Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate

Size: px
Start display at page:

Download "Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate"

Transcription

1 Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Consderaton of D Unsteady Boundary Layer Over Oscllatng Flat Plate N.M. NOURI, H.R. AHMADI FAKHR, H. Madad, R. Abdollahpour Appled Hydrodynamcs Lab., Mechancal Engneerng Dept. Iran Unversty of Scence and Tech. Narmak, -, Tehran Iran mnour@ust.ac.r Abstract: - The unsteady boundary layer due to small ampltude snusodal oscllaton of a plate n vscous ncompressble flud s nvestgated here usng Random Vortex Method. Whle the plate oscllates n ts own plane. The unsteady boundary layer causes the unsteady velocty profle and shear waves propagaton. The numercal result s compared wth analytcal soluton for the case thahe oscllaton ampltude s small enough to neglect nonlnear convectonal term. The results of RVM for unsteady boundary layer show good smlarty confrmng the ablty of the proposed method. The nonlnear convectonal term can also be taken n to account n RVM, n the cases thahey can not be neglected. Key-Words: - Vscous flud; Oscllatng wall; Unsteady flow; Transent flow Introducton The moton of vscous flud caused by snusodal oscllaton of a flat plate s termed as stocks second problem by schlchtng []. It s not only of fundamental theoretcal nterest bu also occurs n many appled problems; Such as acoustc streamng around oscllatng body []. As early as, M. Emn Erdogan has consdered the flow of an ncompressble vscous flud caused by the small ampltude oscllaton of the plane wall [, ]. Ths moton wll produce, far from the body, acoustc wave of small ampltude. the flow near the body wll, n general, have normal and tangental velocty component relatve to the body. On the body s surface the normal velocty component s fxed by the requremenhahere be no flow through the boundary. And also when the vscosty effects are taken nto accounhe flud n contact wth the body can no longer slp over the body; Instead, t adheres to t. Ths s nohe only effect of vscosty, for n the same way that s precludes slp between flud and sold, t also prevents complete slppage between contguous layers of flud. Therefore, no slp condton at a boundary wll make the whole tangental velocty profle sgnfcantly dfferent from whch would exst f the flud were nvscd. The propagaton of shear waves and unsteady boundary layer are analyzed here va Random Vortex Method, In RVM, the Naver Stokes equatons, n the form of vortcty, s splt nto dffuson and convecton parts, accordng to the fractonal step method. A random Walk method s used to solve the dffuson equaton. So unlke the analytcal method usng RVM, the nonlnear convectonal term s also taken nto account. Problem Formulaton To study the moton of nfnte plate a rectangular system of coordnate s attached to the plate s such a manner thahe plane wall s chosen as x-axs and t oscllates n ts own plane, as sketched n fg..because of vscosty the flud above the plane s also move, bu s clear thahe flud velocty wll have only one component, and ths wll be parallel to the velocty of the plane. Further, ths velocty component can not depend on dstance along the plane so that u = u( y, t),,. Therefore. u =, so the momentum equaton yelds: u u + ( u. ) u = ν (). Analytcal soluton [] When the flud s ntally at rest and oscllaton ampltude s small, the nonlnear term s assumed to be n small order. Neglectng the convecton term, lnear form of equaton s obtaned: u u = ν ()

