We Prediction of Geological Characteristic Using Gaussian Mixture Model

Size: px
Start display at page:

Download "We Prediction of Geological Characteristic Using Gaussian Mixture Model"

Transcription

1 We Prediction of Geological Characteristic Using Gaussian Mixture Model L. Li* (BGP,CNPC), Z.H. Wan (BGP,CNPC), S.F. Zhan (BGP,CNPC), C.F. Tao (BGP,CNPC) & X.H. Ran (BGP,CNPC) SUMMARY The multi-attribute classification has been widely applied in recent years as one of the direct approachs of seismic reservoir prediction. However, the use of multi-attribute seismic volume classification is a difficult and time-consuming process. In this paper, we propose a simple effective unsupervised approach based on the Gaussian Mixture Model (GMM) to identify special geologic characteristics (geobodies) including fractures, submarine channels, and reefs. The method proposed is a nonlinear statistical process of parameter learning, in which each kind of geobody is represented with one or multiple Gaussian distributions and given a unique cluster label. This method enables different geobodies to be directly extracted from 3-D seismic data. Experimental results on the real field data from Western China show that our method is effective in automatically detecting special geobodies and reducing the uncertainties in reservoir characterization prediction.

2 Introduction The identification of 3-D geological characteristics is a fundamental challenge in reservoir analysis and prediction. Generally, it has been very difficult and infeasible to recognize geological characteristics with traditional interpretation operations. Seismic attributes from pre-stack or poststack seismic data, derived after mathematical change of the seismic wave geometry, kinematics, dynamics, and statistical information, contain a wealth of geological information that reflects the different stratigraphic, structure, and lithology characteristics. Over the last decades, seismic attribute analysis technology has been the main contents of the processing and interpretation of seismic characteristics (e.g., Chopra and Marfurt, 2008; Tomas et al., 2010). In general, seismic attribute is the reflection of a variety of complex geological factors, such that reservoir analysis and prediction using single seismic attribute is likely to yield multiple simultaneous solutions. Recently, multi-attribute analysis techniques have commonly been used in reservoir analysis, such as Kohonen self-organizing map methodology (Strecker and Richard, 2002), probabilistic neural networking (West et al., 2002), Multi-attribute seismic volume facies classification (Fernando and Harold, 2006), and Grey System Theory (AlMoqbel and Wang, 2010). The technique of seismic multi-attribute analysis is the comprehensive utilization of a variety of seismic attributes to predict 3-D geological characteristics, thereby enhancing the accuracy and reliability of the forecast. Traditional approaches such as supervised or unsupervised classification, however, may not perform well for the identification of special and complicated geological features, because of the lack of additional a priori knowledge such as well data, number of knots and hidden lays, initial parameter modeling, condition of convergence and initial number of classification. In this paper, we adopted an unsupervised probabilistic methodology based on the Gaussian Mixture Model (GMM; McLachlan, et al., 1988) to automatically estimate geological properties from seismic multi-attribute volume. The technique is an inherently nonlinear and completely data-driven method that requires no accurate initial model and no a priori operator linking the predicted reservoir properties with seismic inversion and seismic attributes. The proposed method assumes that multi-attribute data obtained from different geological properties have a certain probabilistic distribution function, which can be represented by the Gaussian Mixture Model. Therefore, the problem of identifying 2-D or 3-D geobodies can be considered to be a seismic multi-attribute data clustering process. Different geobodies will be expressed with one or more corresponding Gaussian component distributions in the GMM and will automatically be given a unique cluster label. By this method, different geologic bodies can be extracted directly from the seismic volume. In the experiment, two real 3-D seismic data sets are used to illustrate the performance of the proposed approach. In both cases, the algorithm is used to delineate geobodies, and has proven to be helpful for the submarine channel deposits, a reef carbonate reservoir, and a fracture reservoir. Gaussian mixture model A powerful statistical approach is the Gaussian Mixture Model, which has been widely studied and applied in the fields of image processing, signal analysis, pattern clustering, and speech recognition. As a parametric model of the probability distribution of continuous measurements, GMM can provide greater flexibility and precision in modeling the underlying statistics of sample data than traditional unsupervised clustering algorithms. Generally, all the GMM parameters are estimated from training data using the iterative Expectation Maximization (EM) algorithm (Dempster et al., 1977). In the field of multi-attribute volume clustering, the seismic multi-attributes data obtained from reservoir properties may not be a special or simple probability distribution function. Therefore, we try to simulate the real distribution function of the seismic multi-attribute data with the Gaussian mixture model, which is a linear combination of normal Gaussian functions. In the Gaussian mixture model, each kind of geobody is represented by a combination of one or more Gaussian components. In the classification framework, each multi-attribute seismic sample is represented as a d -dimensional random vector set, S {X u } N u 1 with X u u u u [x 1, x2,..., xd ] d, where N and d are the number of multi-

