Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Size: px
Start display at page:

Download "Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model"

Transcription

1 Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models - Actvty coeffcent models Selectng an Approprate Model

2 Thermodynamc Propertes Importance of thermodynamc propertes p and equatons n separaton operatons Energy requrements (heat and work) Phase equlbra : Separaton lmt Equpment szng Property estmaton Specfc volume, enthalpy, entropy, avalablty, fugacty, actvty, etc. Used for desgn calculatons Separator sze and layout Auxlary components : Ppng, pumps, valves, etc.

3 Energy, Entropy and Avalablty Streams n n, z, T, P, h, s, b, v : : : (Surroundngs) Heat transfer n and out Q, Q, T n s Separaton process (system) S rr, LW Balances out T s : : : Streams out n, z, T, P, h, s, b, v One or more feed streams flowng nto the system are separated nto two or more product streams that t flow out of the system. n z T P h s Molar flow rate Mole fracton Temperature Pressure Molar enthalpy Molar entropy T b Molar avalablty 0 (W s ) n (W s ) out v Specfc volume Shaft work n and out

4 Energy Balance Contnuous and steady-state state flow system Knetc, potental, and surface energy changes are neglected Frst law of thermodynamcs (conservaton of energy) (stream enthalpy flows + heat transfer + shaft work) leavng system - (stream enthalpy flows + heat transfer + shaft work) enterng system = 0 ( nh Q W ) ( nh Q W ) 0 s out of n to system system s

5 Entropy Balance The frst law provdes no nformaton on energy effcency Second law of thermodynamcs (stream entropy flows + entropy flows by heat transfer) leavng system - (stream entropy flows + entropy flows by heat transfer ) enterng system = producton of entropy by the process out of system Q Q ns ns S T T s n to s system rr - Producton of entropy - Irreversble ncrease n the entropy of the unverse - Quanttatve measure of the thermodynamc neffcency of a process

6 Avalablty (Exergy Exergy) Balance The entropy balance contans no terms related to shaft work The entropy s dffcult to relate wth power consumpton Avalablty (exergy) : Avalable energy for complete converson to shaft work Stream avalablty functon : b h T0s a measure of the maxmum amount of stream energy that can be converted nto shaft work f the stream s taken to the reference state n to system (Entropy balance) T 0 -(Energy balance) T 1 T nb Q W nb Q 1 W LW 0 0 s s Ts out of Ts system (stream avalablty flows + avalablty of heat + shaft work) enterng system enterng system - (stream avalablty flows + avalablty of heat + shaft work) leavng system = loss of avalablty (lost work)

7 Lost Work, Mnmum Work, and Second Law Effcency Lost work, LW T0S rr - The greater ts value, the greater s the energy neffcency - Its magntude depends on the extent of process rreversbltes - Reversble process : LW = 0 Mnmum work of separaton, W mn Mnmum shaft work requred to conduct the separaton Equvalent to the dfference n the heat transfer and shaft work W nb nb The second-law effcency Wmn LW W mn mn out of system (mnmum work of separaton) (equvalent actual work of separaton) n to system

8 Phase Equlbra The phase equlbra of the gven system provde possble equlbrum compostons (separaton lmt) Equlbrum : Gbbs free energy for all phases s a mnmum G G ( T, P, N1, N2,..., N C ) dg SdT VdP dn components dg dn (at constant T & P) p p ( ) ( ) system phases components P, T N (1) dn dn (1) (2) p2 ( p)... (conservaton of moles of each speces, no reacton) ( N ) The chemcal potental of a partcular speces n a multcomponent system s dentcal n all phases at physcal equlbrum.

9 Fugactes and Actvty Coeffcents Chemcal potental Unts of energy Not easy to understand physcal meanng More convenent quanttes Fugacty : pseudo-pressure f C exp( / RT ) Equalty of chemcal potentals equalty of fugactes Fugacty coeffcent Rato of fugacty and pressure Reference : deal gas Actvty a 0 / f Rato of fugactes Reference : deal soluton f P f / yp f / At equlbrum, f f f (1) (2) ( N ) a a a (1) (2) ( N ) 0 Actvty coeffcents a / x f / x f (1) (2) ( N ) Rato of actvty and composton Departure from deal soluton behavor T T T P P P (1) (2) ( N )