2 Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Ths s a dffuson equaton. Therefore f the flud starts a= and mparts some momentum to the flud n contact wth t, would expechs momentum to be dffused slowly nto the flud. The motons of flud after all transent effects have dsappeared; snce the plane s oscllatng as: ( t U U e % = ) P () The flud velocty s also expected to depend harmoncally on tme. Therefore: t u( y, t) = U% ( y) e () So t yelds: U% ( y) + K U% ( y) = () K = ( + ) % ν () The soluton s: % t ( + ) y δν ( + ) y δν u( y, t) = e ( Ae + Be ) () where: ν δ = ν % (9) Snce for y the velocty must be small, we must set B=. Also at y= the flud velocty s equal to that of the plane, so that A= U and: ( ) (, ) y δ u y t = U e cos ν t y % δ () ν The flud therefore, also oscllates harmoncally n tme, buhe oscllaton lag those of the plane, and has very small ampltude far from the plane. fg. depcts relatve-velocty profles at varous tmes durng one oscllaton. In the fgure tme s measured from the pont durng a cycle when u= U at y=. π It s seen that for % t the maxmum flud velocty ampltude s ahe plane y=. However, for y> n facs locaton n the flud s gven by: ( ) π y t = t δ max ν % () Thus one f the feature of the oscllaton, namely, the pont of maxmum flud velocty s seen to be movng nto the flud wth velocty % δ = % ν.. The Numercal method Equaton () can be wrtten n the form of vortcty: + ( u. ) = ν () Ths equaton called vortcty transport equaton and may be splt nto lnear dffuson and nonlnear convecton equatons accordng to the fractonal step method of Chorn [9,], gvng. ν = ν () = ( u. ) () where s vortcty vector. The dea of the fractonal step method s to solve these equatons sequentally rather than smultaneously. The sequental soluton means that at each tme step the dffuson equaton s solved usng the state of the flow ahe end of the prevous tme step as the new ntal condton. Then the convecton part s solved usng, as the ntal condtons, the soluton of the dffuson equaton for the currenme step. By takng the convectve term nto accounhe nonlnear problems wth large ampltude oscllaton can also be solved. The transport of vortcty due to dffuson n random vortex method s mplemented by dsperson of a fnte number of vortex elements wth fnte and constant vortcty accordng to a -dmensonal Gaussan statstcs. Ths based on the fachahe green functons of -dmentonal form of equaton () s: [] R G( y, t) = exp y πt () t In dentcal to the probablty densty functon of Gaussan random varable η wth a zero mean and a standard devatonσ : P( η, t) = exp η πσ () σ t If σ = The green functon of dffuson equaton n -dmenson s: R G( x, y, t) = exp ( x y ) πt + () t whch s equvaleno: G( x, y, t) = G( x, t) G( y, t) () where G( x, t ) and G( y, t ) have the same form as n equaton ().then the correspondng probablty densty functon s the product of two -dmensonal probablty densty functons: P( η, η, t) = P ( η, t) P ( η, t) (9) So the soluton of equaton () s smulated stochastcally by a -dmensonal dsplacement of vortex elements n two perpendcular drectons usng two sets of ndependent Gaussan random numbers, each have a zero mean and standard Dt devaton of σ =. To construct an algorthm the vortcty n the flow s represented by a number of dscrete vortces, whch are gven a random Gaussan moton, or random

3 Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Dt walk wth zero mean and varance of where Dt s the tme step. These vortces are generated on the surface to satsfy the no slp boundary condton. Such thahe surface of the body s represented by m panels. Each of whch s allocated a vortex dstrbuton of Γ per unt length, Ths vortex dstrbuton s then dscretzed nto a number of pont vortces, such thahe crculaton of each vortex beng less than some prescrbed maxmumγ max and the dstrbuton Is such that made lnear velocty profle on the panels wth respeco y and zero resultanangental Velocty ahe central collocaton pont. The panels heght s chosen small enough to place under the lamnar sublayer so ther lnear velocty profle role as a boundary condton and force the velocty profle to be lnear near the body. The convecton term s then taken nto account wth movng the vortces wth ther nvscd veloctes n the Lagrangan scheme. So the new poston of the vortces due to the convecton and dffuson s gven by: t+ t x = x + u Dt+ η x t+ t () y = y + v Dt+ η y where ( x, y ) and ( u, v ) represented the poston and velocty vector of ' th vortex ame t, and ( η, η ) s Gaussan random translaton vector. The x y vortces velocty ( u, v ) s calculated usng potental velocty around desred geometry and velocty nduced by other vortces. Concluson The problem under consderaton s a snusodal n plane oscllaton of nfnte plate wth velocty ampltude U =. and oscllaton frequency = π, the consdered flud s water wth µ =.9 and ρ =. The plate oscllaton s consdered n two cases: The RVM and analytcal results are compared for small ampltude wall oscllaton n statonary flud, so as assumed n analytcal soluton the convecton term s small enough to be neglected; Comparsons between analytcal and numercal result for ths case n fg., fg. and fg. show the capablty of RVM for unsteady boundary layer consderaton,. ferences: [] H. Schlchtng, Boundary Layer Theory, McGraw-Hll, New York, 9 [] N. Tokuda, on the mpulsve moton of a flat plate n a vscous flud, J. Flud Mech., Vol., 9, pp. -. [] M. Emn Erdogan, A note on an unsteady flow of a vscous flud due to an oscllatng plane wall, Internatonal Journal of Non-Lnear Mechancs, Vol.,, pp. -. [] Denns SCR., The moton of a vscous flud past an mpulsvely started sem-nfnte flat plate., IMA Journal of Appled Mathematcs, Vol., 9, pp.. [] K. Stewartson, On the mpulsve moton of a flat plate n a vscous flud (Part I). Quarterly Jnl. of Mechancs & App. Maths., Vol., 9, pp. 9. [] K. Stewartson On the mpulsve moton of a flat plate n a vscous flud(part II). Quarterly Jnl. of Mechancs & App. Maths., Vol., 9, pp.. [] MG Hall., The boundary layer over an mpulsvely started flat plate, Proceedngs of the Royal Socety of London, 99, pp.. [] S. Temkn, Elements of Acoustcs, John Wley & Sons, 9 [9] A.J. Chorn, Numercal Study Slghtly Vscous Flow, J. Flud Mach., Vol., 9, pp.-9 [] G. H. Cottet, P. Koumoutsakos, M. L. Ould.Salh, Vortex Methods wth Spatally Varyng Cores, Journal Of Computatonal Physcs, Vol.,, pp. [] N. R. Clarke, O. R. Tutty, Constructon and valdaton of a dscrete vortex method for the twodmensonal ncompressble Naver-Stokes equatons, Journal of Computatonal Fluds, Vol. (), 99, pp. -. [] J. S. Marshall, J. R. Grant, Penetraton of a blade nto a vortex core: vortcty response and unsteady blade forces, Journal of Flud Mechancs,Vol., 99, pp. -9. [] N. M. Nour, S. Eslam, Modelng of freestream turbulence wth random vortex method (RVM) n ncompressble flow and soluton for crcular cylnder, 9 th Conference of Flud Mechancs, Shraz, Iran. [] A.F Ghonem and Y.Gagnon, vortex Smulaton of Lamnar calculatng Flow, J. Comp. Phys., Vol., 9, pp.-

