SOFT MASSIVE SPRING Objectives: Apparatus: Introduction:

Size: px
Start display at page:

Download "SOFT MASSIVE SPRING Objectives: Apparatus: Introduction:"

Transcription

1 SOFT MASSIVE SPRING Objectives: ) T deterine the spring cnstant and the ass crrectin factr fr the given sft assive spring by static (equilibriu extensin) ethd. 2) T deterine the spring cnstant and the ass crrectin factr fr the given sft assive spring by dynaic (spring ass scillatins) ethd. 3) T deterine the frequency f scillatins f the spring with ne end fixed and the ther end free i.e. zer ass attached. 4) T study the lngitudinal statinary waves and t deterine the fundaental frequency f scillatins f the spring with bth the ends fixed. Apparatus: ) A sft assive spring 2) A lng and heavy retrt stand with a clap at the tp end 3) A set f calibrated ass with hks (including fractinal ass) 4) A functin generatr with its cnnecting crd 5) A dual utput pwer aplifier with the cnnecting crds 6) A echanical vibratr unted n the retrt stand 7) A digital ultieter (t be used as frequency cunter) 8) A digital stpwatch 9) A easuring tape (3.0 ) 0) Tw easuring scales (.0 and 0.6 ) ) A tissue paper Intrductin: A spring is a flexible elastic device, which stres ptential energy n accunt f straining f the bnds between the ats f the elastic aterial f the spring. A variety f springs are available which are designed and fabricated t suit the varius echanical systes. Mst cn types f springs are cpressin springs, extensin springs and trsin spring. There are se special types f springs like leaf spring, V-spring, spiral spring etc. The cil r helical type f springs can have cylindrical r cnical shape. Rbert Hke, a 7 th century physicist studied the behavir f springs under different lads. He established an equatin, which is nw knwn as Hke s law f elasticity. This law states that the aunt by which a aterial bdy is defred (the strain) is linearly prprtinal t the frce causing the defratin (the stress). Thus, when applied t a spring, Hke s law iplies that the restring frce is linearly prprtinal t the equilibriu extensin. F = K x, where F is the restring frce exerted by the spring, x is the equilibriu extensin and K is called the spring cnstant. (The negative sign indicates that the frce F is ppsite in directin t the extensin x. Hence als the ter restring frce.) Fr this equatin t be valid, x needs t be belw the elastic liit f the spring. If x is re than the elastic liit, the spring will exhibit plastic behavir, where in the atic bnds in the aterial f the spring get brken r rearranged and the spring des nt return t its riginal state. It ay be nted that the ptential energy U stred in a spring is given by U = ½ K x 2. Depending n the value f the spring cnstant, a spring can be called as a sft r hard spring. A spring can be called ass-less r assive, depending n the ass, which needs t be

2 attached t get a cnsiderable extensin in the spring. Seties springs are als categrized by the rati f spring cnstant t the ass f the spring (K/ s ). A sft assive spring has a lw spring cnstant and its ass can nt be neglected. In the deterinatin f the spring cnstant f a spring, we generally neglect the effect f the ass f the spring n the equilibriu extensin r the tie perid f scillatin f the spring fr a given ass attached. In the case f sft assive springs the ass f the spring cannt be neglected. These types f springs have extensin under their wn weight and therefre need a crrectin fr the extensin. Siilarly, they scillate withut any attached ass, which iplies that the standard frula fr the tie perid f scillatins f a spring needs dificatin. Peple have theretically wrked ut the dificatin and crrected the frula fr the equilibriu extensin and als the tie perid f scillatins. Interestingly, ne finds that the ass crrectin factrs in these tw cases are nt the sae. In this prble, we will experientally study and verify the dified frulae. An extended sft assive spring claped at bth the ends can be assued t be a unifrly distributed ass syste. It has its wn natural frequencies f scillatins (crrespnding t different nral des) like a hllw pipe clsed at bth the ends. Using the ethd f resnance we will excite and study different nral des f vibratins f the spring. Here the lngitudinal statinary waves will be set up n the extended sft assive spring. Descriptin: In Part A, we will use the static ethd, where the equilibriu extensin f a given spring will be easured fr different attached ass and the spring cnstant and the ass crrectin factr will be deterined. In Part B, we will use the dynaic ethd, where different ass will be attached t the lwer end f the spring with its upper end fixed and crrespnding tie perid f scillatins fr such a spring-ass syste will be easured. Als the frequency f scillatins f the spring with the upper end fixed and the lwer end free i.e. the zer attached ass will be deterined graphically. In Part C, we will use a echanical vibratr t frce scillatins n the spring and excite different nral des f vibratins f the spring. Thus the lngitudinal statinary waves will be set up n the spring. We will easure the frequencies f excitatin crrespnding t different nral des. Fr these, the fundaental frequency f scillatin with bth the ends fixed will be deterined. We will cpare this frequency with the frequency f scillatins with ne end fixed and the ther end free as deterined earlier in Part B. Thery: Part A: Let L be the length f the spring when the spring is kept hrizntal under n tensin, be the ass attached t the free end f the spring, L be the length f the spring when the ass is attached at its lwer end, S be the equilibriu extensin f the spring fr ass, s be the ass f the spring, K be the spring cnstant and g be the acceleratin due t gravity. Thus, S L L Nte that the tensin in the spring varies alng the spring fr ( + s )g at the tp t g at the btt. We can write, 2

