Cogsci 118B. Virginia de Sa. Self-supervised Learning

Size: px
Start display at page:

Download "Cogsci 118B. Virginia de Sa. Self-supervised Learning"

Transcription

1 Cogsci 118B 1 Virginia de Sa Self-supervised Learning

2 Self-Supervised Learning 2 How can we get a system to learn without providing it with a supervisory signal?

3 Newly-sighted adults see but don t see 3 Having often forgot which was the Cat, and which the Dog, he was asham d to ask; but catching the Cat (which he knew by feeling) he was observ d to look at her steadfastly and then setting her down, said, So Puss! I shall know you another Time. [Cheselden, 1728] When... the experiment was made of giving her a silver pencil case and a large key to examine with her hands; she discriminated and knew each distinctly; but when they were placed on the table, side by side, through she distinguished each with her eye, yet she could not tell which was the pencil case and which was the key. [Wardrop 1827] Thus, for patient TG, telling a circle from a square, or either from a triangle was very difficult; he had to stare at the angles, one at a time, engaging in what we have called scanning, to do it. [Valvo 1971]

4 Visual Cortical Areas 4 from Felleman, D.J. and Van Essen, D.C. (1991) Cerebral Cortex 1:1-47.

5 Multisensory integration and Cortical Feedback help pattern recognition learning 5

6 Peterson-Barney Vowel Formant Dataset: Supervised Case (with labels) 6 second formant frequency [F2] in Hz first formant frequency [F1] in Hz

7 Peterson-Barney Vowel Formant Dataset: Unsupervised Case (no labels) 7 second formant frequency [F2] in Hz first formant frequency [F1] in Hz

8 Motivation for Approach Self-Supervised Teaching 8 Supervised Unsupervised Self-Supervised - label implausible (implausible) label - limited power - derives label from a co-occuring input to "cow" Target another modality Input Input Input 1 Input 2 moo

9 The Minimizing-Disagreement(M-D) Algorithm Modality 2 P 0.5 P (C B )p(x 2 C B ) Modality 1 P P (C A )p(x 2 C A ) 0.3 P (C A )p(x 1 C A ) 0.3 P (C B )p(x 1 C B ) x x1

10 The Minimizing-Disagreement(M-D) Algorithm Modality 2 P 0.5 P (C B )p(x 2 C B ) Modality 1 P P (C A )p(x 2 C A ) 0.3 P (C A )p(x 1 C A ) 0.3 P (C B )p(x 1 C B ) x x1 P p(x 2 ) P p(x 1 ) x x1

11 The Minimizing-Disagreement(M-D) Algorithm Modality 2 P 0.5 P (C B )p(x 2 C B ) Modality 1 P P (C A )p(x 2 C A ) 0.3 P (C A )p(x 1 C A ) 0.3 P (C B )p(x 1 C B ) x x1 P p(x 2 ) P p(x 1 ) x2 p(x 2 ) p(x 1 ) x1

12 The Minimizing-Disagreement(M-D) Algorithm Modality 2 P 0.5 P (C B )p(x 2 C B ) Modality 1 P P (C A )p(x 2 C A ) 0.3 P (C A )p(x 1 C A ) 0.3 P (C B )p(x 1 C B ) x x1 P p(x 2 ) P p(x 1 ) x2 p(x 2 ) p(x 1 ) x1 Minimize: R R b2 b 1 p(x 1, x 2 )dx 1 dx 2 + R b 1 R b p(x 1, x 2 )dx 1 dx 2 2

13 Self-Supervised Teaching 10 "Class" Units Multi-sensory object area Hidden Units Modality/Network 1 Modality/Network 2 (Visual) (Auditory)

14 Self-Supervised Teaching 11 "Class" Units Multi-sensory object area Hidden Units Modality/Network 1 Modality/Network 2 (Visual) (Auditory)

15 Self-Supervised Teaching 12 "Class" Units Multi-sensory object area Hidden Units Modality/Network 1 Modality/Network 2 (Visual) (Auditory)