4 Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) fg. schematc of n plane oscllaton of half plane wall (stocks second problem) fg *t= *t= π / *t= π / *t= π / *t= π / u /U fg. nondmensonal-velocty profles at varous tmes durng one oscllaton Numercal sult Analytcal sult.... u /U fg. Analytcal and Numercal results of velocty profle nt= π

5 Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Numercal sults Analytcal sult.... u /U fg. Analytcal and Numercal results of velocty profle n π t= fg. Numercal sult Analytcal sult.... u /U fg. Analytcal and Numercal results of velocty profle n π t=

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method Proceedngs of the 3th WSEAS Internatonal Conference on APPLIED MATHEMATICS (MATH'8) Numercal Smulaton of Ld-Drven Cavty Flow Usng the Lattce Boltzmann Method M.A. MUSSA, S. ABDULLAH *, C.S. NOR AZWADI

More information

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO ISTP-,, PRAGUE TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO Mohammad Rahnama*, Seyed-Mad Hasheman*, Mousa Farhad**

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Journal of Flud Scence and Technology Numercal Smulaton of Incompressble Flows around a Fsh Model at Low Reynolds Number Usng Seamless Vrtual Boundary Method * Hdetosh NISHIDA ** and Kyohe TAJIRI ** **Department

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME PACS REFERENCE: 43.20.Mv Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Zeunerstr.

More information

NUMERICAL SIMULATION OF FLOW AROUND A NACA 0012 AIRFOIL IN TRANSIENT PITCHING MOTION USING IMMERSED BOUNDARY METHOD WITH VIRTUAL PHYSICAL MODEL

NUMERICAL SIMULATION OF FLOW AROUND A NACA 0012 AIRFOIL IN TRANSIENT PITCHING MOTION USING IMMERSED BOUNDARY METHOD WITH VIRTUAL PHYSICAL MODEL NUMERICAL SIMULATION OF FLOW AROUND A NACA 0012 AIRFOIL IN TRANSIENT PITCHING MOTION USING IMMERSED BOUNDARY METHOD WITH VIRTUAL PHYSICAL MODEL José Eduardo Santos Olvera Laboratory of Heat and Mass Transfer

More information

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability:

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability: . Why turbulence occur? Hydrodynamc Instablty Hydrodynamc Instablty T Centrfugal Instablty: Ω Raylegh-Benard Instablty: Drvng force: centrfugal force Drvng force: buoyancy flud Dampng force: vscous dsspaton

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 6

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 6 REVIEW of Lecture 5 2.29 Numercal Flud Mechancs Fall 2011 Lecture 6 Contnuum Hypothess and conservaton laws Macroscopc Propertes Materal covered n class: Dfferental forms of conservaton laws Materal Dervatve