3 T ( x) ( s ) g C g x where, C is a cnstant f prprtinality. C = s /L and x is the distance fr the tp f the given pint; x varies fr 0 t L. We can deterine the expressin fr S, by taking extensin f a sall eleent f length x and integrating ver the ttal length f the spring. The final expressin, which we get is, s g S 2 2 K where, ( s /2) is called the ass crrectin factr (static case) cs. Part B: The expressin fr the tie perid f scillatins T fr an ideal (ass-less) spring-ass syste is given by, T 2 In case f the sft assive springs, we cannt neglect the ass f the spring since these springs can scillate withut any attached ass. We thus need t dify the abve expressin fr T. This can be dne using the principle f cnservatin f energy, i.e. Ptential Energy + Kinetic Energy = cnstant. The dified expressin, which we get is, s 3 T 2 3 K where ( s /3) is again the ass crrectin factr (dynaic case) cd. Nte that the ass crrectin factrs in Part A and Part B are different. The crrespnding frequency f scillatins f ' is given by, f ' T Part C: The extended spring serves as a unifrly distributed ass syste. It has its wn natural frequencies like a hllw pipe clsed at bth the ends [Nte that, bth the ends f the spring ay be taken t be fixed. The upper end is fixed in any case and the aplitude f the lwer end is s sall, as cpared t the extended length f the spring that it can be taken t be zer]. The natural frequencies crrespnd t statinary waves; their wavelengths are given by 2 n L, n, 2,3,... n Nw, n f n = velcity V f the waves n the spring, where f n is the frequency f the lngitudinal statinary waves set up n the spring; n = is the fundaental, n = 2 the secnd harnic and s n: V V n f n 4 2 L n K, f 2,...., f V 2 L V L f n n f 3