10 K-Values Phase equlbrum rato : rato of mole fractons of a speces present n two phases at equlbrum K-value (vapor-lqud equlbrum rato; K-factor) : for the vapor-lqud case K y / x Dstrbuton coeffcent (lqud-lqud equlbrum rato) : for the lqud-lqud case K x / x (1) (2) D Relatve volatlty : for the vapor-lqud case j K / K j Relatve selectvty :for the lqud-lqud case K K / j D Dj

11 Phase Equlbrum Calculatons (VLE) f f For vapor-lqud equlbrum V L Ideal gas + Ideal soluton y P x P sat K y x P P satt Ph-Ph approach : equaton-of-state form of K-value V y P L x P Gamma-Ph approach : actvty coeffcent form of K-value o o V yp Lx f L L L L L K V P V K L V f

12 Nondeal Thermodynamc Property Models No unversal equatons are avalable for computng, for nondeal mxtures, values of thermodynamc propertes such as densty, enthalpy, entropy, fugactes, and actvty coeffcents as functons of T, P, and phase composton. (1) P-v-T equaton-of-state models (2) Actvty coeffcent or free-energy models P-v-T equaton-of-state models Nondealty s due to (1) the volume occuped by the molecules and (2) ntermolecular forces among the molecules e.g. the van der Waals equaton RT a P v b v 2

13 Useful Equatons of State Mxng rules a C C C 0.5 yyj( aa j) b 1 j1 1 yb

14 Models for Actvty Coeffcents ( T, x, x2,..., x 1 C )

15 Notes on Usng Phase Equlbrum Low pressure VLE Models Gamma-Ph approach recommended Poyntng correcton (modfed Raoult s law) requred for medum pressure Cannot be appled when T or P condton exceeds crtcal T, P Hgh pressure VLE Ph-Ph approach recommended Specal care should be taken for polar components (alcohols, water, acds, amnes, etc.) Check bnary nteracton parameters matrx If parameters exst, use them If parameters do not exst, Try to obtan by regresson of expermental data Use group contrbuton t method (e.g. UNIFAC) Specal applcatons Specalzed models requred Polymer soluton Polymer soluton Electrolyte soluton Bomolecular applcatons

16 Selectng an Approprate Model (LG): lght gases (PC): polar organc compounds (E): electrolytes (HC): hydrocarbons (A): aqueous solutons If the mxture s (A) wth no (PC) - If (E) are present modfed NRTL equaton - If (E) are not present a specal model If the mxture contans (HC), coverng a wde bolng rage The correspondng-states method of Lee-Kesler-Plöcker If the bolng range of a mxture of (HC) s not wde - For all T and P the P-R equaton - For all P and noncryogenc T the S-R-K equaton - For all T, but not P n the crtcal regon the Benedct-Webb- Rubn-Starlng method If the mxture contans (PC) - If (LG) are present the PSRK method - If (LG) are not present a sutable lqud-phase method

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands The ChemSep Book Harry A. Koojman Consultant Ross Taylor Clarkson Unversty, Potsdam, New York Unversty of Twente, Enschede, The Netherlands Lbr Books on Demand www.bod.de Copyrght c 2000 by H.A. Koojman

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly)

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly) Lecture 8 Chapter 5 - Thermodynamc Web - Departure Functons - Revew Equatons of state (chapter 4, brefly) Chapter 6 - Equlbrum (chemcal potental) * Pure Component * Mxtures Chapter 7 - Fugacty (chemcal

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemcal Process Smulator A. Carrero, N. Qurante, J. Javaloyes October 2016 Introducton to Chemcal Process Smulators Contents Monday, October 3 rd 2016

More information

Module 3: The Whole-Process Perspective for Thermochemical Hydrogen

Module 3: The Whole-Process Perspective for Thermochemical Hydrogen "Thermodynamc Analyss of Processes for Hydrogen Generaton by Decomposton of Water" by John P. O'Connell Department of Chemcal Engneerng Unversty of Vrgna Charlottesvlle, VA 2294-4741 A Set of Energy Educaton

More information

Solution Thermodynamics

Solution Thermodynamics CH2351 Chemcal Engneerng Thermodynamcs II Unt I, II www.msubbu.n Soluton Thermodynamcs www.msubbu.n Dr. M. Subramanan Assocate Professor Department of Chemcal Engneerng Sr Svasubramanya Nadar College of

