Turbulent Flow. Turbulent Flow

Size: px
Start display at page:

Download "Turbulent Flow. Turbulent Flow"

Transcription

1

2

3

4

5

6 1. Caothc fluctuatons wth a wde range of frequences and ampltudes. Unsteady flow of aleatory nature. For engnnerng purposes, t s often requred to apply statstcal methods (average values, standard devatons, spatal and/or tme correlatons) 2. Three-dmensonal flows. Hghly dstorted eddes of dfferent shapes and dmensons

7 3. Hgh mxng propertes. Large heat, momentum and mass transfer rates, whch can be orders of magntude larger than those due to molecular dffuson. 4. Turbulent flow s hghly dsspatve. Energy s transferred from the mean flow to the turbulence feld (fluctuatons) from the largest eddes. Energy transfer process (small to hgh frequences) due to vortex stretchng. 1. Aleatory 1. Three-dmensonal 1.Hgh dffuson 1. Dsspatve 1.Property of the flow 1.Contnuous medum 1.Hgh Reynolds number

8 Energy cascade wth frequency or wavenumber Smallest frequences, largest wavelengths, correspond to the eddes wth the hghest turbulence knetc energy. The largest dmensons of the eddes s lmted by the boundary condtons. Hghly anysotropc eddes. Energy cascade wth frequency or wavenumber The hghest frequences, lowest wavelengths, correspond to the dsspatve eddes. Smallest dmensons of the eddes s lmted by the molecular shear-stress. Smallest Reynolds numbers, hgher vscous effects, mply an ncrease of the dmensons of the dsspatve eddes. Isotropc eddes.

9 Energy cascade wth frequency or wavenumber Inertal range n the ntermedate regon promotng the energy transfer by a mechansm nvolvng vortex stretchng Entranment A turbulent boundary-layer grows by molecular dffuson and entranment,.e. entranng external flud n to the boundary-layer. The entranment effect s sgnfcantly larger than molecular dffuson.

10 Entranment For zero pressure gradent Lamnar boundary-layer grows approxmately 2.5mm per meter Turbulent boundary-layer grows about 18mm each meter Entranment Entranment velocty, V E quantfes the ncrease of the volumetrc flow rate along the boundary-layer dq d δ d VE = = udy = dx dx 0 dx 0 δ U e U e * [ U ( δ )] u d 1 dy = e δ U e dx

11 Coanda effect Transton Inflecton pont Separaton Recrculaton bubble Re-attachment Re-attachment of a shear-layer to a nearby sold wall Coanda effect Transton Inflecton pont Separaton Recrculaton bubble Re-attachment Lamnar free shear-layer ncludes an nflecton pont. Therefore, there s a quck transton to turbulent flow

12 Coanda effect Transton Inflecton pont Separaton Recrculaton bubble Re-attachment Entranment of the turbulent shear-layer dffuses momentum to the flud close to the step makng the pressure drop. Coanda effect Transton Inflecton pont Separaton Recrculaton bubble Re-attachment Transverse pressure gradent deflects the free shear-layer to the wall to balance the forces

13 Drect Numercal Smulaton, DNS Naver-Stokes equatons solved numercally wth a grd spacng and a tme step suffcently small to resolve the smallest eddes of the flow. On the other hand, smulaton tme must be large enough to capture the effects of the largest eddes Numercal accuracy of the soluton s very mportant (to avod msleadng results due to numercal dffuson) Dependent varables change n space and tme,.e. they are the nstataneous values at a gven flow locaton Large-Eddy Smulaton, LES Naver-Stokes equatons fltered n space. Extra mathematcal model requred to nclude the effect of the fltered scales. Tme dependent numercal soluton. Numercal accuracy s also mportant ( on-gong debate about how much ). Correct applcaton to near-wall flows s dffcult. Dependent varables change wth tme, but have a dfferent meanng of DNS, due to flterng n space