4 This fundaental frequency f in this case shuld be twice that f the fundaental frequency f ' f the spring with zer ass attached t the spring. Experiental Setup: Fr Part A and B, yu will need a sft assive spring, a retrt stand with a clap, a set f ass, a easuring tape / scales and a digital stpwatch. Fr Part C, yu will need a sft assive spring, a lng and heavy retrt stand with a clap at the tp end and a echanical vibratr claped near the base f the stand. We will als need a functin generatr. In this case, the sft assive spring shuld be claped at the upper end n the lng retrt stand. The lwer end f the spring shuld be claped t the crcdile clip fixed at the centre f the echanical vibratr. The lwer end f the spring will be subjected t an up and dwn harnic tin using the echanical vibratr. It ust be ensured that the aplitude f this tin is sall enugh s that these ends culd be cnsidered t be fixed. Warning: ) D nt extend the spring beynd the elastic liit. Chse thughtfully the value f the axiu ass that ay be attached t the lwer end f the given spring. 2) Keep the aplitude f scillatins f the spring-ass syste just sufficient t get the required nuber f scillatins. 3) Reeber always t switch ON the pwer supply t any instruent befre applying the input t it. 4) Use the echanical vibratr very carefully. Yu shuld nt get hurt with the sharp edges/crners. Be extreely careful while claping the lwer end f the spring t the vibratr using the crcdile clip. 5) The aplitude f vibratins shuld be carefully adjusted t the required level using the vltage selectin and aplitude knb f the functin generatr. 6) Use the easuring tape carefully t avid any injury. The tape is etallic, and the edges are very sharp. Prcedural Instructins: Part A: (i) Measure the length L f the spring keeping it hrizntal n a table in an unstretched (all the cils tuching each ther) psitin. (ii) Hang the spring t the clap fixed t the tp end f the retrt stand. The spring gets extended under its wn weight. (iii) Take apprpriate asses and attach the t the lwer end f the spring. (Chse the range f the ass carefully, keeping in ind the elastic liit). (iv) Measure the length L f the spring in each case. (Fr better results yu ay repeat each easureent tw r three ties.) Thus deterine the equilibriu extensin S fr each value f ass attached. (v) Plt an apprpriate graph and deterine the spring cnstant K f the spring and als the ass crrectin factr cs. (Take g = 980 c/s 2 = 9.80 /s 2 ). Questin : State and justify the selectin f variables pltted n X and Y axes. Explain the bserved behavir and interpret the X and Y intercepts. Part B: 4

5 (i) Keep the spring claped t the retrt stand. (ii) Try t set the spring int scillatins withut any ass attached, yu will bserve that the spring scillates under the influence f its wn weight. (iii)attach different asses t the lwer end f the spring and easure the tie perid f scillatins f the spring ass syste fr each value f the ass attached. (Chse the asses carefully, keeping in ind the elastic liit). Yu ay use the ethd f easuring tie fr a nuber f (ay be 0, 20, 30..) scillatins and deterine the average tie perid. (iv) Perfr the necessary data analysis and deterine spring cnstant K and the ass crrectin factr cd using the abve data. (v) Als deterine frequency f ' fr zer ass attached t the spring fr the graph. Using the Eq. f ' 2 K c and the value f K fr Part A, deterine c (the ass crrectin factr). Check whether this is the sae ass crrectin factr cd btained earlier. Questin 2: Des the abve ethd f easuring the ttal tie fr a nuber f scillatins help us t increase the reliability f tie perid easureent? (5) Part C: (i) Keep the spring claped t the lng retrt stand. (ii)clap the lwer end f the spring t the crcdile clip attached t the vibratr. (iii) Cnnect the utput f the functin generatr t the input f the echanical vibratr using BNC cable (iv) Starting fr zer, slwly g n increasing the frequency f vibratins prduced by the vibratr by increasing the frequency f the sinusidal signal/wave generated by the funtin generatr. At a particular frequency yu will bserve that the idpint f the spring will scillate with large aplitude indicating an antinde there. (Yu ay use a sall piece f tissue paper t bserve the aplitude at the antinde.) This is the fundaental de (first harnic) f scillatin f the spring. Adjust the frequency t get the axiu pssible aplitude at the antinde. Measure and recrd this frequency using the display n the functin generatr. (v) Increase the frequency further and bserve higher harnics identifying the n the basis f the nuber f lps yu can see between the fixed ends. (vi) Plt a graph f frequency fr different nuber f lps (i.e. the harnics) versus the nuber f lps (harnics). Deterine this fundaental frequency f fr the slpe f this graph. (vii) Cpare this fundaental frequency f with the frequency f ' f the spring ass syste with ne end fixed and the zer ass attached (as deterined in Part B) and shw that f ' = (f /2). Questin 3: Explain why the tw frequencies shuld be related by a factr f tw? (Take the analgy between the spring and an air clun.) References: ) J. Christensen, A. J. Phys, 2004, 72(6), ) T. C. Heard, N. D. Newby Jr, Behavir f a Sft Spring, A. J. Phys, 45 (), 977, pp