16 Self-Supervised Teaching 13 feedback of class picked by auditory input visual input

17 Self-Supervised Teaching 14 feedback of class picked by auditory input visual input move the weight from the same class towards and that from the other class away w j (n + 1) = w j (n) ± α(n) ( Xn w j (n)) Xn w j (n)

18 Data Collection 15 Auditory Processing Visual Processing Filter... Normal Flow 24 frequency channels x 9 time windows Average 25 spatial sums x 5 frames in time Σ Σ Σ

19 Sample Patterns 16 time space /WA/ /BA/ } time frequency }

20 Percentage Correct (Generalization Performance) Results on Visual-Auditory Dataset Self-Supervised Supervised Initial M-D LVQ 2.1 Labeling Auditory Network Visual Network 17

21 Simulation Conclusions 18 Clustering performance improves when information from other sensory modalities is used The minimizing-disagreement algorithm is a simple effective way of using the cross-sensory correlations Feedback connections are crucial to feed back the information from the other sensory modalities

22 Why are sensory modalities separated and connected the way they are? 19 Multi-sensory integration areas, Hippocampus olfaction IT V2? A2 A1 somatosensation V1

23 Why not mix up visual and auditory inputs? 20 Auditory Processing Visual Processing Filter... Normal Flow 24 frequency channels x 9 time windows Average 25 spatial sums x 5 frames in time Σ Σ Σ

24 Dividing Modalities into Sub-Modalities 21

25 Performance of Sub-Modalities 22 All numbers give percent correct classifications on independent test sets ± standard deviations Pseudo-Modality Supervised Performance Ax 89 ± 2 Ay 91 ± 2 Vx 83 ± 2 Vy 77 ± 3

26 Performance of Sub-Modalities 22 All numbers give percent correct classifications on independent test sets ± standard deviations Pseudo-Modality Supervised Performance Ax 89 ± 2 Ay 91 ± 2 Vx 83 ± 2 Vy 77 ± 3 Trained By Ax Ay Vx Vy Performance of Ax N/A

27 Performance of Sub-Modalities 23 All numbers give percent correct classifications on independent test sets ± standard deviations Pseudo-Modality Supervised Performance Ax 89 ± 2 Ay 91 ± 2 Vx 83 ± 2 Vy 77 ± 3 Trained By Ax Ay Vx Vy Performance of Ax N/A 69 ± 5 69 ± 3 63 ± 3

28 Performance of Sub-Modalities 24 All numbers give percent correct classifications on independent test sets ± standard deviations Pseudo-Modality Supervised Performance Ax 89 ± 2 Ay 91 ± 2 Vx 83 ± 2 Vy 77 ± 3 Trained By Ax Ay Vx Vy Performance of Ax N/A 69 ± 5 69 ± 3 63 ± 3 Performance of Ay 74 ± 5 N/A 80 ± 4 74 ± 5

29 Results for all Combinations of PseudoModalities Ax Ay,Vx,Vy Ay Ax,Vx,Vy Ax,Ay,Vy Vx Ax,Ay,Vx Vy Pseudo- Modality1 Pseudo- Modality2 Ax,Ay Vx,Vy Ax,Vx Ay,Vy Ay,Vx Ax,Vy

30 Removing same-modality inputs from other side Ax Ay,Vx,Vy Ay Ax,Vx,Vy Ax,Ay,Vy Vx Ax,Ay,Vx Vy P-M 1 P-M 2 Ax Ay,Vx,Vy Ay Ax,Vx,Vy Ax,Ay,Vy Vx Ax,Ay,Vx Vy

31 Joint Structure for Different Correlational Relationships 27 Distributions in One Modality Joint Distribution with ρ = Joint Distribution with ρ= Joint Distribution with ρ =

32 Correlations in the Auditory-Visual Speech Dataset 28 Full Correlations 1 Within-Class Correlations

33 Conclusions 29 The best teaching signal is one that independently comes to the same conclusion Different sensory modalities are appropriate for teaching other modalities (and not as appropriate for teaching their own) This suggests a different role for lateral and feedback connections