14 Mult-Scale Smulaton Naver-Stokes equatons splt n to small and large scales. Analytcal methods used to obtan an approxmate soluton of the small scales. Numercal soluton of the large scales n tme wth effect of small scales ncluded from ts approxmate soluton. Numercal accuracy s stll mportant. Applcaton nearwalls troublesome ( small scales become too small...) Reynolds-averaged equatons Statstcs appled to mass conservaton and momentum balance (contnuty and Naver-Stokes). Type of statstc handlng depends on flow propertes: 1. Spatal averagng 2. Tme averagng 3. Ensemble averagng Instataneous velocty components, u ~, (dependent varables) splt n to a mean value, U, and a fluctuaton, u u ~ = U + u

15 Reynolds-averaged equatons 1. Spatal averagng U j n = 1 = lm n u ~ j ( x, y, z ) n Homogeneous turbulence Reynolds-averaged equatons 2. Tme averagng U = lm T t o T + ~ to T u dt Statstcally steady flow

16 Reynolds-averaged equatons 3. Ensemble averagng U j = 1 = lm n n ( u ~ j ( t ) ) n Mean values are tme dependent. Sutable for perodc flows.

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introducton to Turbulence Modelng Professor Ismal B. Celk West Vrgna nversty Ismal.Celk@mal.wvu.edu CFD Lab. - West Vrgna nversty I-1 Introducton to Turbulence CFD Lab. - West Vrgna nversty I-2 Introducton

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Tools for large-eddy simulation

Tools for large-eddy simulation Center for Turbulence Research Proceedngs of the Summer Program 00 117 Tools for large-eddy smulaton By Davd A. Caughey AND Grdhar Jothprasad A computer code has been developed for solvng the ncompressble

More information

Lecture 12. Modeling of Turbulent Combustion

Lecture 12. Modeling of Turbulent Combustion Lecture 12. Modelng of Turbulent Combuston X.S. Ba Modelng of TC Content drect numercal smulaton (DNS) Statstcal approach (RANS) Modelng of turbulent non-premxed flames Modelng of turbulent premxed flames

More information

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March TURBULENT FLOW A BEGINNER S APPROACH Tony Saad March 2004 http://tsaad.uts.edu - tsaad@uts.edu CONTENTS Introducton Random processes The energy cascade mechansm The Kolmogorov hypotheses The closure problem

More information

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson Publcaton 2006/01 Transport Equatons n Incompressble URANS and LES Lars Davdson Dvson of Flud Dynamcs Department of Appled Mechancs Chalmers Unversty of Technology Göteborg, Sweden, May 2006 Transport

More information

Turbulence and its Modelling

Turbulence and its Modelling School of Mechancal Aerospace and Cvl Engneerng 3rd Year Flud Mechancs Introducton In earler lectures we have consdered how flow nstabltes develop, and noted that above some crtcal Reynolds number flows

More information

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability:

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability: . Why turbulence occur? Hydrodynamc Instablty Hydrodynamc Instablty T Centrfugal Instablty: Ω Raylegh-Benard Instablty: Drvng force: centrfugal force Drvng force: buoyancy flud Dampng force: vscous dsspaton

More information

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG Applcaton of the Adjont Method for Vehcle Aerodynamc Optmzaton Dr. Thomas Blacha, Aud AG GoFun, Braunschweg 22.3.2017 2 AUDI AG, Dr. Thomas Blacha, Applcaton of the Adjont Method for Vehcle Aerodynamc

More information

Turbulent Transport in Single-Phase Flow. Peter Bernard, University of Maryland

Turbulent Transport in Single-Phase Flow. Peter Bernard, University of Maryland Turbulent Transport n Sngle-Phase Flow Peter Bernard, Unversty of Maryland Assume that our goal s to compute mean flow statstcs such as U and One can ether: 1 u where U Pursue DNS (.e. the "honest" approach)

More information

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov.