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave 014 4th Internatonal Conference on Future nvronment and nergy IPCB vol.61 (014) (014) IACSIT Press, Sngapore I: 10.776/IPCB. 014. V61. 6 1-mensonal Advecton-ffuson Fnte fference Model ue to a Flow under

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Survey of applications of discrete vortex method in civil engineering

Survey of applications of discrete vortex method in civil engineering Budownctwo Archtektura 5 (2009) 29-38 Survey of applcatons of dscrete vortex method n cvl engneerng Tomasz Nowck Lubln Unversty of Technology, Faculty of Cvl Engneerng and Archtecture, Department of Structural

More information

Simulation of Turbulent Flow Using FEM

Simulation of Turbulent Flow Using FEM Internatonal Journal of Engneerng and Technology Volume 2 No. 8, August, 2012 Smulaton of Turbulent Flow Usng FEM Sabah Tamm College of Computng, AlGhurar Unversty, Duba, Unted Arab Emrates. ABSTRACT An

More information

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD THERMAL SCIENCE: Year 2018, Vol. 22, No. 5, pp. 1955-1962 1955 NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD Introducton by Tomok IZUMI a* and

More information

FLAT PLATE BOUNDARY LAYER SIMULATION USING THE VORTEX METHOD

FLAT PLATE BOUNDARY LAYER SIMULATION USING THE VORTEX METHOD Proceedngs of COBEM 7 Copyrght 7 by ABCM 19th Internatonal Congress of Mechancal Engneerng November 5-9, 7, Brasíla, DF FLAT PLATE BOUNDARY LAYER SIMULATION USING THE VORTEX METHOD Vctor Santoro Santago

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Flow Induced Vibration

Flow Induced Vibration Flow Induced Vbraton Project Progress Report Date: 16 th November, 2005 Submtted by Subhrajt Bhattacharya Roll no.: 02ME101 Done under the gudance of Prof. Anrvan Dasgupta Department of Mechancal Engneerng,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations Appled Mathematcs Volume 22, Artcle ID 4587, 8 pages do:.55/22/4587 Research Artcle Cubc B-Splne Collocaton Method for One-Dmensonal Heat and Advecton-Dffuson Equatons Joan Goh, Ahmad Abd. Majd, and Ahmad

More information

Numerical Solution of Boussinesq Equations as a Model of Interfacial-wave Propagation

Numerical Solution of Boussinesq Equations as a Model of Interfacial-wave Propagation BULLETIN of the Malaysan Mathematcal Scences Socety http://math.usm.my/bulletn Bull. Malays. Math. Sc. Soc. (2) 28(2) (2005), 163 172 Numercal Soluton of Boussnesq Equatons as a Model of Interfacal-wave

More information

Lecture 12. Modeling of Turbulent Combustion

Lecture 12. Modeling of Turbulent Combustion Lecture 12. Modelng of Turbulent Combuston X.S. Ba Modelng of TC Content drect numercal smulaton (DNS) Statstcal approach (RANS) Modelng of turbulent non-premxed flames Modelng of turbulent premxed flames

More information

Extension of Smoothed Particle Hydrodynamics (SPH), Mathematical Background of Vortex Blob Method (VBM) and Moving Particle Semi-Implicit (MPS)

Extension of Smoothed Particle Hydrodynamics (SPH), Mathematical Background of Vortex Blob Method (VBM) and Moving Particle Semi-Implicit (MPS) Amercan Journal of Computatonal athematcs, 04, 5, 44-445 Publshed Onlne December 04 n ScRes. http://www.scrp.org/ournal/acm http://dx.do.org/0.436/acm.04.45036 Extenson of Smoothed Partcle Hydrodynamcs

More information

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN KOREA OCTOBER 7-30 003 Hgher Order Wall Boundary Condtons for Incompressble Flow Smulatons Hdetosh Nshda. Department of Mechancal and System Engneerng

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

The Tangential Force Distribution on Inner Cylinder of Power Law Fluid Flowing in Eccentric Annuli with the Inner Cylinder Reciprocating Axially

The Tangential Force Distribution on Inner Cylinder of Power Law Fluid Flowing in Eccentric Annuli with the Inner Cylinder Reciprocating Axially Open Journal of Flud Dynamcs, 2015, 5, 183-187 Publshed Onlne June 2015 n ScRes. http://www.scrp.org/journal/ojfd http://dx.do.org/10.4236/ojfd.2015.52020 The Tangental Force Dstrbuton on Inner Cylnder