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

Machine Learning CISC 5800 Dr Daniel Leeds

Machine Learning CISC 5800 Dr Daniel Leeds Machine Learning CISC 5800 Dr Daniel Leeds What is machine learning Finding patterns in data Adapting program behavior 2 Dog photos and the internet Change radio channel when user says change channel Model

More information

Gaussian Statistics and Unsupervised Learning

Gaussian Statistics and Unsupervised Learning Gaussian Statistics and Unsupervised Learning 1 Gaussian Statistics and Unsupervised Learning A Tutorial for the Course Computational Intelligence http://www.igi.tugraz.at/lehre/ci Barbara Resch (minor

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Competitive Learning for Deep Temporal Networks

Competitive Learning for Deep Temporal Networks Competitive Learning for Deep Temporal Networks Robert Gens Computer Science and Engineering University of Washington Seattle, WA 98195 rcg@cs.washington.edu Pedro Domingos Computer Science and Engineering

More information

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA Review for Exam Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 0003 March 26, 204 Abstract Here are some things you need to know for the in-class

More information

Sample Exam COMP 9444 NEURAL NETWORKS Solutions

Sample Exam COMP 9444 NEURAL NETWORKS Solutions FAMILY NAME OTHER NAMES STUDENT ID SIGNATURE Sample Exam COMP 9444 NEURAL NETWORKS Solutions (1) TIME ALLOWED 3 HOURS (2) TOTAL NUMBER OF QUESTIONS 12 (3) STUDENTS SHOULD ANSWER ALL QUESTIONS (4) QUESTIONS

More information

Pattern Recognition Applied to Music Signals

Pattern Recognition Applied to Music Signals JHU CLSP Summer School Pattern Recognition Applied to Music Signals 2 3 4 5 Music Content Analysis Classification and Features Statistical Pattern Recognition Gaussian Mixtures and Neural Nets Singing

More information

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson PCA Review! Supervised learning! Fisher linear discriminant analysis! Nonlinear discriminant analysis! Research example! Multiple Classes! Unsupervised

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

Machine Learning CISC 5800 Dr Daniel Leeds

Machine Learning CISC 5800 Dr Daniel Leeds Machine Learning CISC 5800 Dr Daniel Leeds What is machine learning Finding patterns in data Adapting program behavior 2 Advertise a customer s favorite products This summer, I had two meetings, one in

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Unsupervised Learning with Permuted Data

Unsupervised Learning with Permuted Data Unsupervised Learning with Permuted Data Sergey Kirshner skirshne@ics.uci.edu Sridevi Parise sparise@ics.uci.edu Padhraic Smyth smyth@ics.uci.edu School of Information and Computer Science, University

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

Lecture 3: Machine learning, classification, and generative models

Lecture 3: Machine learning, classification, and generative models EE E6820: Speech & Audio Processing & Recognition Lecture 3: Machine learning, classification, and generative models 1 Classification 2 Generative models 3 Gaussian models Michael Mandel

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Session 1: Pattern Recognition

Session 1: Pattern Recognition Proc. Digital del Continguts Musicals Session 1: Pattern Recognition 1 2 3 4 5 Music Content Analysis Pattern Classification The Statistical Approach Distribution Models Singing Detection Dan Ellis

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3 CS434a/541a: attern Recognition rof. Olga Veksler Lecture 3 1 Announcements Link to error data in the book Reading assignment Assignment 1 handed out, due Oct. 4 lease send me an email with your name and

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Expectation Maximization, and Learning from Partly Unobserved Data (part 2)

Expectation Maximization, and Learning from Partly Unobserved Data (part 2) Expectation Maximization, and Learning from Partly Unobserved Data (part 2) Machine Learning 10-701 April 2005 Tom M. Mitchell Carnegie Mellon University Clustering Outline K means EM: Mixture of Gaussians

More information

GENOMIC SIGNAL PROCESSING. Lecture 2. Classification of disease subtype based on microarray data