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov. Turbulence Lecture 1 Non-lnear Dynamcs Strong non-lnearty s a key feature of turbulence. 1. Unstable, chaotc behavor.. Strongly vortcal (vortex stretchng) 3 s & 4 s Taylor s work on homogeneous turbulence

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved Smulaton of nose generaton and propagaton caused by the turbulent flow around bluff bodes Zamotn Krll e-mal: krart@gmal.com, cq: 958886 Summary Accurate predctons of nose generaton and spread n turbulent

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models Handout: Large Eddy mulaton I 058:68 Turbulent flows G. Constantnescu Introducton to ubgrd-cale (G) Models G tresses should depend on: Local large-scale feld or Past hstory of local flud (va PDE) Not all

More information

Turbulence Modeling in Computational Fluid Dynamics (CFD) Jun Shao, Shanti Bhushan, Tao Xing and Fred Stern

Turbulence Modeling in Computational Fluid Dynamics (CFD) Jun Shao, Shanti Bhushan, Tao Xing and Fred Stern Turbulence Modelng n Computatonal Flud Dynamcs (CFD) Jun Shao, Shant Bhushan, Tao Xng and Fred Stern Outlne 1. Characterstcs of turbulence. Approaches to predctng turbulent flows 3. Reynolds averagng 4.

More information

Introduction to Turbulence Modelling

Introduction to Turbulence Modelling Introdcton to Trblence Modellng 1 Nmercal methods 0 1 t Mathematcal descrpton p F Reslts For eample speed, pressre, temperatre Geometry Models for trblence, combston etc. Mathematcal descrpton of physcal

More information

Turbulent Flows and their Numerical Modeling

Turbulent Flows and their Numerical Modeling REVIEW Lecture 4: Numercal Flud Mechancs Sprng 015 Lecture 5 Fnte Volume on Complex geometres Computaton of convectve fluxes: x y For md-pont rule: Fe ( vn. ) ds fs e e ( ( vn. ) e Se e m e e e ( Se ue

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH Computatonal Flud Dynamcs If you want to learn a bt more of the math behnd flud dynamcs, read my prevous post about the Naver- Stokes equatons and Newtonan fluds. The equatons derved n the post are the

More information

THE COUPLED LES - SUBGRID STOCHASTIC ACCELERATION MODEL (LES-SSAM) OF A HIGH REYNOLDS NUMBER FLOWS

THE COUPLED LES - SUBGRID STOCHASTIC ACCELERATION MODEL (LES-SSAM) OF A HIGH REYNOLDS NUMBER FLOWS /2 THE COUPLED LES - SUBGRID STOCHASTIC ACCELERATION MODEL LES-SSAM OF A HIGH REYNOLDS NUMBER FLOWS Vladmr Sabel nov DEFA/EFCA ONERA, France In collaboraton wth: Anna Chtab CORIA, Unversté de Rouen, France

More information

A Study on Responces of Premixed Flames of Hydrogen, Methane and Propane having the same Adiabatic Flame Temperature to Flame Stretch

A Study on Responces of Premixed Flames of Hydrogen, Methane and Propane having the same Adiabatic Flame Temperature to Flame Stretch * ** A Study on Responces of Premxed Flames of Hydrogen, Methane and Propane havng the same Adabatc Flame Temperature to Flame Stretch Akhro HAYAKAWA and Jun HASHIMOTO Recently, a development of the combustor

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD)

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD) Calculaton of Aerodynamc Characterstcs of NACA 2415, 23012, 23015 Arfols Usng Computatonal Flud Dynamcs (CFD) Hmanshu Parashar Abstract A method of solvng the flow over arfols of Natonal Advsory Commttee

More information

A NEW FILTERED DYNAMIC SUBGRID-SCALE MODEL FOR LARGE EDDY SIMULATION OF INDOOR AIRFLOW

A NEW FILTERED DYNAMIC SUBGRID-SCALE MODEL FOR LARGE EDDY SIMULATION OF INDOOR AIRFLOW A NEW FILTERED DYNAMIC SUBGRID-SCALE MODEL FOR LARGE EDDY SIMULATION OF INDOOR AIRFLOW We Zhang and Qngyan Chen Buldng Technology Program Massachusetts Insttute of Technology 77 Mass. Ave., Cambrdge, MA

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Introducton to Computatonal Flud Dynamcs M. Zanub 1, T. Mahalakshm 2 1 (PG MATHS), Department of Mathematcs, St. Josephs College of Arts and Scence for Women-Hosur, Peryar Unversty 2 Assstance professor,

More information

Brownian-Dynamics Simulation of Colloidal Suspensions with Kob-Andersen Type Lennard-Jones Potentials 1