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State I wsh to publsh my paper on The Internatonal Journal of Thermophyscs. Ttle: A Practcal Method to Calculate Partal Propertes from Equaton of State Authors: Ryo Akasaka (correspondng author) 1 and Takehro

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department of Chemcal Engneerng Prof. Km, Jong Hak Soluton Thermodynamcs : theory Obectve : lay the theoretcal foundaton for applcatons of thermodynamcs to gas mxture and lqud soluton

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients A Self-Consstent Gbbs Excess Mxng Rule for Cubc Equatons of State: dervaton and fugacty coeffcents Paula B. Staudt, Rafael de P. Soares Departamento de Engenhara Químca, Escola de Engenhara, Unversdade

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation:

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation: CE304, Sprng 2004 Lecture 22 Lecture 22: Topcs n Phase Equlbra, part : For the remander of the course, we wll return to the subject of vapor/lqud equlbrum and ntroduce other phase equlbrum calculatons

More information

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure Chnese J. Chem. Eng., 4() 76 80 (006) RESEARCH OES Vapor-Lqud Equlbra for Water+Hydrochlorc Acd+Magnesum Chlorde and Water+Hydrochlorc Acd+Calcum Chlorde Systems at Atmospherc Pressure ZHAG Yng( 张颖 ) and

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization 10.34 Numercal Methods Appled to Chemcal Engneerng Fall 2015 Homework #3: Systems of Nonlnear Equatons and Optmzaton Problem 1 (30 ponts). A (homogeneous) azeotrope s a composton of a multcomponent mxture

More information

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process Equaton of State Modelng of Phase Equlbrum n the Low-Densty Polyethylene Process H. Orbey, C. P. Boks, and C. C. Chen Ind. Eng. Chem. Res. 1998, 37, 4481-4491 Yong Soo Km Thermodynamcs & Propertes Lab.

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

Non-Commercial Use Only

Non-Commercial Use Only Plottng P-x-y dagram for bnary system Acetone/water at temperatures 25,100,and 200 C usng UNIFAC method and comparng t wth expermental results. Unfac Method: The UNIFAC method s based on the UNIQUAC equaton,

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

UNIFAC. Documentation. DDBSP Dortmund Data Bank Software Package

UNIFAC. Documentation. DDBSP Dortmund Data Bank Software Package UNIFAC Documentaton DDBSP Dortmund Data Ban Software Pacage DDBST Dortmund Data Ban Software & Separaton Technology GmbH Mare-Cure-Straße 10 D-26129 Oldenburg Tel.: +49 441 361819 0 Fax: +49 441 361819

More information

NAME and Section No. it is found that 0.6 mol of O

NAME and Section No. it is found that 0.6 mol of O NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities a for save as PDF Chemstry 163B Introducton to Multcomponent Systems and Partal Molar Quanttes 1 the problem of partal mmolar quanttes mx: 10 moles ethanol C 2 H 5 OH (580 ml) wth 1 mole water H 2 O (18

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Name: SID: Dscusson Sesson: Chemcal Engneerng Thermodynamcs 141 -- Fall 007 Thursday, November 15, 007 Mdterm II SOLUTIONS - 70 mnutes 110 Ponts Total Closed Book and Notes (0 ponts) 1. Evaluate whether

More information

Chapter 3 Thermochemistry of Fuel Air Mixtures

Chapter 3 Thermochemistry of Fuel Air Mixtures Chapter 3 Thermochemstry of Fuel Ar Mxtures 3-1 Thermochemstry 3- Ideal Gas Model 3-3 Composton of Ar and Fuels 3-4 Combuston Stochometry t 3-5 The1 st Law of Thermodynamcs and Combuston 3-6 Thermal converson

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

The influence of non-ideal vapor-liquid-equilibrium on vaporization of multicomponent hydrocarbon fuels

The influence of non-ideal vapor-liquid-equilibrium on vaporization of multicomponent hydrocarbon fuels ICLASS 202, 2 th Trennal Internatonal Conference on Lqud Atomzaton and Spray Systems, Hedelberg, Germany, September 2-6, 202 The nfluence of non-deal vapor-lqud-equlbrum on vaporzaton of multcomponent