GENOMIC SIGNAL PROCESSING. Lecture 2. Classification of disease subtype based on microarray data GENOMIC SIGNAL PROCESSING Lecture 2 Classification of disease subtype based on microarray data 1. Analysis of microarray data (see last 15 slides of Lecture 1) 2. Classification methods for microarray

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses The The 21st April 2011 Jansen and Rit (1995), building on the work of Lopes Da Sliva and others, developed a biologically inspired model of EEG activity. It was originally developed to explain alpha activity

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

Mixtures of Gaussians continued

Mixtures of Gaussians continued Mixtures of Gaussians continued Machine Learning CSE446 Carlos Guestrin University of Washington May 17, 2013 1 One) bad case for k-means n Clusters may overlap n Some clusters may be wider than others

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

Natural Image Statistics and Neural Representations

Natural Image Statistics and Neural Representations Natural Image Statistics and Neural Representations Michael Lewicki Center for the Neural Basis of Cognition & Department of Computer Science Carnegie Mellon University? 1 Outline 1. Information theory

More information

We Prediction of Geological Characteristic Using Gaussian Mixture Model

We Prediction of Geological Characteristic Using Gaussian Mixture Model We-07-06 Prediction of Geological Characteristic Using Gaussian Mixture Model L. Li* (BGP,CNPC), Z.H. Wan (BGP,CNPC), S.F. Zhan (BGP,CNPC), C.F. Tao (BGP,CNPC) & X.H. Ran (BGP,CNPC) SUMMARY The multi-attribute

More information

Name Date Class CHAPTER ASSESSMENT. a. Refers to how close a series of measurements are to one another

Name Date Class CHAPTER ASSESSMENT. a. Refers to how close a series of measurements are to one another Data Analysis Reviewing Vocabulary Match each term in Column A with its definition in Column B. d f j h e b i g c a Column A 1. base unit 2. derived unit 3. graph 4. scientific notation 5. accuracy 6.

More information

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis CS 3 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis AD March 11 AD ( March 11 1 / 17 Multivariate Gaussian Consider data { x i } N i=1 where xi R D and we assume they are

More information

Machine Learning. Boris

Machine Learning. Boris Machine Learning Boris Nadion boris@astrails.com @borisnadion @borisnadion boris@astrails.com astrails http://astrails.com awesome web and mobile apps since 2005 terms AI (artificial intelligence)

More information

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch Psychology 452 Week 12: Deep Learning What Is Deep Learning? Preliminary Ideas (that we already know!) The Restricted Boltzmann Machine (RBM) Many Layers of RBMs Pros and Cons of Deep Learning Course Structure

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Modeling Complex Temporal Composition of Actionlets for Activity Prediction

Modeling Complex Temporal Composition of Actionlets for Activity Prediction Modeling Complex Temporal Composition of Actionlets for Activity Prediction ECCV 2012 Activity Recognition Reading Group Framework of activity prediction What is an Actionlet To segment a long sequence

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Classification on Pairwise Proximity Data

Classification on Pairwise Proximity Data Classification on Pairwise Proximity Data Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra y and Klaus Obermayer yy This paper is a submission to the Neural Information Processing Systems 1998. Technical

More information

Global Scene Representations. Tilke Judd

Global Scene Representations. Tilke Judd Global Scene Representations Tilke Judd Papers Oliva and Torralba [2001] Fei Fei and Perona [2005] Labzebnik, Schmid and Ponce [2006] Commonalities Goal: Recognize natural scene categories Extract features

More information

Tensor Methods for Feature Learning

Tensor Methods for Feature Learning Tensor Methods for Feature Learning Anima Anandkumar U.C. Irvine Feature Learning For Efficient Classification Find good transformations of input for improved classification Figures used attributed to

More information

SELECTIVE APPROACH TO SOLVING SYLLOGISM

SELECTIVE APPROACH TO SOLVING SYLLOGISM SELECTIVE APPROACH TO SOLVING SYLLOGISM While solving Syllogism questions, we encounter many weird Statements: Some Cows are Ugly, Some Lions are Vegetarian, Some Cats are not Dogs, Some Girls are Boys,