3 attribute seismic samples and the selected attributes, respectively. Thus, the Gaussian mixture model is a weighted sum of K -component Gaussian densities by the following equation: K K P(x K )= i (x i ), i 0, i 1 i 1, (1) i 1 where i is the set of parameters that defines the i th component, i is the mixing proportions, and the vector k =( 1,..., K, 1,..., K) is collectively represented for all parameters in the Gaussian mixture. In this case, K is the number of components, which defines the scale of the Gaussian mixture model. Each component density (x i )(i 1,..., K) is the Gaussian probability density with specified mean m j and covariance matrix j. Maximum Likelihood Parameter Estimation Given the multi-attributes data set S { x1, x2,... x N } and GMM configuration, we need to estimate the parameters of the GMM with the seismic attributes. There are several commonly used techniques applied to simulate this, including the maximum likelihood (ML) (Dempster et al., 1977), which is the most popular. The aim of ML estimation is to find the model parameters that maximize the likelihood of the GMM given the training data. Generally, we can construct the following maximum loglikelihood function. N N k log ps ( ) log ( x ) log ( x ) (2) k t k i t i t 1 t 1 i 1 Because ML is a non-linear function of the parameters, it can not typically be maximized directly. However, by applying the well-known Expectation-Maximization (EM) algorithm, we can easily estimate the parameters of the Gaussian mixture with the sample data such that the above ML function increases incrementally to a local maximum. Method Workflow The proposed method consists of the following steps: Load and pre-process seismic attributes to define the multi-attribute sample set, Perform the Principle Components Analysis (PCA) method, Estimate the parameters of GMM to identify different geobodies. In practice, each multi-attribute sample is often defined by a unique combination of physical and geometric attributes, which are treated as an n-dimensional vector. The PCA method (Hagen, 1982) was performed prior to running the classification to reduce the dimension of multi-attribute sample without losing any important information, corresponding to the 3-D seismic survey data volume. Following this procedure, all GMM parameters are updated automatically. Using this method, each type of geological characteristic can be related to one or more different Gaussian components in the GMM. Subsequently, the detailed description of geological characteristics can be obtained from the 3- D seismic volume. Figure 1 An example in 1D of the probability function for GMM (black). The joint probability can be represented by the linear combination of two or more Gaussian components (red, blue and green in the example). In the field of multi-attribute volume clustering analysis, each Gaussian component may identify one of the seismic facies.. Examples In the case study from Western China, the carbonate reservoir space is mainly composed of numerous fractures and channels. The GMM algorithm was used to automatically identify major/minor fractures

4 and channel deposit characteristics. Figure 2 shows the seismic section and the amplitude slice extracted from the seismic data volume. In this figure, a solid yellow line marks the target horizon. Along the seismic horizon, a 20 ms window (10 ms above and 10 ms below) is used to extract seismic attribute volumes. After numerous tests, six seismic attributes (most-positive curvature, most-negative curvature, coherence, dip-azimuth, peak amplitude and texture entropy) were calculated as input data to yield additional reservoir information. After PCA, three components were selected. Figure 3 depicts the results of the GMM algorithm applied to the 3-D real field. In Figure 3a, the characteristics of the major fractures (black) and channels (blue) are stressed strongly, and the characteristics of other facies (grey) are ignored. In Figure 3b, some of the subtle faults (green arrows) are clearly visible. These results show that the boundaries of each seismic facies are clear. Figure 2 2-D seismic section of part of the cross-line showing a 500 ms window of input seismic data (displayed with wiggles and variable density color). The yellow line is the chosen seismic horizon. Amplitude slice of the interest horizon. Color bar is amplitude. Figure 3 Clustering results of the major/minor fractures and channel deposit characteristics. The clustering results with major fractures and channel deposits. The sub- clustering results in which minor fractures are detected. For the second case study from western China, we focus on depicting the reef reservoirs. This type of geological body is characterized by large burial depths, compact lithological character and strong anisotropy. It is sometimes difficult to recognize the structure, reservoir, and the fluid characteristic in this area. In Figure 4a and 4b, the seismic section and the amplitude slice extracted from the seismic data volume are shown, respectively. The target horizon is shown by a purple line marked by a red arrow. Along the seismic horizon, a 20 ms window (10 ms above and 10 ms below) is used to extract the multi-attribute volumes. In order to identify different geologic characteristics, six conventional seismic attributes (most-positive curvature, most-negative curvature, coherence, energy ratio similarity, peak amplitude and phase) were used to construct the multi-attribute sample dataset. As shown by the results, the margin forms, sketch structures, and inner cavities of the reefs are clearly delineated (Figure 5). These areas may be significant for seismic exploration. Therefore, the experiment indicates that our method is efficient at identifying the characteristics of reef reservoirs. Conclusions In this paper, we applied the unsupervised statistical seismic facies method based on the Gaussian Mixture Model (GMM) to the identification of different geological features, which has advantages in