6 3) H. C. Pradhan, B. N. Meera, Oscillatins f a Spring With Nn-negligible Mass, Physics Educatin (India), 3, 996, pp ) B. N. Meera, H. C. Pradhan, Experiental Study f Oscillatins f a Spring with Mass Crrectin, Physics Educatin (India), 3, 996, pp ) Rajesh B. Khaparde, B. N. Meera, H. C. Pradhan, Study f Statinary Lngitudinal Oscillatins n a Sft Spring, Physics Educatin (India), 4, 997, pp ) H. J. Pain, The Physics f Vibratins and Waves, 2 nd Ed, Jhn Wiley & Sns, Ltd., 98. 7) D. Halliday, R. Resnick, J. Walker, Fundaentals f Physics, 5 th Ed, Jhn Wiley & Sns, Inc., ) K. Raa Reddy, S. B. Badai, V. Balasubraanian, Oscillatins and Waves, University Press, Hyderabad,

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

Harmonic Motion (HM) Oscillation with Laminar Damping

Harmonic Motion (HM) Oscillation with Laminar Damping Harnic Mtin (HM) Oscillatin with Lainar Daping If yu dn t knw the units f a quantity yu prbably dn t understand its physical significance. Siple HM r r Hke' s Law: F k x definitins: f T / T / Bf x A sin

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #10 Solutions November 19/20

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #10 Solutions November 19/20 PHY 40Y FOUNDTIONS OF PHYSICS 00-00 Tutrial Questins #0 Slutins Nveer 9/0 Dape an Driven Harnic Mtin, Resnance. ass f 0 g is cnnecte t a light spring having frce cnstant 5.4 N/. It is free t scillate n

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555.

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555. hapter 1 c) When the average bld velcity in the capillary is reduced by a factr f 10, the delivery f the slute t the capillary is liited s that the slute cncentratin after crit 0.018 c is equal t er at

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

Hooke s Law (Springs) DAVISSON. F A Deformed. F S is the spring force, in newtons (N) k is the spring constant, in N/m

Hooke s Law (Springs) DAVISSON. F A Deformed. F S is the spring force, in newtons (N) k is the spring constant, in N/m HYIC 534 XRCI-4 ANWR Hke s Law (prings) DAVION Clintn Davissn was awarded the Nbel prize fr physics in 1937 fr his wrk n the diffractin f electrns. A spring is a device that stres ptential energy. When

More information

Lecture 11 DAMPED AND DRIVEN HARMONIC OSCILLATIONS. Composition of harmonic oscillations (1) Harmonic motion diff. equation is: -linear -uniform

Lecture 11 DAMPED AND DRIVEN HARMONIC OSCILLATIONS. Composition of harmonic oscillations (1) Harmonic motion diff. equation is: -linear -uniform Lecture DMPED ND DRIVEN HRMONIC OSCILLTIONS Ntes: Lecture - Cpsitin f harnic scillatins () Learn re: Linear differential equatin Harnic tin diff. equatin is: -linear -unifr d + http://en.wikipedia.rg/wiki/linear_differential_eq

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

FIELDS AND RADIATION FROM A MOVING ELECTRIC CHARGE

FIELDS AND RADIATION FROM A MOVING ELECTRIC CHARGE FIELDS AND RADIATION FROM A MOING ELECTRIC CHARGE Musa D. Abdullahi, U.M.Y. University P.M.B. 18, Katsina, Katsina State, Nigeria E-ail: usadab@utlk.c, Tel: +348034080399 Abstract The paper assued that

More information

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS CHAPTER HYDROSTATICS. INTRODUCTION Hydraulic engineers have any engineering applicatins in hich they have t cpute the frce being exerted n suberged surfaces. The hydrstatic frce n any suberged plane surface

More information

Inertial Mass of Charged Elementary Particles

Inertial Mass of Charged Elementary Particles David L. Bergan 1 Inertial Mass Inertial Mass f Charged Eleentary Particles David L. Bergan Cn Sense Science P.O. Bx 1013 Kennesaw, GA 30144-8013 Inertial ass and its prperty f entu are derived fr electrdynaic

More information

SIMPLE NUMERICAL METHOD FOR KINETICAL INVESTIGATION OF PLANAR MECHANICAL SYSTEMS WITH TWO DEGREES OF FREEDOM

SIMPLE NUMERICAL METHOD FOR KINETICAL INVESTIGATION OF PLANAR MECHANICAL SYSTEMS WITH TWO DEGREES OF FREEDOM Interdisciplinar Descriptin f Cple Sstes 4(), 6-69, 06 SIMPLE NUMERICAL METHOD FOR KINETICAL INVESTIGATION OF PLANAR MECHANICAL SYSTEMS WITH TWO DEGREES OF FREEDOM István Bíró* Facult f Engineering Universit