More information

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introducton to Turbulence Modelng Professor Ismal B. Celk West Vrgna nversty Ismal.Celk@mal.wvu.edu CFD Lab. - West Vrgna nversty I-1 Introducton to Turbulence CFD Lab. - West Vrgna nversty I-2 Introducton

More information

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump Proceedngs of the rd Internatonal Conference on Vortex Flows and Vortex Models (ICVFM005) Yokohama, JAPAN, November 1 -, 005 Wall Pressure Fluctuatons and Flow Induced Nose n a Turbulent Boundary Layer

More information

Significance of Dirichlet Series Solution for a Boundary Value Problem

Significance of Dirichlet Series Solution for a Boundary Value Problem IOSR Journal of Engneerng (IOSRJEN) ISSN (e): 5-3 ISSN (p): 78-879 Vol. 6 Issue 6(June. 6) V PP 8-6 www.osrjen.org Sgnfcance of Drchlet Seres Soluton for a Boundary Value Problem Achala L. Nargund* and

More information

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH Computatonal Flud Dynamcs If you want to learn a bt more of the math behnd flud dynamcs, read my prevous post about the Naver- Stokes equatons and Newtonan fluds. The equatons derved n the post are the

More information

NONLINEAR NATURAL FREQUENCIES OF A TAPERED CANTILEVER BEAM

NONLINEAR NATURAL FREQUENCIES OF A TAPERED CANTILEVER BEAM Advanced Steel Constructon Vol. 5, No., pp. 59-7 (9) 59 NONLINEAR NATURAL FREQUENCIES OF A TAPERED CANTILEVER BEAM M. Abdel-Jaber, A.A. Al-Qasa,* and M.S. Abdel-Jaber Department of Cvl Engneerng, Faculty

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

Optimal Control of Temperature in Fluid Flow

Optimal Control of Temperature in Fluid Flow Kawahara Lab. 5 March. 27 Optmal Control of Temperature n Flud Flow Dasuke YAMAZAKI Department of Cvl Engneerng, Chuo Unversty Kasuga -3-27, Bunkyou-ku, Tokyo 2-855, Japan E-mal : d33422@educ.kc.chuo-u.ac.jp

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method Appled Mathematcs Volume 01, Artcle ID 9590, 13 pages do:10.1155/01/9590 Research Artcle A Multlevel Fnte Dfference Scheme for One-Dmensonal Burgers Equaton Derved from the Lattce Boltzmann Method Qaoe

More information

Problem Points Score Total 100

Problem Points Score Total 100 Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

Computational investigation of the external excitation frequency effect on liquid sloshing phenomenon

Computational investigation of the external excitation frequency effect on liquid sloshing phenomenon Computatonal nvestgaton of the external exctaton frequency effect on lqud sloshng phenomenon Abdallah Bouabd *, Zed Drss, Laboratory of Electro-Mechanc Systems (LASEM) Natonal School of Engneers of Sfax

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

PROPERTIES OF SURFACE AND INTERNAL SOLITARY WAVES. Kei Yamashita 1 and Taro Kakinuma 2

PROPERTIES OF SURFACE AND INTERNAL SOLITARY WAVES. Kei Yamashita 1 and Taro Kakinuma 2 PROPERTIES OF SURFACE AND INTERNAL SOLITARY WAVES Ke Yamashta and Taro Kaknuma Numercal solutons o surace and nternal soltary waves are obtaned through a new method where advecton equatons on physcal quanttes

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products modelng of equlbrum and dynamc mult-component adsorpton n a two-layered fxed bed for purfcaton of hydrogen from methane reformng products Mohammad A. Ebrahm, Mahmood R. G. Arsalan, Shohreh Fatem * Laboratory

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

Tools for large-eddy simulation

Tools for large-eddy simulation Center for Turbulence Research Proceedngs of the Summer Program 00 117 Tools for large-eddy smulaton By Davd A. Caughey AND Grdhar Jothprasad A computer code has been developed for solvng the ncompressble

More information

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write 058:68 Turbulent Flows 004 G. Constantnescu HOMEWORKS: Assgnment I - 01/6/04, Due 0/04/04 1) A cubcal box of volume L 3 s flled wth flud n turbulent moton. No source of energy s present, so that the turbulence