5 dealing with complex nonlinear problems. The proposed method combines seismic multi-attributes to enhance the predictive accuracy of the reservoir characteristics. Compared to the traditional clustering algorithms, the proposed method obtains more accurate and reasonable classification results. The proposed algorithm adaptively adjusts the number of the GMM Gaussian components with the training data, which not only reduces the influence of the inaccuracy in sampling points, but also increases the accuracy of the prediction. Finally, we applied the method to two real seismic data sets to illustrate its feasibility. Figure 4 2-D seismic section of part of inline showing a 700 ms window of input seismic data (displayed with wiggles and variable density color). The purple line is the chosen seismic horizon. Amplitude slice of the horizon of interest. Color bar is amplitude. Figure 5 Classification results from 3-D cluster label cube using the GMM algorithm. As shown by the results, the margin forms, sketch structures and inner cavities of the reefs are delineated clearly, respectively. References AlMoqbel, A.M. and Wang, Y. [2010] Carbonate reservoir characterization based on grey prediction theory. EAGE Expanded Abstract. Chopra, S. and Marfurt, K.J. [2008] Emerging and future trends in seismic attributes. The Leading Edge, 27, Dempster, A.P., Laird, N.M. and Rubin, D.B. [1977] Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 39(1), Fernando, A.N. and Harold, T. [2006] Multi-attribute seismic volume facies classification for predicting fractures in carbonate reservoirs. The Leading Edge, 25(6), Hagen, D.C. [1982] The application of principal component analysis to seismic data set. Geoexploration, 20, McLachlan, G., ed. [1988] Mixture Models. Marcel Dekker, New York, NY. West, B.P., May, S.R., Eastwood, J.E. and Rossen, C. [2002] Interactive seismic facies classification using textural attributes and neural networks. The Leading Edge, 21(10), Strecker, U. and Richard, U. [2002] Data mining of 3D poststack seismic attribute volumes using Kohonen self-organizing maps. The Leading Edge, 21, Tomas, V.H., Stephane, G. and Jim, P. [2010] Geometric attributes for seismic stratigraphic interpretation. The Leading Edge, 29,

Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS

Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS The Society of Exploration Geophysicists and GeoNeurale announce Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS 3D Seismic Attributes for Prospect Identification and Reservoir Characterization

More information

Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS

Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS The Society of Exploration Geophysicists and GeoNeurale announce Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS 3D Seismic Attributes for Prospect Identification and Reservoir Characterization

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Downloaded 01/06/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 01/06/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Application of wide-azimuth 3D seismic attributes to predict the microfractures in Block MA area for shale gas exploration in South China Yusheng Zhang* 1, Gang Yu 1, Ximing Wang 1, Xing Liang 2, and Li

More information

Seismic attributes for fault/fracture characterization

Seismic attributes for fault/fracture characterization Satinder Chopra* and Kurt J. Marfurt + *Arcis Corporation, Calgary; + University of Houston, Houston Summary Seismic attributes have proliferated in the last three decades at a rapid rate and have helped

More information

Seismic Attributes and Their Applications in Seismic Geomorphology

Seismic Attributes and Their Applications in Seismic Geomorphology Academic article Seismic Attributes and Their Applications in Seismic Geomorphology Sanhasuk Koson, Piyaphong Chenrai* and Montri Choowong Department of Geology, Faculty of Science, Chulalongkorn University,