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

CLASS XI SET A PHYSICS

CLASS XI SET A PHYSICS PHYSIS. If the acceleratin f wedge in the shwn arrangement is a twards left then at this instant acceleratin f the blck wuld be, (assume all surfaces t be frictinless) a () ( cs )a () a () cs a If the

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Charge of an Electron

Charge of an Electron Charge f an Electrn EX-9929 Page 1 f 12 EQUIPMENT Charge f an Electrn 1 Millikan Oil Drp Apparatus AP-8210 1 Basic Digital Multimeter SE-9786 1 High Vltage Pwer Supply SF-9585A 1 Large Rd Base ME-8735

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

1) p represents the number of holes present. We know that,

1) p represents the number of holes present. We know that, ECE650R : Reliability Physics f Nanelectrnic Devices Lecture 13 : Features f FieldDependent NBTI Degradatin Date : Oct. 11, 2006 Classnte : Saakshi Gangwal Review : Pradeep R. Nair 13.0 Review In the last

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 0 Public Exam Questins Unit 1: Circular Mtin NAME: August 009---------------------------------------------------------------------------------------------------------------------- 1. Which describes

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 3204 Public Exam Questins Unit 1: Circular Mtin NAME: August 2009---------------------------------------------------------------------------------------------------------------------- 12. Which

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Charge of an Electron

Charge of an Electron Charge f an Electrn EX-999 Page 1 f 15 EQUIPMENT Charge f an Electrn 1 Millikan Oil Drp Apparatus AP-810 1 Basic Digital Multimeter SE-9786 1 High Vltage Pwer Supply SF-9585A 1 Large Rd Base ME-875 1 45

More information

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position.

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position. CHAPER : Vibratins and Waes Answers t Questins. he blades in an electric shaer ibrate, apprxiately in SHM. he speaers in a stere syste ibrate, but usually in a ery cplicated way since any ntes are being

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support.

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support. ecture 6 Mderately arge Deflectin Thery f Beams Prblem 6-1: Part A: The department f Highways and Public Wrks f the state f Califrnia is in the prcess f imprving the design f bridge verpasses t meet earthquake

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Finding the Earth s magnetic field

Finding the Earth s magnetic field Labratry #6 Name: Phys 1402 - Dr. Cristian Bahrim Finding the Earth s magnetic field The thery accepted tday fr the rigin f the Earth s magnetic field is based n the mtin f the plasma (a miture f electrns

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

Time varying fields and Maxwell's equations Chapter 9

Time varying fields and Maxwell's equations Chapter 9 Tie varying fields and Maxwell's equatins hapter 9 Dr. Naser Abu-Zaid Page 9/7/202 FARADAY LAW OF ELETROMAGNETI INDUTION A tie varying agnetic field prduces (induces) a current in a clsed lp f wire. The

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electrmagnetic Waves Lecture 14 23.1 The Discvery f Electrmagnetic Waves 23.2 Prperties f Electrmagnetic Waves 23.3 Electrmagnetic Waves Carry Energy and Mmentum 23.4 Types f Electrmagnetic

More information

CHAPTER 114 EXCITATION OF WAVES INSIDE A BOTTOMLESS HARBOR

CHAPTER 114 EXCITATION OF WAVES INSIDE A BOTTOMLESS HARBOR CHAPTER 114 EXCITATION OF WAVES INSIDE A BOTTOMLESS HARBOR by 1..2 3 Nbru Sakua, Jhannes Bu'hler and R. L. Wiegel INTRODUCTION In planning enclsed areas in the cean, such as ffshre harbrs fr fishing r

More information

PHYSICS Unit 3 Trial Examination

PHYSICS Unit 3 Trial Examination STAV Publishing Pty Ltd 005 PHYSICS Unit 3 Trial Examinatin SOLUTIONS BOOK Published by STAV Publishing Pty Ltd. STAV Huse, 5 Munr Street, Cburg VIC 3058 Australia. Phne: 6 + 3 9385 3999 Fax: 6 + 3 9386