Brownian-Dynamics Simulation of Colloidal Suspensions with Kob-Andersen Type Lennard-Jones Potentials 1 Brownan-Dynamcs Smulaton of Collodal Suspensons wth Kob-Andersen Type Lennard-Jones Potentals 1 Yuto KIMURA 2 and Mcho TOKUYAMA 3 Summary Extensve Brownan-dynamcs smulatons of bnary collodal suspenton

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Simulation of Flow Pattern in Open Channels with Sudden Expansions

Simulation of Flow Pattern in Open Channels with Sudden Expansions Research Journal of Appled Scences, Engneerng and Technology 4(19): 3852-3857, 2012 ISSN: 2040-7467 Maxwell Scentfc Organzaton, 2012 Submtted: May 11, 2012 Accepted: June 01, 2012 Publshed: October 01,

More information

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001 Homogeneous model of producton of heavy ol through horzontal ppelnes and wells based on the Naver-Stokes equatons n the ppelne or the well and Darcy's law n the reservor Homogeneous model: Danel D. Joseph

More information

Computational Astrophysics

Computational Astrophysics Computatonal Astrophyscs Solvng for Gravty Alexander Knebe, Unversdad Autonoma de Madrd Computatonal Astrophyscs Solvng for Gravty the equatons full set of equatons collsonless matter (e.g. dark matter

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS ISSN: 345-3109 RCEE Research n Cvl and Envronmental Engneerng www.rcee.com Research n Cvl and Envronmental Engneerng 014 (04) 190-198 NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS Rasoul Daneshfaraz

More information

PERMEABILITY-POROSITY RELATIONSHIP ASSESSMENT BY 2-D NUMERICAL SIMULATIONS

PERMEABILITY-POROSITY RELATIONSHIP ASSESSMENT BY 2-D NUMERICAL SIMULATIONS ISTP-16, 005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA PERMEABILITY-POROSITY RELATIONSHIP ASSESSMENT BY -D NUMERICAL SIMULATIONS J. Pnela*, S. Kruz*, A. F. Mguel* +, A. H. Res*, M. Aydn**

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Consderaton of D Unsteady Boundary Layer Over Oscllatng Flat Plate N.M. NOURI, H.R.

More information

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method Proceedngs of the 3th WSEAS Internatonal Conference on APPLIED MATHEMATICS (MATH'8) Numercal Smulaton of Ld-Drven Cavty Flow Usng the Lattce Boltzmann Method M.A. MUSSA, S. ABDULLAH *, C.S. NOR AZWADI

More information

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics Internatonal Research Journal of Engneerng and Technology (IRJET) e-issn: 2395-56 Volume: 4 Issue: 7 July -217 www.ret.net p-issn: 2395-72 Turbulent Flow n Curved Square Duct: Predcton of Flud flow and

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write 058:68 Turbulent Flows 004 G. Constantnescu HOMEWORKS: Assgnment I - 01/6/04, Due 0/04/04 1) A cubcal box of volume L 3 s flled wth flud n turbulent moton. No source of energy s present, so that the turbulence

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Journal of Flud Scence and Technology Numercal Smulaton of Incompressble Flows around a Fsh Model at Low Reynolds Number Usng Seamless Vrtual Boundary Method * Hdetosh NISHIDA ** and Kyohe TAJIRI ** **Department

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

Survey of applications of discrete vortex method in civil engineering

Survey of applications of discrete vortex method in civil engineering Budownctwo Archtektura 5 (2009) 29-38 Survey of applcatons of dscrete vortex method n cvl engneerng Tomasz Nowck Lubln Unversty of Technology, Faculty of Cvl Engneerng and Archtecture, Department of Structural

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Lecture 2: Numerical Methods for Differentiations and Integrations

Lecture 2: Numerical Methods for Differentiations and Integrations Numercal Smulaton of Space Plasmas (I [AP-4036] Lecture 2 by Lng-Hsao Lyu March, 2018 Lecture 2: Numercal Methods for Dfferentatons and Integratons As we have dscussed n Lecture 1 that numercal smulaton

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 6

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 6 REVIEW of Lecture 5 2.29 Numercal Flud Mechancs Fall 2011 Lecture 6 Contnuum Hypothess and conservaton laws Macroscopc Propertes Materal covered n class: Dfferental forms of conservaton laws Materal Dervatve

More information

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME PACS REFERENCE: 43.20.Mv Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Zeunerstr.