More information

Stratimagic. Seismic Facies Classification

Stratimagic. Seismic Facies Classification Stratimagic Seismic Facies Classification 1 Stratimagic A truly geological interpretation of seismic data Stratimagic seismic facies maps allow geoscientists to rapidly gain insight into the depositional

More information

Statistical Rock Physics

Statistical Rock Physics Statistical - Introduction Book review 3.1-3.3 Min Sun March. 13, 2009 Outline. What is Statistical. Why we need Statistical. How Statistical works Statistical Rock physics Information theory Statistics

More information

An Integrated approach for faults and fractures delineation with dip and curvature attributes

An Integrated approach for faults and fractures delineation with dip and curvature attributes 10 th Biennial International Conference & Exposition P 265 An Integrated approach for faults and fractures delineation with dip and curvature attributes Santosh, D.*, Aditi, B., Poonam, K., Priyanka S.,

More information

Quantitative Seismic Interpretation An Earth Modeling Perspective

Quantitative Seismic Interpretation An Earth Modeling Perspective Quantitative Seismic Interpretation An Earth Modeling Perspective Damien Thenin*, RPS, Calgary, AB, Canada TheninD@rpsgroup.com Ron Larson, RPS, Calgary, AB, Canada LarsonR@rpsgroup.com Summary Earth models

More information

technical article Satinder Chopra 1*, Kurt J. Marfurt 2 and Ha T. Mai 2

technical article Satinder Chopra 1*, Kurt J. Marfurt 2 and Ha T. Mai 2 first break volume 27, October 2009 technical article Using automatically generated 3D rose diagrams for correlation of seismic fracture lineaments with similar lineaments from attributes and well log

More information

Delineation of channels using unsupervised segmentation of texture attributes Santosh Dhubia* and P.H.Rao

Delineation of channels using unsupervised segmentation of texture attributes Santosh Dhubia* and P.H.Rao Delineation of channels using unsupervised segmentation of texture attributes Santosh Dhubia* and P.H.Rao Santosh.d@germi.res.in Keywords Channels, ANN, Texture Attributes Summary Seismic facies identification

More information

Some Machine Learning Applications in Seismic Interpretation

Some Machine Learning Applications in Seismic Interpretation Some Machine Learning Applications in Seismic Interpretation August 2018 Satinder Chopra, David Lubo-Robles, Kurt Marfurt data and data analytics are the buzzwords these days. The oil and gas industry

More information

Churning seismic attributes with principal component analysis

Churning seismic attributes with principal component analysis Satinder Chopra + * and Kurt J. Marfurt + Arcis Seismic Solutions, Calgary; The University of Oklahoma, Norman Summary Seismic attributes are an invaluable aid in the interpretation of seismic data. Different

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Geometric attributes such as coherence and curvature are

Geometric attributes such as coherence and curvature are SATINDER CHOPRA, Arcis Seismic Solutions, Calgary, Canada KURT J. MARFURT, University of Oklahoma, Norman, USA Geometric attributes such as coherence and curvature are commonly used for mapping structural

More information

3D geologic modelling of channellized reservoirs: applications in seismic attribute facies classification

3D geologic modelling of channellized reservoirs: applications in seismic attribute facies classification first break volume 23, December 2005 technology feature 3D geologic modelling of channellized reservoirs: applications in seismic attribute facies classification Renjun Wen, * president and CEO, Geomodeling

More information

W041 Faults and Fracture Detection based on Seismic Surface Orthogonal Decomposition

W041 Faults and Fracture Detection based on Seismic Surface Orthogonal Decomposition W041 Faults and Fracture Detection based on Seismic Surface Orthogonal Decomposition I.I. Priezzhev (Schlumberger Information Solution) & A. Scollard* (Schlumberger Information Solution) SUMMARY A new

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

We Improved Salt Body Delineation Using a new Structure Extraction Workflow

We Improved Salt Body Delineation Using a new Structure Extraction Workflow We-08-08 Improved Salt Body Delineation Using a new Structure Extraction Workflow A. Laake* (WesternGeco) SUMMARY Current salt imaging workflows require thorough geological understanding in the selection

More information

Multi-scale fracture prediction using P-wave data: a case study

Multi-scale fracture prediction using P-wave data: a case study Multi-scale fracture prediction using P-wave data: a case study Wanlu Zhang 1,2,*, Shuangquan Chen 1,2, Jian Wang 3, Lianbo Zeng 1, Xiang-Yang Li 1,2,4, 1. State Key Laboratory of Petroleum Resources and