More information

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model Process Modelng Improvng or understandng chemcal process operaton s a major objectve for developng a dynamc process model Balance equatons Steady-state balance equatons mass or energy mass or energy enterng

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables Insttuto Tecnologco de Aguascalentes From the SelectedWorks of Adran Bonlla-Petrcolet 2 Predcton of steady state nput multplctes for the reactve flash separaton usng reactonnvarant composton varables Jose

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING Postal Correspondence GATE & PSUs -MT To Buy Postal Correspondence Packages call at 0-9990657855 1 TABLE OF CONTENT S. No. Ttle Page no. 1. Introducton 3 2. Dffuson 10 3. Dryng and Humdfcaton 24 4. Absorpton

More information

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling Overhead Sldes for Chapter 18, Part 1 of Fundamentals of Atmospherc Modelng by Mark Z. Jacobson Department of Cvl & Envronmental Engneerng Stanford Unversty Stanford, CA 94305-4020 January 30, 2002 Types

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

Assignment 4. Adsorption Isotherms

Assignment 4. Adsorption Isotherms Insttute of Process Engneerng Assgnment 4. Adsorpton Isotherms Part A: Compettve adsorpton of methane and ethane In large scale adsorpton processes, more than one compound from a mxture of gases get adsorbed,

More information

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0) If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spn-up

More information

MODELING THE HIGH-PRESSURE BEHAVIOR OF BINARY MIXTURES OF CARBON DIOXIDE+ALKANOLS USING AN EXCESS FREE ENERGY MIXING RULE

MODELING THE HIGH-PRESSURE BEHAVIOR OF BINARY MIXTURES OF CARBON DIOXIDE+ALKANOLS USING AN EXCESS FREE ENERGY MIXING RULE Brazlan Journal of Chemcal Engneerng ISSN 0104-6632 Prnted n Brazl Vol. 21, No. 04, pp. 659-666, October - December 04 MODELING THE HIGH-PRESSURE BEHAVIOR OF BINARY MIXTURES OF CARBON DIOXIDE+ALKANOLS

More information

Exercises of Fundamentals of Chemical Processes

Exercises of Fundamentals of Chemical Processes Department of Energ Poltecnco d Mlano a Lambruschn 4 2056 MILANO Exercses of undamentals of Chemcal Processes Prof. Ganpero Gropp Exercse 7 ) Estmaton of the composton of the streams at the ext of an sothermal

More information

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns Influence Of Operatng Condtons To The Effectveness Of Extractve Dstllaton Columns N.A. Vyazmna Moscov State Unversty Of Envrnmental Engneerng, Department Of Chemcal Engneerng Ul. Staraya Basmannaya 21/4,

More information

Application of Activity Coefficient Models in VLE Determination for Azeotropic System Using Othmer Type Ebulliometer

Application of Activity Coefficient Models in VLE Determination for Azeotropic System Using Othmer Type Ebulliometer Applcaton of Actvty Coeffcent Models n VLE Determnaton for Azeotropc System Usng Othmer Type Ebullometer Manojumar M.S, B. Svapraash 2 Department of Chemcal Engneerng, Annamala Unversty, Annamala Nagar-

More information

( ) Phase equilibrium Some basic principles for phase calculations

( ) Phase equilibrium Some basic principles for phase calculations Chapter From Fundamentals to Propertes 6 Table. Total propertes from an excess approach V U H A G S Pure component Real mxture Ideal mxture Mxng contrbuton Excess property = * v + 0 + * v v (.0) = * u

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS G11-15 The Internatonal Assocaton for the Propertes of Water and Steam Stockholm, Sweden July 015 Gudelne on a Vral Equaton for the Fugacty of HO n Humd Ar 015 Internatonal Assocaton for the Propertes

More information

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component Department of Energ oltecnco d Mlano Va Lambruschn - 05 MILANO Eercses of Fundamentals of Chemcal rocesses rof. Ganpero Gropp Eercse 8 Estmaton of the composton of the lqud and vapor streams etng a unt

More information

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz SYSTM CHAPTR 7 NRGY BALANCS 1 7.1-7. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy - Knetc energy (K) K 1 mv - Potental energy (P) P mgz - Internal energy (U) * Total nergy,