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

IC Engine Flow Simulation using KIVA code and A Modified Reynolds Stress Turbulence Model

IC Engine Flow Simulation using KIVA code and A Modified Reynolds Stress Turbulence Model IC Engne Flow Smulaton usng KIVA code and A Modfed Reynolds Stress Turbulence Model Satpreet Nanda and S.L. Yang Mechancal Engneerng-Engneerng Mechancs Department Mchgan Technologcal Unversty Houghton,

More information

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process Equaton of State Modelng of Phase Equlbrum n the Low-Densty Polyethylene Process H. Orbey, C. P. Boks, and C. C. Chen Ind. Eng. Chem. Res. 1998, 37, 4481-4491 Yong Soo Km Thermodynamcs & Propertes Lab.

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Simulation of Turbulent Flow Using FEM

Simulation of Turbulent Flow Using FEM Internatonal Journal of Engneerng and Technology Volume 2 No. 8, August, 2012 Smulaton of Turbulent Flow Usng FEM Sabah Tamm College of Computng, AlGhurar Unversty, Duba, Unted Arab Emrates. ABSTRACT An

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Mixing in an agitated tubular reactor. J.J. Derksen. School of Engineering, University of Aberdeen, Aberdeen, UK.

Mixing in an agitated tubular reactor. J.J. Derksen. School of Engineering, University of Aberdeen, Aberdeen, UK. Mxng n an agtated tubular reactor J.J. Derksen School of Engneerng, Unversty of Aberdeen, Aberdeen, UK jderksen@abdn.ac.uk Submtted to Specal Issue WCCE10/CFD of CJCE January 018 Revson submtted February

More information

Physics 212: Statistical mechanics II Lecture I

Physics 212: Statistical mechanics II Lecture I Physcs 212: Statstcal mechancs II Lecture I A theory s the more mpressve the greater the smplcty of ts premses, the more dfferent knds of thngs t relates, and the more extended ts area of applcablty. Therefore

More information

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich Chapter 02: Numercal methods for mcrofludcs Xangyu Hu Techncal Unversty of Munch Possble numercal approaches Macroscopc approaches Fnte volume/element method Thn flm method Mcroscopc approaches Molecular

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump Proceedngs of the rd Internatonal Conference on Vortex Flows and Vortex Models (ICVFM005) Yokohama, JAPAN, November 1 -, 005 Wall Pressure Fluctuatons and Flow Induced Nose n a Turbulent Boundary Layer

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

Computation of drag and flow noise along wavy wall in turbulent flow

Computation of drag and flow noise along wavy wall in turbulent flow roceedngs of 0 th Internatonal Congress on Acoustcs, ICA 010 3-7 August 010, ydney, Australa Computaton of drag and flow nose along wavy wall n turbulent flow Huaxn Zhang (1), Kunyu Meng (1) and Yongln

More information

Turbulent Nonpremixed Flames

Turbulent Nonpremixed Flames School of Aerospace Engneerng Turbulent Nonpremxed Flames Jerry Setzman. 5 Mole Fracton.15.1.5 CH4 HO HCO x 1 Temperature Methane Flame.1..3 Dstance (cm) 15 1 5 Temperature (K) TurbulentNonpremxed -1 School

More information

EXPERIMENTAL STUDY OF NEAR WALL TURBULENCE USING PIV

EXPERIMENTAL STUDY OF NEAR WALL TURBULENCE USING PIV EUROMECH 411 Rouen, 9-31 May EXPERIMENTAL STUDY OF NEAR WALL TURBULENCE USING PIV J. Carler, J. M. Foucaut and M. Stanslas LML URA 1441, Bv Paul Langevn, Cté Scentfque, 59655 Vlleneuve d'ascq Cedex, France

More information

GS and SGS Coherent Structures in Homogeneous Isotropic Turbulence

GS and SGS Coherent Structures in Homogeneous Isotropic Turbulence 15 th CFD Symposum GS and SGS Coherent Structures n Homogeneous Isotropc Turbulence Ο M. Ashraf Uddn Intellgent Modelng Laboratory, The Unersty of Tokyo, -11-16 Yayo, Bunkyo-ku, Tokyo 113-8656,