More information

Application of Multi-Attributes and Spectral Decomposition with RGB blending for understanding the strati-structural features: A Case study

Application of Multi-Attributes and Spectral Decomposition with RGB blending for understanding the strati-structural features: A Case study 10 th Biennial International Conference & Exposition P 262 Application of Multi-Attributes and Spectral Decomposition with RGB blending for understanding the strati-structural features: A Case study Summary

More information

Using Curvature to Map Faults, Fractures

Using Curvature to Map Faults, Fractures Using Curvature to Map Faults, Fractures by SATINDER CHOPRA and KURT J. MARFURT Editor s note: Chopra is with Arcis Corp., Calgary, Canada; Marfurt is with the University of Oklahoma. Both are AAPG members.

More information

Semi-Automated Stratigraphic Interpretation The HorizonCube

Semi-Automated Stratigraphic Interpretation The HorizonCube Fig. 2: A horizon slice for (a) non-steered similarity and (b) dipsteered similarity. Note that the dip-steered similarity is essentially showing correct definitions of the fault patterns. of 1 Km (40

More information

The Attribute Optimization Method Based on the Probability Kernel Principal Component Analysis and Its Application

The Attribute Optimization Method Based on the Probability Kernel Principal Component Analysis and Its Application International Journal of Oil, Gas and Coal Engineering 209; 7(): -6 http://www.sciencepublishinggroup.com/j/ogce doi: 0.648/j.ogce.209070. ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online) he Attribute

More information

3D Curvature Analysis for Investigating Natural Fractures in the Horn River Basin, Northeast British Columbia

3D Curvature Analysis for Investigating Natural Fractures in the Horn River Basin, Northeast British Columbia 3D Curvature Analysis for Investigating Natural Fractures in the Horn River Basin, Northeast British Columbia Abdallah Al-Zahrani * University of Calgary aaalzahr@ucalgary.ca and Don C. Lawton University

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Fractured Volcanic Reservoir Characterization: A Case Study in the Deep Songliao Basin*

Fractured Volcanic Reservoir Characterization: A Case Study in the Deep Songliao Basin* Fractured Volcanic Reservoir Characterization: A Case Study in the Deep Songliao Basin* Desheng Sun 1, Ling Yun 1, Gao Jun 1, Xiaoyu Xi 1, and Jixiang Lin 1 Search and Discovery Article #10584 (2014) Posted

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION ABSTRACT Presented in this paper is an approach to fault diagnosis based on a unifying review of linear Gaussian models. The unifying review draws together different algorithms such as PCA, factor analysis,

More information

Instantaneous Spectral Analysis Applied to Reservoir Imaging and Producibility Characterization

Instantaneous Spectral Analysis Applied to Reservoir Imaging and Producibility Characterization Instantaneous Spectral Analysis Applied to Reservoir Imaging and Producibility Characterization Feng Shen 1* and Gary C. Robinson 1, Tao jiang 2 1 EP Tech, Centennial, CO, 80112, 2 PetroChina Oil Company,

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Multiple horizons mapping: A better approach for maximizing the value of seismic data Multiple horizons mapping: A better approach for maximizing the value of seismic data Das Ujjal Kumar *, SG(S) ONGC Ltd., New Delhi, Deputed in Ministry of Petroleum and Natural Gas, Govt. of India Email:

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2 STATS 306B: Unsupervised Learning Spring 2014 Lecture 2 April 2 Lecturer: Lester Mackey Scribe: Junyang Qian, Minzhe Wang 2.1 Recap In the last lecture, we formulated our working definition of unsupervised

More information

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Multi-scenario, multi-realization seismic inversion for probabilistic seismic reservoir characterization Kester Waters* and Michael Kemper, Ikon Science Ltd. Summary We propose a two tiered inversion strategy

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 6 Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.) Project Project Deadlines 3 Feb: Form teams of

More information

Neural Inversion Technology for reservoir property prediction from seismic data

Neural Inversion Technology for reservoir property prediction from seismic data Original article published in Russian in Nefteservice, March 2009 Neural Inversion Technology for reservoir property prediction from seismic data Malyarova Tatyana, Kopenkin Roman, Paradigm At the software