More information

VAPOR LIQUID EQUILIBRIUM DATA GENERATION FOR ACETIC ACID AND p-xylene AT ATMOSPHERIC PRESSURE

VAPOR LIQUID EQUILIBRIUM DATA GENERATION FOR ACETIC ACID AND p-xylene AT ATMOSPHERIC PRESSURE Int. J. Chem. Sc.: 14(3), 2016, 1511-1519 ISSN 0972-768X www.sadgurupublcatons.com VAPOR LIQUID EQUILIBRIUM DATA GENERATION FOR ACETIC ACID AND p-xylene AT ATMOSPHERIC PRESSURE PAWAN KIRAN MALI *,a and

More information

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass 17 Molar mass: There are dfferent ways to report a molar mass lke (a) Number average molar mass, (b) mass average molar mass, (c) Vscosty average molar mass, (d) Z- Average molar mass Number Average Molar

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

applied to a single-phase fluid in a closed system wherein no chemical reactions occur.

applied to a single-phase fluid in a closed system wherein no chemical reactions occur. The basc relaton connectng the Gbbs energy to the temperature and pressure n any closed system: (ng) (ng) d(ng) d dt (nv)d (ns)dt T T,n appled to a sngle-phase flud n a closed system wheren no chemcal

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

Determination of Structure and Formation Conditions of Gas Hydrate by Using TPD Method and Flash Calculations

Determination of Structure and Formation Conditions of Gas Hydrate by Using TPD Method and Flash Calculations nd atonal Iranan Conference on Gas Hydrate (ICGH) Semnan Unersty Determnaton of Structure and Formaton Condtons of Gas Hydrate by Usng TPD Method and Flash Calculatons H. Behat Rad, F. Varamnan* Department

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels Grand canoncal Monte Carlo smulatons of bulk electrolytes and calcum channels Thess of Ph.D. dssertaton Prepared by: Attla Malascs M.Sc. n Chemstry Supervsor: Dr. Dezső Boda Unversty of Pannona Insttute

More information

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs Supplementary Informaton A Modulated Hydrothermal (MHT) Approach for the Facle Synthess of UO-66-Type MOFs Zhgang Hu, Yongwu Peng, Zx Kang, Yuhong Qan, and Dan Zhao * Department of Chemcal and Bomolecular

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leadng publsher of Open Access books ult by scentsts, for scentsts 3,5 18, 1.7 M Open access books avalable Internatonal authors and eors Downloads Our authors are among

More information

Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, , Bucharest, Romania

Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, , Bucharest, Romania ISOTHERMAL LIQUID-VAOR EQUILIBRIUM IN ACETONITRILE-WATER SYSTEM Rodca Vlcu, Zoca Cenuse abstact: The study of ths system started from the mportance that acetontrle has as the component of some mxtures

More information

KINETICS OF GAS HYDRATE FORMATION FROM PYROLYSIS GAS IN WATER-IN-OIL EMULSION SYSTEM

KINETICS OF GAS HYDRATE FORMATION FROM PYROLYSIS GAS IN WATER-IN-OIL EMULSION SYSTEM Proceedngs of the 7th Internatonal Conference on Gas Hydrates (ICGH 211), Ednburgh, Scotland, Unted Kngdom, July 17-21, 211. KINETICS OF GAS HYDRATE FORMATION FROM PYROLYSIS GAS IN WATER-IN-OIL EMULSION

More information

LNG CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS

LNG CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS CONTENTS 1. Method for determnng transferred energy durng cargo transfer. Calculatng the transferred energy.1 Calculatng the gross transferred energy.1.1

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

Computation of Phase Equilibrium and Phase Envelopes

Computation of Phase Equilibrium and Phase Envelopes Downloaded from orbt.dtu.dk on: Sep 24, 2018 Computaton of Phase Equlbrum and Phase Envelopes Rtschel, Tobas Kasper Skovborg; Jørgensen, John Bagterp Publcaton date: 2017 Document Verson Publsher's PDF,

More information

Investigation of High-Pressure Phase Equilibrium with the Observation of the Cloud Point

Investigation of High-Pressure Phase Equilibrium with the Observation of the Cloud Point Investgaton of Hgh-Pressure Phase Equlbrum wth the Observaton of the Cloud Pont Introducton In the last 2 decades supercrtcal solvents have had a more sgnfcant role as the solvents n chemcal reactons.