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Extracting turbulent spectral transfer from under-resolved velocity fields

Extracting turbulent spectral transfer from under-resolved velocity fields Extractng turbulent spectral transfer from under-resolved velocty felds Ru N, Greg A. Voth, and Ncholas T. Ouellette Ctaton: Physcs of Fluds (1994-present) 26, 117 (214); do: 1.163/1.4898866 Vew onlne:

More information

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model Study of transonc separated flows wth zonal-des based on weakly non-lnear turbulence model Xao Z.X, Fu S., Chen H.X, Zhang Y.F and Huang J.B. Department of Engneerng Mechancs, Tsnghua Unversty, Bejng,

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Numerical Modelling and Experimental Validation of a Turbulent Separated Reattached Flow

Numerical Modelling and Experimental Validation of a Turbulent Separated Reattached Flow Numercal Modellng and Expermental Valdaton of a Turbulent Separated Reattached Flow Florn Popescu, Tănase Panat Abstract An expermental study was conducted to analyse the feld velocty of a fully developed

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

Chapter 4: Root Finding

Chapter 4: Root Finding Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO ISTP-,, PRAGUE TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO Mohammad Rahnama*, Seyed-Mad Hasheman*, Mousa Farhad**

More information

Ming-Chung Chan and Chun-Ho Liu

Ming-Chung Chan and Chun-Ho Liu Large-eddy smulaton of turbulent flows and pollutant transport nsde and above dealzed urban street canyons under dfferent unstable thermal stratfcaton Mng-Chung Chan and Chun-Ho Lu Department of Mechancal

More information

A new turbulence model for Large Eddy Simulation

A new turbulence model for Large Eddy Simulation Adv. Studes Theor. Phys., Vol. 1, 2007, no. 6, 247-270 A new turbulence model for Large Eddy Smulaton Francesco Gallerano Dpartmento d Idraulca Trasport e Strade Unversta degl Stud d Roma La Sapenza Va

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Energy configuration optimization of submerged propeller in oxidation ditch based on CFD

Energy configuration optimization of submerged propeller in oxidation ditch based on CFD IOP Conference Seres: Earth and Envronmental Scence Energy confguraton optmzaton of submerged propeller n oxdaton dtch based on CFD To cte ths artcle: S Y Wu et al 01 IOP Conf. Ser.: Earth Envron. Sc.

More information

Numerical analysis on the agglomeration behavior of fine particles in plane jet

Numerical analysis on the agglomeration behavior of fine particles in plane jet Numercal analyss on the agglomeraton behavor of fne partcles n plane et Mn Guo 1, a, Ja L 2, Xn Su 1 and Gurong Yang 1 1 Tann Academy of Envronmental Scences, Tann, 300191, Chna; 2 The Fourth Research

More information

CONTROLLED FLOW SIMULATION USING SPH METHOD

CONTROLLED FLOW SIMULATION USING SPH METHOD HERI COADA AIR FORCE ACADEMY ROMAIA ITERATIOAL COFERECE of SCIETIFIC PAPER AFASES 01 Brasov, 4-6 May 01 GEERAL M.R. STEFAIK ARMED FORCES ACADEMY SLOVAK REPUBLIC COTROLLED FLOW SIMULATIO USIG SPH METHOD

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

Flow Induced Vibration

Flow Induced Vibration Flow Induced Vbraton Project Progress Report Date: 16 th November, 2005 Submtted by Subhrajt Bhattacharya Roll no.: 02ME101 Done under the gudance of Prof. Anrvan Dasgupta Department of Mechancal Engneerng,

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Virtual Force Measurement of POD Modes for A Flat Plate in Low Reynolds Number Flows

Virtual Force Measurement of POD Modes for A Flat Plate in Low Reynolds Number Flows Vrtual Force Measurement of POD Modes for A Flat Plate n Low Reynolds Number Flows Zongxan Lang and Habo Dong Department of Mechancal & Aerospace Engneerng, Unversty of Vrgna, Charlottesvlle, VA 904 A

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information