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

P066 Duplex Wave Migration for Coal-bed Methane Prediction

P066 Duplex Wave Migration for Coal-bed Methane Prediction P066 Duplex Wave Migration for Coal-bed Methane Prediction N. Marmalevskyi* (Ukrainian State Geological Prospecting Institute), A. Antsiferov (UkrNIMI), Z. Gornyak (Ukrainian State Geological Prospecting

More information

Geological Expression A New Approach to Volume Interpretation. Gaynor Paton, ffa

Geological Expression A New Approach to Volume Interpretation. Gaynor Paton, ffa Geological Expression A New Approach to Volume Interpretation Gaynor Paton, ffa The Value of Data Frontier exploration High exploration costs Uncertain returns $$$ Mature basins Marginal Returns Geological

More information

Detecting fractures using time-lapse 3C-3D seismic data

Detecting fractures using time-lapse 3C-3D seismic data data Zimin Zhang, Don C. Lawton and Robert R. Stewart ABSTRACT This report presents the interpretation of time-lapse 3C-3D seismic data for fracture detection in a Saskatchewan potash mine. Seismic interpretation

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Fracture characterization from scattered energy: A case study

Fracture characterization from scattered energy: A case study Fracture characterization from scattered energy: A case study Samantha Grandi K., Sung Yuh, Mark E. Willis, and M. Nafi Toksöz Earth Resources Laboratory, MIT. Cambridge, MA. Total Exploration & Production.

More information

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation Clustering by Mixture Models General bacground on clustering Example method: -means Mixture model based clustering Model estimation 1 Clustering A basic tool in data mining/pattern recognition: Divide

More information

SUMMARY INTRODUCTION METHODOLOGY

SUMMARY INTRODUCTION METHODOLOGY Kamal Hami-Eddine*, Pascal Klein, Loic Richard, Paradigm, Andrew Furniss, AWE Limited SUMMARY Automatic seismic facies classification is now common practice in the oil and gas industry. Unfortunately unsupervised

More information

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale Joanne Wang, Paradigm Duane Dopkin, Paradigm Summary To improve the success

More information

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware HampsonRussell A comprehensive suite of reservoir characterization tools cgg.com/geosoftware HampsonRussell Software World-class geophysical interpretation HampsonRussell Software is a comprehensive suite

More information

In a marine environment, topographic features on the sea

In a marine environment, topographic features on the sea Coordinated by ALAN JACKSON Seismic attribute expression of differential compaction SATINDER CHOPRA, Arcis Seismic Solutions, Calgary, Canada KURT J. MARFURT, University of Oklahoma, Norman, USA In a marine

More information

The coherence cube. MIKE BAHORICH Amoco Corporation Denver, CO. Faults parallel to strike. Conventional amplitude time

The coherence cube. MIKE BAHORICH Amoco Corporation Denver, CO. Faults parallel to strike. Conventional amplitude time 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube MIKE BAHORICH Amoco Corporation Denver, CO STEVE FARMER Amoco Corporation Tulsa, OK Seismic data are usually acquired

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Reservoir connectivity uncertainty from stochastic seismic inversion Rémi Moyen* and Philippe M. Doyen (CGGVeritas)

Reservoir connectivity uncertainty from stochastic seismic inversion Rémi Moyen* and Philippe M. Doyen (CGGVeritas) Rémi Moyen* and Philippe M. Doyen (CGGVeritas) Summary Static reservoir connectivity analysis is sometimes based on 3D facies or geobody models defined by combining well data and inverted seismic impedances.

More information

META ATTRIBUTES: A NEW CONCEPT DETECTING GEOLOGIC FEATURES & PREDICTING RESERVOIR PROPERTIES

META ATTRIBUTES: A NEW CONCEPT DETECTING GEOLOGIC FEATURES & PREDICTING RESERVOIR PROPERTIES META ATTRIBUTES: A NEW CONCEPT DETECTING GEOLOGIC FEATURES & PREDICTING RESERVOIR PROPERTIES FredAminzadeh*,FrisoBrouwer*,DavidConnolly* and Sigfrido Nielsen** *dgb-usa,onesugarcreekcenterblvd.,suite935,sugarland,tx,77478usa,tel.281-2403939,info.usa@dgb-group.com

More information

Hidden Markov Models in Language Processing

Hidden Markov Models in Language Processing Hidden Markov Models in Language Processing Dustin Hillard Lecture notes courtesy of Prof. Mari Ostendorf Outline Review of Markov models What is an HMM? Examples General idea of hidden variables: implications