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

Introduction to Smith Charts

Introduction to Smith Charts Intrductin t Smith Charts Dr. Russell P. Jedlicka Klipsch Schl f Electrical and Cmputer Engineering New Mexic State University as Cruces, NM 88003 September 2002 EE521 ecture 3 08/22/02 Smith Chart Summary

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS On cmpletin f this tutrial yu shuld be able t d the fllwing. Define viscsity

More information

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION U. S. FOREST SERVICE RESEARCH PAPER FPL 50 DECEMBER U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Intrductin: A sund wave (r pressure r cmpressin wave) results when a surface (layer f mlecules) mves back and frth in a medium prducing a sequence f cmpressins C and rarefactins R.

More information

Chemical Engineering 170 October 16, 2003 Midterm Exam Closed Book and Closed Notes One 8.5 x 11 in. page of notes allowed

Chemical Engineering 170 October 16, 2003 Midterm Exam Closed Book and Closed Notes One 8.5 x 11 in. page of notes allowed Cheical ngineering 70 Octber 6, 00 Mier xa Clsed B and Clsed Ntes One 8.5 x in. page f ntes allwed ectin. hrt Answers. Nae fur interactins invlved in aintaining the tertiary structure f prteins. Hydrgen

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

FE Analysis of a Vibrating Rigid Circular Piston in Water

FE Analysis of a Vibrating Rigid Circular Piston in Water FE Analysis f a Vibrating Rigid Circular Pistn in Water K. Jagadeeshl and M. S. Vijaya2 I-Sr. Lecturer, 2 -Visiting Prfessr, Center fr Electrnic Materials and Devices Research, M. S. Raaiah Schl f Advanced

More information

2015 Regional Physics Exam Solution Set

2015 Regional Physics Exam Solution Set 05 Reginal hysics Exa Slutin Set. Crrect answer: D Nte: [quantity] dentes: units f quantity WYSE Acadeic Challenge 05 Reginal hysics Exa SOLUTION SET r F r a lengthass length / tie ass length / tie. Crrect

More information

Disclaimer: This lab write-up is not

Disclaimer: This lab write-up is not Diclaier: Thi lab write-up i nt t be cpied, in whle r in part, unle a prper reference i ade a t the urce. (It i trngly recended that yu ue thi dcuent nly t generate idea, r a a reference t explain cplex

More information

Spring Pendulum with Dry and Viscous Damping

Spring Pendulum with Dry and Viscous Damping Spring Pendulum with Dry and Viscus Damping Eugene I Butikv Saint Petersburg State University, Saint Petersburg, Russia Abstract Free and frced scillatins f a trsin spring pendulum damped by viscus and

More information

INTRODUCTION TO ENZYME KINETICS

INTRODUCTION TO ENZYME KINETICS Bilgy 00; Lecture 0 INTRODUCTION TO ENZYME INETICS enzye actie (catalytic) sites. stabilize substrate binding with sae cllectin f nn-calent interactins which theseles stabilize enzye 3-D cnfratins H-bnds,

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT POLARISATION View vide n plarisatin f light While all the experimental evidence s far that supprts the wave nature f light, nne f it tells us whether light

More information

PHYS College Physics II Final Examination Review

PHYS College Physics II Final Examination Review PHYS 1402- Cllege Physics II Final Examinatin Review The final examinatin will be based n the fllwing Chapters/Sectins and will cnsist f tw parts. Part 1, cnsisting f Multiple Chice questins, will accunt

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

Preparation work for A2 Mathematics [2017]

Preparation work for A2 Mathematics [2017] Preparatin wrk fr A2 Mathematics [2017] The wrk studied in Y12 after the return frm study leave is frm the Cre 3 mdule f the A2 Mathematics curse. This wrk will nly be reviewed during Year 13, it will

More information

"NEET / AIIMS " SOLUTION (6) Avail Video Lectures of Experienced Faculty.

