *, Zongpng

More information

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure Chnese J. Chem. Eng., 4() 76 80 (006) RESEARCH OES Vapor-Lqud Equlbra for Water+Hydrochlorc Acd+Magnesum Chlorde and Water+Hydrochlorc Acd+Calcum Chlorde Systems at Atmospherc Pressure ZHAG Yng( 张颖 ) and

More information

Irreversible thermodynamics, a.k.a. Non-equilibrium thermodynamics: an introduction

Irreversible thermodynamics, a.k.a. Non-equilibrium thermodynamics: an introduction Advanced Process hermodynamcs course # 4450.0 (5 sp) v. 07 Irreversble thermodynamcs, a.k.a. Non-equlbrum thermodynamcs: an ntroducton Ron Zevenhoven Åbo Akadem Unversty hermal and Flow Engneerng aboratory

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

GAS DIFFUSION THROUGH UNSATURATED CEMENT-BASED MATERIALS

GAS DIFFUSION THROUGH UNSATURATED CEMENT-BASED MATERIALS GAS IFFUSION THROUGH UNSATURATE CEMENT-BASE MATERIALS Tha Hoa Vu (1,2), Faben Frzon (2) and Sylve Lorente (1) (1) Unversté de Toulouse ; UPS, INSA ; LMC (Laboratore Matéraux et urablté des Constructons)

More information

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer.

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer. CHE465/865, 6-3, Lecture 1, 7 nd Sep., 6 Gouy-Chapman model (191) The double layer s not as compact as n Helmholtz rgd layer. Consder thermal motons of ons: Tendency to ncrease the entropy and make the

More information

Short-Path Evaporation for Chemical Product Modelling, Analysis and Design

Short-Path Evaporation for Chemical Product Modelling, Analysis and Design European Symposum on Computer Arded Aded Process Engneerng 15 L. Pugjaner and A. Espuña (Edtors) 2005 Elsever Scence B.V. All rghts reserved. Short-Path Evaporaton for Chemcal Product Modellng, Analyss

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization 10.34 Numercal Methods Appled to Chemcal Engneerng Fall 2015 Homework #3: Systems of Nonlnear Equatons and Optmzaton Problem 1 (30 ponts). A (homogeneous) azeotrope s a composton of a multcomponent mxture

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

3) Thermodynamic equation to characterize interfaces

3) Thermodynamic equation to characterize interfaces 3) Thermodynamc equaton to characterze nterfaces 3.1) Gbbs Model Realty: rapd contnuous change of chemcal and thermodynamc propertes Replaced by model (constant propertes up to the surface) uv bulk uv

More information

1. Mathematical models of the chromatographic process

1. Mathematical models of the chromatographic process 1. athematcal models of the chromatographc process - What determnes retenton tme n L? - What causes pea broadenng n L? - Why are the L peas often asymmetrc? - Why s partton chromatography much more popular

More information

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients A Self-Consstent Gbbs Excess Mxng Rule for Cubc Equatons of State: dervaton and fugacty coeffcents Paula B. Staudt, Rafael de P. Soares Departamento de Engenhara Químca, Escola de Engenhara, Unversdade

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Name: SID: Dscusson Sesson: Chemcal Engneerng Thermodynamcs 141 -- Fall 007 Thursday, November 15, 007 Mdterm II SOLUTIONS - 70 mnutes 110 Ponts Total Closed Book and Notes (0 ponts) 1. Evaluate whether

More information

Built in Potential, V 0

Built in Potential, V 0 9/5/7 Indan Insttute of Technology Jodhur, Year 7 nalog Electroncs (Course Code: EE34) Lecture 3 4: ode contd Course Instructor: hree Prakash Twar Emal: stwar@tj.ac.n Webage: htt://home.tj.ac.n/~stwar/

More information

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6)

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6) Chemstry 163B Free Energy and Equlbrum E&R ( ch 6) 1 ΔG reacton and equlbrum (frst pass) 1. ΔG < spontaneous ( natural, rreversble) ΔG = equlbrum (reversble) ΔG > spontaneous n reverse drecton. ΔG = ΔHΔS

More information

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0) If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spn-up

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mt.edu 5.62 Physcal Chemstry II Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 5.62 Sprng 2008 Lecture 34 Page Transton

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001 Checal Engneerng 60/60 Polyer Scence and Engneerng Lecture 0 - Phase Equlbra and Polyer Blends February 7, 00 Therodynacs of Polyer Blends: Part Objectves! To develop the classcal Flory-Huggns theory for

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

LTNE approach and simulation for anode-supported SOFCs. Andersson, Martin; Yuan, Jinliang; Sundén, Bengt; Wang, Wei Guo

LTNE approach and simulation for anode-supported SOFCs. Andersson, Martin; Yuan, Jinliang; Sundén, Bengt; Wang, Wei Guo LNE approach and smulaton for anode-supported SOFCs Andersson, Martn; Yuan, Jnlang; Sundén, Bengt; Wang, We Guo Publshed n: [Host publcaton ttle mssng] Publshed: 2009-01-01 Lnk to publcaton Ctaton for

More information

Computational Study of Transition of Oil-water Flow Morphology due to Sudden Contraction in Microfluidic Channel

Computational Study of Transition of Oil-water Flow Morphology due to Sudden Contraction in Microfluidic Channel Computatonal Study of Transton of Ol-water Flow Morphology due to Sudden Contracton n Mcrofludc Channel J. Chaudhur 1, S. Tmung 1, T. K. Mandal 1,2, and D. Bandyopadhyay *1,2 1 Department of Chemcal Engneerng,

More information