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

CSC321 Lecture 7 Neural language models

CSC321 Lecture 7 Neural language models CSC321 Lecture 7 Neural language models Roger Grosse and Nitish Srivastava February 1, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 1 / 19 Overview We

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux INRIA 8 Nov 2011 Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 1 / 80 1 Introduction 2 Linear classifier 3 Convolutional neural networks

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Supervised Learning. George Konidaris

Supervised Learning. George Konidaris Supervised Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom Mitchell,

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lesson 1 5 October 2016 Learning and Evaluation of Pattern Recognition Processes Outline Notation...2 1. The

More information

Voice Activity Detection Using Pitch Feature

Voice Activity Detection Using Pitch Feature Voice Activity Detection Using Pitch Feature Presented by: Shay Perera 1 CONTENTS Introduction Related work Proposed Improvement References Questions 2 PROBLEM speech Non speech Speech Region Non Speech

More information

Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients

Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2015 Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

Supervised learning in single-stage feedforward networks

Supervised learning in single-stage feedforward networks Supervised learning in single-stage feedforward networks Bruno A Olshausen September, 204 Abstract This handout describes supervised learning in single-stage feedforward networks composed of McCulloch-Pitts

More information

Absolute Value. That was easy

Absolute Value. That was easy Absolute Value The absolute value of a number is its distance from 0 on a number line. Absolute value is always nonnegative since distance is always nonnegative. Let s write an example using mathematical

More information

A Similarity Metric for Spatial Probability Distributions

A Similarity Metric for Spatial Probability Distributions A imilarity Metric for patial Probability Distributions Michael H. Coen Massachusetts Institute of Technology Computer cience and Artificial Intelligence Laboratory 32 Vassar t, Cambridge, MA 239 mhcoen@csail.mit.edu

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) Learning Vector Quantization (LVQ) Introduction to Neural Computation : Guest Lecture 2 John A. Bullinaria, 2007 1. The SOM Architecture and Algorithm 2. What is Vector Quantization? 3. The Encoder-Decoder

More information

attention mechanisms and generative models

attention mechanisms and generative models attention mechanisms and generative models Master's Deep Learning Sergey Nikolenko Harbour Space University, Barcelona, Spain November 20, 2017 attention in neural networks attention You re paying attention

More information

Data Informatics. Seon Ho Kim, Ph.D.

Data Informatics. Seon Ho Kim, Ph.D. Data Informatics Seon Ho Kim, Ph.D. seonkim@usc.edu What is Machine Learning? Overview slides by ETHEM ALPAYDIN Why Learn? Learn: programming computers to optimize a performance criterion using example

More information

Analyzing the Performance of Multilayer Neural Networks for Object Recognition

Analyzing the Performance of Multilayer Neural Networks for Object Recognition Analyzing the Performance of Multilayer Neural Networks for Object Recognition Pulkit Agrawal, Ross Girshick, Jitendra Malik {pulkitag,rbg,malik}@eecs.berkeley.edu University of California Berkeley Supplementary

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

c 4, < y 2, 1 0, otherwise,

c 4, < y 2, 1 0, otherwise, Fundamentals of Big Data Analytics Univ.-Prof. Dr. rer. nat. Rudolf Mathar Problem. Probability theory: The outcome of an experiment is described by three events A, B and C. The probabilities Pr(A) =,

More information

Machine Learning 9/2/2015. What is machine learning. Advertise a customer s favorite products. Search the web to find pictures of dogs

Machine Learning 9/2/2015. What is machine learning. Advertise a customer s favorite products. Search the web to find pictures of dogs 9//5 What is machine learning Machine Learning CISC 58 Dr Daniel Leeds Finding patterns in data Adapting program behavior Advertise a customer s favorite products Search the web to find pictures of dogs

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Lecture 9: Speech Recognition. Recognizing Speech

Lecture 9: Speech Recognition. Recognizing Speech EE E68: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis http://www.ee.columbia.edu/~dpwe/e68/