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD SIMUATION OF WAVE POPAGATION IN AN HETEOGENEOUS EASTIC OD ogéro M Saldanha da Gama Unversdade do Estado do o de Janero ua Sào Francsco Xaver 54, sala 5 A 559-9, o de Janero, Brasl e-mal: rsgama@domancombr

More information

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00 ONE IMENSIONAL TRIANGULAR FIN EXPERIMENT Techncal Advsor: r..c. Look, Jr. Verson: /3/ 7. GENERAL OJECTIVES a) To understand a one-dmensonal epermental appromaton. b) To understand the art of epermental

More information

Notes on Analytical Dynamics

Notes on Analytical Dynamics Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Lecture 16 Statistical Analysis in Biomaterials Research (Part II) 3.051J/0.340J 1 Lecture 16 Statstcal Analyss n Bomaterals Research (Part II) C. F Dstrbuton Allows comparson of varablty of behavor between populatons usng test of hypothess: σ x = σ x amed for Brtsh statstcan

More information

Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part II - LBM

Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part II - LBM Perumal & Dass CFD Letters Vol. 2(1) 2010 www.cfdl.ssres.net Vol. 2 (1) March 2010 Smulaton of Incompressble Flows n Two-Sded Ld-Drven Square Cavtes. Part II - LBM D. Arumuga Perumal 1c and Anoop K. Dass

More information

Solutions for Euler and Navier-Stokes Equations in Powers of Time

Solutions for Euler and Navier-Stokes Equations in Powers of Time Solutons for Euler and Naver-Stokes Equatons n Powers of Tme Valdr Montero dos Santos Godo valdr.msgodo@gmal.com Abstract We present a soluton for the Euler and Naver-Stokes equatons for ncompressble case

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY The Bot-Savart Law The velocty nduced by the sngular vortex lne wth the crculaton can be determned by means of the Bot- Savart formula

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Natural Convection in a Rectangular Enclosure with Colliding Boundary Layers

Natural Convection in a Rectangular Enclosure with Colliding Boundary Layers Journal of Appled Mathematcs & Bonformatcs, vol.4, no.2, 2014, 85-97 ISSN: 1792-6602 (prnt), 1792-6939 (onlne) Scenpress Ltd, 2014 Natural Convecton n a Rectangular Enclosure wth Colldng Boundary Layers

More information

Modeling acoustic transducer surface waves by Transmission Line Matrix method

Modeling acoustic transducer surface waves by Transmission Line Matrix method Modelng acoustc transducer surface waves by Transmsson Lne Matrx method Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Peter-Chrstan Eccardt Semens AG, CT MS, München Wllam

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Effect of variable thermal conductivity on heat and mass transfer flow over a vertical channel with magnetic field intensity

Effect of variable thermal conductivity on heat and mass transfer flow over a vertical channel with magnetic field intensity Appled and Computatonal Mathematcs 014; 3(): 48-56 Publshed onlne Aprl 30 014 (http://www.scencepublshnggroup.com/j/acm) do: 10.11648/j.acm.014030.1 Effect of varable thermal conductvty on heat and mass

More information

FUZZY FINITE ELEMENT METHOD

FUZZY FINITE ELEMENT METHOD FUZZY FINITE ELEMENT METHOD RELIABILITY TRUCTURE ANALYI UING PROBABILITY 3.. Maxmum Normal tress Internal force s the shear force, V has a magntude equal to the load P and bendng moment, M. Bendng moments

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

AP Physics 1 & 2 Summer Assignment

AP Physics 1 & 2 Summer Assignment AP Physcs 1 & 2 Summer Assgnment AP Physcs 1 requres an exceptonal profcency n algebra, trgonometry, and geometry. It was desgned by a select group of college professors and hgh school scence teachers

More information

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM The 5th Internatonal Symposum on Computatonal Scences (ISCS) 28 May 2012, Yogyakarta, Indonesa SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM Dede Tarwd 1,2 1 Graduate School

More information

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics Internatonal Research Journal of Engneerng and Technology (IRJET) e-issn: 2395-56 Volume: 4 Issue: 7 July -217 www.ret.net p-issn: 2395-72 Turbulent Flow n Curved Square Duct: Predcton of Flud flow and

More information

A new integrated-rbf-based domain-embedding scheme for solving fluid-flow problems

A new integrated-rbf-based domain-embedding scheme for solving fluid-flow problems Home Search Collectons Journals About Contact us My IOPscence A new ntegrated-rbf-based doman-embeddng scheme for solvng flud-flow problems Ths artcle has been downloaded from IOPscence. Please scroll

More information