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps Analysis of Interest Rate Curves Clustering Using Self-Organising Maps M. Kanevski (1), V. Timonin (1), A. Pozdnoukhov(1), M. Maignan (1,2) (1) Institute of Geomatics and Analysis of Risk (IGAR), University

More information

Matching the dimensionality of maps with that of the data

Matching the dimensionality of maps with that of the data Matching the dimensionality of maps with that of the data COLIN FYFE Applied Computational Intelligence Research Unit, The University of Paisley, Paisley, PA 2BE SCOTLAND. Abstract Topographic maps are

More information

Seismic reservoir characterization of a U.S. Midcontinent fluvial system using rock physics, poststack seismic attributes, and neural networks

Seismic reservoir characterization of a U.S. Midcontinent fluvial system using rock physics, poststack seismic attributes, and neural networks CORNER INTERPRETER S Coordinated by Linda R. Sternbach Seismic reservoir characterization of a U.S. Midcontinent fluvial system using rock physics, poststack seismic attributes, and neural networks JOEL

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

An integrated study of fracture detection using P-wave seismic data

An integrated study of fracture detection using P-wave seismic data An integrated study of fracture detection using P-wave seismic data Yungui Xu 1, 2, An Yong 3, Xiang-Yang Li 1,2,3, Cao Zhenglin 4 1 British Geological Survey, Murchison House, West Mains Road, Edinburgh

More information

Seismic attributes of time-vs. depth-migrated data using self-adaptive window

Seismic attributes of time-vs. depth-migrated data using self-adaptive window Seismic attributes of time-vs. depth-migrated data using self-adaptive window Tengfei Lin*, Bo Zhang, The University of Oklahoma; Zhifa Zhan, Zhonghong Wan, BGP., CNPC; Fangyu Li, Huailai Zhou and Kurt

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

SEISMIC RESERVOIR CHARACTERIZATION WITH LIMITED WELL CONTROL. Keywords Seismic reservoir characterization with limited well control

SEISMIC RESERVOIR CHARACTERIZATION WITH LIMITED WELL CONTROL. Keywords Seismic reservoir characterization with limited well control SEISMIC RESERVOIR CHARACTERIZATION WITH LIMITED WELL CONTROL Tanja Oldenziel 1, Fred Aminzadeh 2, Paul de Groot 1, and Sigfrido Nielsen 3 1 De Groot-Bril Earth Sciences BV Boulevard 1945 # 24, 7511 AE

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Department of Geosciences M.S. Thesis Proposal

Department of Geosciences M.S. Thesis Proposal Department of Geosciences M.S. Thesis Proposal TITLE: Mapping structural and stratigraphic features using azimuthally dependent seismic attributes. Name: Srinivasa Prasad Jyosyula REASEARCH COMMITTEE (Advisor):

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models Jeff A. Bilmes (bilmes@cs.berkeley.edu) International Computer Science Institute

More information

Applications of texture attribute analysis to 3D seismic data

Applications of texture attribute analysis to 3D seismic data INTERPRETER S CORNER Coordinated by Rebecca B. Latimer Applications of texture attribute analysis to 3D seismic data SATINDER CHOPRA and VLADIMIR ALEXEEV, Arcis Corporation, Calgary, Alberta, Canada In

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Volumetric curvature attributes for fault/fracture characterization

Volumetric curvature attributes for fault/fracture characterization first break volume 25, July 2007 technical article Volumetric curvature attributes for fault/fracture characterization Satinder Chopra 1 and Kurt J. Marfurt 2 Introduction Seismic attributes have proliferated

More information

Determine the azimuths of conjugate fracture trends in the subsurface

Determine the azimuths of conjugate fracture trends in the subsurface Reconnaissance of geological prospectivity and reservoir characterization using multiple seismic attributes on 3-D surveys: an example from hydrothermal dolomite, Devonian Slave Point Formation, northeast

More information

We P2 04 Rock Property Volume Estimation Using the Multiattribute Rotation Scheme (MARS) - Case Study in the South Falkland Basin

We P2 04 Rock Property Volume Estimation Using the Multiattribute Rotation Scheme (MARS) - Case Study in the South Falkland Basin We P2 04 Rock Property Volume Estimation Using the Multiattribute Rotation Scheme (MARS) - Case Study in the South Falkland Basin P.K. Alvarez* (Rock Solid Images), B. Farrer (Borders & Southern Petroleum),