More information

Lecture 9: Speech Recognition

Lecture 9: Speech Recognition EE E682: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 1 2 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline Other Measures 1 / 52 sscott@cse.unl.edu learning can generally be distilled to an optimization problem Choose a classifier (function, hypothesis) from a set of functions that minimizes an objective function

More information

Quarter 2 400, , , , , , ,000 50,000

Quarter 2 400, , , , , , ,000 50,000 Algebra 2 Quarter 2 Quadratic Functions Introduction to Polynomial Functions Hybrid Electric Vehicles Since 1999, there has been a growing trend in the sales of hybrid electric vehicles. These data show

More information

Reading Group on Deep Learning Session 2

Reading Group on Deep Learning Session 2 Reading Group on Deep Learning Session 2 Stephane Lathuiliere & Pablo Mesejo 10 June 2016 1/39 Chapter Structure Introduction. 5.1. Feed-forward Network Functions. 5.2. Network Training. 5.3. Error Backpropagation.

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Instructor Notes for Chapters 3 & 4

Instructor Notes for Chapters 3 & 4 Algebra for Calculus Fall 0 Section 3. Complex Numbers Goal for students: Instructor Notes for Chapters 3 & 4 perform computations involving complex numbers You might want to review the quadratic formula

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 59/259 Lecture 4: Text classification 3 (Sept 5, 207) David Bamman, UC Berkeley . https://www.forbes.com/sites/kevinmurnane/206/04/0/what-is-deep-learning-and-how-is-it-useful

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016/2017 Lessons 9 11 Jan 2017 Outline Artificial Neural networks Notation...2 Convolutional Neural Networks...3

More information

Intelligence and statistics for rapid and robust earthquake detection, association and location

Intelligence and statistics for rapid and robust earthquake detection, association and location Intelligence and statistics for rapid and robust earthquake detection, association and location Anthony Lomax ALomax Scientific, Mouans-Sartoux, France anthony@alomax.net www.alomax.net @ALomaxNet Alberto

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

1 Probabilities. 1.1 Basics 1 PROBABILITIES

1 Probabilities. 1.1 Basics 1 PROBABILITIES 1 PROBABILITIES 1 Probabilities Probability is a tricky word usually meaning the likelyhood of something occuring or how frequent something is. Obviously, if something happens frequently, then its probability

More information

Intelligent Systems Statistical Machine Learning

Intelligent Systems Statistical Machine Learning Intelligent Systems Statistical Machine Learning Carsten Rother, Dmitrij Schlesinger WS2014/2015, Our tasks (recap) The model: two variables are usually present: - the first one is typically discrete k

More information

Supplemental Materials

Supplemental Materials Supplemental Materials Teaching Total Recall of the Alphabet for Students Learning to Read, Write, and Spell with Blumenfeld s Alpha-Phonics Prepared by Donald L. Potter Odessa, TX Copyright November 12,

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

Data Analysis for an Absolute Identification Experiment. Randomization with Replacement. Randomization without Replacement

Data Analysis for an Absolute Identification Experiment. Randomization with Replacement. Randomization without Replacement Data Analysis for an Absolute Identification Experiment 1 Randomization with Replacement Imagine that you have k containers for the k stimulus alternatives The i th container has a fixed number of copies

More information

A.2 Angular Resolution: Seeing Details with the Eye

A.2 Angular Resolution: Seeing Details with the Eye CHAPTER A. LABORATORY EXPERIMENTS 13 Name: Section: Date: A.2 Angular Resolution: Seeing Details with the Eye I. Introduction We can see through a telescope that the surface of the Moon is covered with

More information

T 1. The value function v(x) is the expected net gain when using the optimal stopping time starting at state x:

T 1. The value function v(x) is the expected net gain when using the optimal stopping time starting at state x: 108 OPTIMAL STOPPING TIME 4.4. Cost functions. The cost function g(x) gives the price you must pay to continue from state x. If T is your stopping time then X T is your stopping state and f(x T ) is your

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information