NEET / AIIMS  SOLUTION (6) Avail Video Lectures of Experienced Faculty. 07 NEET EXAMINATION SOLUTION (6) Avail Vide Lectures f Exerienced Faculty Page Sl. The lean exressin which satisfies the utut f this lgic gate is C = A., Whichindicates fr AND gate. We can see, utut C

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

Springs in parallel. Two springs in parallel. Springs in series. Springs in series. Resonance. Forced vibrations and resonance. 2 C. 2 1/2 m.

Springs in parallel. Two springs in parallel. Springs in series. Springs in series. Resonance. Forced vibrations and resonance. 2 C. 2 1/2 m. Springs in parallel w springs in parallel Suppse yu had tw identical springs each with frce cnstant frm which an bject f mass m was suspended. he scillatin perid fr ne spring is. What wuld the scillatin

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Lecture 7 Further Development of Theory and Applications

Lecture 7 Further Development of Theory and Applications P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 7 Further Develpment f Ther and Applicatins Hke s law fr plane stress. Relatinship between the elastic cnstants. lume change and bulk mdulus. Spherical

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 7: Magnetism and Electrmagnetism Ntes (Cntent in bld is fr Higher Tier nly) Magnets - Nrth and Suth Ples - Same Ples repel - Oppsite ples attract Permanent Magnets - Always magnetic,

More information

Department of Electrical Engineering, University of Waterloo. Introduction

Department of Electrical Engineering, University of Waterloo. Introduction Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flip-flps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position.

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the equilibrium position. CHAPER : Vibratins and Waes Answers t Questins. he blades in an electric shaer ibrate, apprximately in SHM. he speakers in a stere system ibrate, but usually in a ery cmplicated way since many ntes are

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected.

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected. 1 HW #3: Cnservatin f Linear Mmentum, Cnservatin f Energy, Cnservatin f Angular Mmentum and Turbmachines, Bernulli s Equatin, Dimensinal Analysis, and Pipe Flws Prblem 1. Cnservatins f Mass and Linear

More information

Honors Physics Final Review Summary

Honors Physics Final Review Summary Hnrs Physics Final Review Summary Wrk Dne By A Cnstant Frce: Wrk describes a frce s tendency t change the speed f an bject. Wrk is dne nly when an bject mves in respnse t a frce, and a cmpnent f the frce

More information

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d: Slutins--Ch. 6 (Energy) CHAPTER 6 -- ENERGY 6.) The f.b.d. shwn t the right has been prvided t identify all the frces acting n the bdy as it mves up the incline. a.) T determine the wrk dne by gravity

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3 ME 5 - Machine Design I Fall Semester 06 Name f Student: Lab Sectin Number: Final Exam. Open bk clsed ntes. Friday, December 6th, 06 ur name lab sectin number must be included in the spaces prvided at

More information

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION Instructins: If asked t label the axes please use real wrld (cntextual) labels Multiple Chice Answers: 0 questins x 1.5 = 30 Pints ttal Questin Answer Number 1

More information

1/2 and e0 e s ' 1+ imm w 4 M s 3 πρ0 r 3 m. n 0 ktr. .Also,since n 0 ktr 1,wehave. 4 3 M sπρ 0 r 3. ktr. 3 M sπρ 0

1/2 and e0 e s ' 1+ imm w 4 M s 3 πρ0 r 3 m. n 0 ktr. .Also,since n 0 ktr 1,wehave. 4 3 M sπρ 0 r 3. ktr. 3 M sπρ 0 Chapter 6 6.1 Shw that fr a very weak slutin drplet (m 4 3 πr3 ρ 0 M s ), (6.8) can be written as e 0 ' 1+ a r b r 3 where a σ 0 /n 0 kt and b imm w / 4 3 M sπρ 0. What is yur interpretatin f thecnd and

More information

DINGWALL ACADEMY NATIONAL QUALIFICATIONS. Mathematics Higher Prelim Examination 2010/2011 Paper 1 Assessing Units 1 & 2.

DINGWALL ACADEMY NATIONAL QUALIFICATIONS. Mathematics Higher Prelim Examination 2010/2011 Paper 1 Assessing Units 1 & 2. INGWLL EMY Mathematics Higher Prelim Eaminatin 00/0 Paper ssessing Units & NTIONL QULIFITIONS Time allwed - hur 0 minutes Read carefull alculatrs ma NOT be used in this paper. Sectin - Questins - 0 (0

More information