More information

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Geostatistical Reservoir Characterization of Deepwater Channel, Offshore Malaysia Trisakti Kurniawan* and Jahan Zeb, Petronas Carigali Sdn Bhd, Jimmy Ting and Lee Chung Shen, CGG Summary A quantitative

More information

Post-stack attribute-based fracture characterization: A case study from the Niobrara shale

Post-stack attribute-based fracture characterization: A case study from the Niobrara shale Post-stack attribute-based fracture characterization: A case study from the Niobrara shale Geoffrey A. Dorn 1* and Joseph P. Dominguez 1 discuss the use of post-stack 3D seismic data to quickly define

More information

Bearing fault diagnosis based on EMD-KPCA and ELM

Bearing fault diagnosis based on EMD-KPCA and ELM Bearing fault diagnosis based on EMD-KPCA and ELM Zihan Chen, Hang Yuan 2 School of Reliability and Systems Engineering, Beihang University, Beijing 9, China Science and Technology on Reliability & Environmental

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Petrophysical Study of Shale Properties in Alaska North Slope

Petrophysical Study of Shale Properties in Alaska North Slope Petrophysical Study of Shale Properties in Alaska North Slope Minh Tran Tapan Mukerji Energy Resources Engineering Department Stanford University, CA, USA Region of Interest 1.5 miles 20 miles Stratigraphic

More information

Training Venue and Dates Ref # Reservoir Geophysics October, 2019 $ 6,500 London

Training Venue and Dates Ref # Reservoir Geophysics October, 2019 $ 6,500 London Training Title RESERVOIR GEOPHYSICS Training Duration 5 days Training Venue and Dates Ref # Reservoir Geophysics DE035 5 07 11 October, 2019 $ 6,500 London In any of the 5 star hotels. The exact venue

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Arnab Nag*, Divya Prakash Singh, Anshika Agarwal, Shiv Kumar Malasi, Anand S. Kale BPRL, Mumbai

Arnab Nag*, Divya Prakash Singh, Anshika Agarwal, Shiv Kumar Malasi, Anand S. Kale BPRL, Mumbai Application of Seismic Facies Classification, Spectral Decomposition and Seismic Attributes to characterize deep-water depositional facies in Oligocene sequence of KG Basin, India Arnab Nag*, Divya Prakash

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Self Supervised Boosting

Self Supervised Boosting Self Supervised Boosting Max Welling, Richard S. Zemel, and Geoffrey E. Hinton Department of omputer Science University of Toronto 1 King s ollege Road Toronto, M5S 3G5 anada Abstract Boosting algorithms

More information

DATA ANALYSIS AND INTERPRETATION

DATA ANALYSIS AND INTERPRETATION III. DATA ANALYSIS AND INTERPRETATION 3.1. Rift Geometry Identification Based on recent analysis of modern and ancient rifts, many previous workers concluded that the basic structural unit of continental

More information

Lecture 6: Gaussian Mixture Models (GMM)

Lecture 6: Gaussian Mixture Models (GMM) Helsinki Institute for Information Technology Lecture 6: Gaussian Mixture Models (GMM) Pedram Daee 3.11.2015 Outline Gaussian Mixture Models (GMM) Models Model families and parameters Parameter learning

More information

Estimating the parameters of hidden binomial trials by the EM algorithm

Estimating the parameters of hidden binomial trials by the EM algorithm Hacettepe Journal of Mathematics and Statistics Volume 43 (5) (2014), 885 890 Estimating the parameters of hidden binomial trials by the EM algorithm Degang Zhu Received 02 : 09 : 2013 : Accepted 02 :

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Latent Variable Models and EM Algorithm

Latent Variable Models and EM Algorithm SC4/SM8 Advanced Topics in Statistical Machine Learning Latent Variable Models and EM Algorithm Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

Integration of seismic and fluid-flow data: a two-way road linked by rock physics

Integration of seismic and fluid-flow data: a two-way road linked by rock physics Integration of seismic and fluid-flow data: a two-way road linked by rock physics Abstract Yunyue (Elita) Li, Yi Shen, and Peter K. Kang Geologic model building of the subsurface is a complicated and lengthy

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data*

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Yun Ling 1, Xiangyu Guo 1, Jixiang Lin 1, and Desheng Sun 1 Search and Discovery Article #20143 (2012) Posted April

More information