More information

4.2 Chemical Driving Force

4.2 Chemical Driving Force 4.2. CHEMICL DRIVING FORCE 103 4.2 Chemcal Drvng Force second effect of a chemcal concentraton gradent on dffuson s to change the nature of the drvng force. Ths s because dffuson changes the bondng n a

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mt.edu 5.60 Thermodynamcs & Knetcs Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 5.60 Sprng 2008 Lecture #29 page 1

More information

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase)

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase) Desgn Equatons Batch Reactor d(v R c j ) dt = ν j r V R n dt dt = UA(T a T) r H R V R ncomponents V R c j C pj j Plug Flow Reactor d(qc j ) dv = ν j r 2 dt dv = R U(T a T) n r H R Q n components j c j

More information

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6)

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6) Chemstry 163B Free Energy and Equlbrum E&R ( ch 6) 1 ΔG reacton and equlbrum (frst pass) 1. ΔG < spontaneous ( natural, rreversble) ΔG = equlbrum (reversble) ΔG > spontaneous n reverse drecton. ΔG = ΔHΔS

More information

Diffusion Mass Transfer

Diffusion Mass Transfer Dffuson Mass Transfer General onsderatons Mass transfer refers to mass n transt due to a speces concentraton gradent n a mture. Must have a mture of two or more speces for mass transfer to occur. The speces

More information

Chapter 8 Solutions Engineering and Chemical Thermodynamics 2e

Chapter 8 Solutions Engineering and Chemical Thermodynamics 2e Chapter 8 Solutons Engneerng and Chemcal Thermodynamcs e Mlo Koretsky Wyatt Tenhaeff School of Chemcal, Bologcal, and Envronmental Engneerng Oregon State Unversty mlo.koretsky@oregonstate.edu 8. No ths

More information

Electrochemical Equilibrium Electromotive Force

Electrochemical Equilibrium Electromotive Force CHM465/865, 24-3, Lecture 5-7, 2 th Sep., 24 lectrochemcal qulbrum lectromotve Force Relaton between chemcal and electrc drvng forces lectrochemcal system at constant T and p: consder Gbbs free energy

More information

Fundamental Considerations of Fuel Cells for Mobility Applications

Fundamental Considerations of Fuel Cells for Mobility Applications Fundamental Consderatons of Fuel Cells for Moblty Applcatons Davd E. Foster Engne Research Center Unversty of Wsconsn - Madson Future Engnes and Ther Fuels ERC 2011 Symposum June 9, 2011 Motvaton Reducng

More information

Experimental and Modeling Studies for a Reactive Batch Distillation Column

Experimental and Modeling Studies for a Reactive Batch Distillation Column Expermental and Modelng Studes for a Reactve Batch Dstllaton Column Almıla Bahar*. Canan Özgen** Department of Chemcal Engneerng, Mddle East Techncal Unversty, Ankara, 0653, Turkey e-mal: *abahar@metu.edu.tr,

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

Phase equilibria Introduction General equilibrium conditions

Phase equilibria Introduction General equilibrium conditions .5 hase equlbra.5. Introducton A gven amount of matter (usually called a system) can be characterzed by unform ntensve propertes n ts whole volume or only n some of ts parts; a porton of matter wth unform

More information

"Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water"

Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water "Thermodynamc Analyss of Processes for Hydrogen Generaton by Decomposton of Water" by John P. O'Connell Department of Chemcal Engneerng Unversty of Vrgna Charlottesvlle, VA 22904-4741 A Set of Energy Educaton

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

Thermodynamics. Section 4

Thermodynamics. Section 4 Secton 4 Thermodynamcs Hendrck C. Van Ness, D.Eng., Howard. Isermann Department of Chemcal Engneerng, Rensselaer olytechnc Insttute; Fellow, Amercan Insttute of Chemcal Engneers; Member, Amercan Chemcal

More information

Chapter 2. Electrode/electrolyte interface: ----Structure and properties

Chapter 2. Electrode/electrolyte interface: ----Structure and properties Chapter 2 Electrode/electrolyte nterface: ----Structure and propertes Electrochemcal reactons are nterfacal reactons, the structure and propertes of electrode / electrolytc soluton nterface greatly nfluences

More information

Chem 2A Exam 1. First letter of your last name

Chem 2A Exam 1. First letter of your last name Frst letter of your last name NAME: PERM# INSTRUCTIONS: Fll n your name, perm number and frst ntal of your last name above. Be sure to show all of your work for full credt. Use the back of the page f necessary.

More information

Modelling of Phase Equilibria for Supercritical Carbon Dioxide System by Hole-Theory Equation of State with Local Composition Model

Modelling of Phase Equilibria for Supercritical Carbon Dioxide System by Hole-Theory Equation of State with Local Composition Model Modellng of Phase Equlbra for Supercrtcal Carbon Doxde System by Hole-Theory Equaton of State wth Local Composton Model Yusuke Shmoyama*, Yuta Yokozak Department of Chemcal Scence and Engneerng, Tokyo

More information

Thermo-Calc Software. Modelling Multicomponent Precipitation Kinetics with CALPHAD-Based Tools. EUROMAT2013, September 8-13, 2013 Sevilla, Spain

Thermo-Calc Software. Modelling Multicomponent Precipitation Kinetics with CALPHAD-Based Tools. EUROMAT2013, September 8-13, 2013 Sevilla, Spain Modellng Multcomponent Precptaton Knetcs wth CALPHAD-Based Tools Kasheng Wu 1, Gustaf Sterner 2, Qng Chen 2, Åke Jansson 2, Paul Mason 1, Johan Bratberg 2 and Anders Engström 2 1 Inc., 2 AB EUROMAT2013,

More information

ME 300 Exam 2 November 18, :30 p.m. to 7:30 p.m.

ME 300 Exam 2 November 18, :30 p.m. to 7:30 p.m. CICLE YOU LECTUE BELOW: Frst Name Last Name 1:3 a.m. 1:3 p.m. Nak Gore ME 3 Exam November 18, 14 6:3 p.m. to 7:3 p.m. INSTUCTIONS 1. Ths s a closed book and closed notes examnaton. You are provded wth

More information

Q e E i /k B. i i i i

Q e E i /k B. i i i i Water and Aqueous Solutons 3. Lattce Model of a Flud Lattce Models Lattce models provde a mnmalst, or coarse-graned, framework for descrbng the translatonal, rotatonal, and conformatonal degrees of freedom

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

DETERMINATION OF CO 2 MINIMUM MISCIBILITY PRESSURE USING SOLUBILITY PARAMETER

DETERMINATION OF CO 2 MINIMUM MISCIBILITY PRESSURE USING SOLUBILITY PARAMETER DETERMINATION OF CO 2 MINIMUM MISCIBILITY PRESSURE USING SOLUBILITY PARAMETER Rocha, P. S. 1, Rbero, A. L. C. 2, Menezes, P. R. F. 2, Costa, P. U. O. 2, Rodrgues, E. A. 2, Costa, G. M. N. 2 *, glora.costa@unfacs.br,

More information

Osmotic pressure and protein binding

Osmotic pressure and protein binding Osmotc pressure and proten bndng Igor R. Kuznetsov, KochLab Symposum talk 5/15/09 Today we take a closer look at one of the soluton thermodynamcs key ponts from Steve s presentaton. Here t s: d[ln(k off

More information

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0 1) Slcon oxde has a typcal surface potental n an aqueous medum of ϕ, = 7 mv n 5 mm l at ph 9. Whch concentraton of catons do you roughly expect close to the surface? What s the average dstance between

More information

Thermodynamic Analysis for Fischer-Tropsch Synthesis Using Biomass

Thermodynamic Analysis for Fischer-Tropsch Synthesis Using Biomass A publcaton of CHEMICAL ENGINEERING TRANSACTIONS VOL. 65, 2018 Guest Edtors: Elseo Ranz, Maro Costa Copyrght 2018, AIDIC Servz S.r.l. ISBN 978-88-95608-62-4; ISSN 2283-9216 The Italan Assocaton of Chemcal

More information

Optimization of the thermodynamic model of a solar driven Aqua - ammonia absorption refrigeration system

Optimization of the thermodynamic model of a solar driven Aqua - ammonia absorption refrigeration system nd WSEAS/IASME Internatonal Conference on RENEWABLE ENERGY SOURCES (RES') Corfu, Greece, October -, Optmzaton of the thermodynamc model of a solar drven Aqua - ammona absorpton refrgeraton system J. ABDULATEEF,

More information