Project One: C Bump functions

Size: px
Start display at page:

Download "Project One: C Bump functions"

Transcription

1 Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018

2 Outline 1 2 The Project

3 Let s recall what the bump functions are: Define f (x) = { 0, x 0 e 1/x, x > 0 Let (x n ) be any sequence with x n 0 which converges to 0. Then f (x n ) 0 also. So 0 is in S(0). Let (x n ) with x n > 0 be any sequence with x n 0. Then f (x n ) = e 1/xn. It is easy to see 1/x n with x n > 0 always has an unbounded limit which we usually call. If you recall from calculus, e y 0 as y. Thus, f (x n ) 0 here for these sequences. If (x n ) was a sequence with infinitely many terms both positive and negative which still converged to 0, then the subsequence of positive terms, (x 1 n ), converges to 0 and the subsequence of negative terms, (x 2 n ), also converges to 0. Further, f (x 1 n ) 0 and f (x 2 n ) 0 as well. With a little work we can see f (x n ) 0 too. We see the only cluster point at 0 is 0. Thus, lim xn 0 f = lim x n 0 f = 0.

4 This function has many properties which you are going to prove! Note This function is continuous at 0 This function is infinitely differentiable and f (n) (0) = 0 for all n. Note this tells us all the derivatives of f are actually continuous. f is so flat at 0 its Taylor Series expansion at 0 does not match f at all! Even though 0 is a global minimum of f occurring at 0 and other points, the second derivative test will fail there.

5 So now we can build some more things. { 0, x a f a (x) = e 1/(x a), x > a A similar analysis shows f a has a zero n th order derivative at a for all n and has a continuous n th order derivative at a for all n. g b (x) = { 0, x b e 1/(x b), x < b A similar analysis shows g b has a zero n th order derivative at b for all n and has a continuous n th order derivative at b for all n.

6 We can then show for any a < b, h a b (x) = f a (x) g b (x) = = 0, x a e 1 x b e 1 x a, a < x < b 0, x b 0, x a b a e (x a)(x b), a < x < b 0, x b A similar analysis shows h ab has a zero n th order derivative at a and b for all n which is continuous a and b for all n. Now multiply h ab by e 2 a+b to get Hab (x) = e 2 a+b hab (x). H ab (x) is an infinitely differentiable function whose value is 0 off of the interval (a, b) and whose maximum value is +1. It is called a C bump function. The closure of the set of x values where H ab (x) > 0 is then [a, b] which is a compact set. This closure is called the support of H ab (x) and so H ab (x) is a C function with compact support. Very important!

7 To plot h use the code below in the function Plottingh(a,b,eps,P). The arguments for the function are a and b which are used to define f a and g b, eps which is used to stay away for the points a and b in the plots and P which is used to set up the linspace command. In the MatLab window type Plottingh(-1,1,.01,72);. This generates the plot which needs labels and a title, of course, which you will have to add.

8 Just type in this function and save as the file Plottingh.m in your current directory. f u n c t i o n P l o t t i n g h ( a, b, eps, P) f a x, a ) exp ( 1/(x a ) ) ; gb x, b ) exp ( 1 / ( x b ) ) ; XA = l i n s p a c e ( a 2,a eps, P/3) ; 5 XM = l i n s p a c e ( a+eps, b eps, P/3) ; XB = l i n s p a c e ( b+eps, b+2,p/3) ; X = [XA,XM,XB ] ; [m, n ] = s i z e (X) ; f o r i =1:n 10 i f (X( i ) < a ) h ( i ) = 0 ; end i f (X( i ) > b ) h ( i ) = 0 ; 15 end i f (X( i ) >a & X( i ) < b ) h ( i ) = f a (X( i ), a ) gb (X( i ), b ) ; end end 20 p l o t (X, h ) ; end

9 Let s look at derivatives of f a. (1): For x a, the derivative f a is easy to calculate f a (x) = { 0, x < a (e 1/(x a) ) = 1 (x a) e 1/(x a), 2 x > a We can see lim x a f a (x) = 0 and from the right, using y = 1/(x a), we have ( ) lim f 1 x a + a (x) = lim x a + (x a) 2 e 1/(x a) y 2 = lim y e y = 0 using our recent homework. Since the right hand and left hand limits match, we see f a (a) = 0.

10 (2): f (2) a (x) = { ( (e 1/(x a) ) (2) = 0, x < a 2 (x a) (x a) 4 ) e 1/(x a), x > a We can see lim x a f a (x) (2) = 0 and from the right, using y = 1/(x a), we have lim f (2) 2y 3 + y 4 x a + a (x) = lim y e y = 0 using our recent homework. Since the right hand and left hand limits match, we see f (2) a (a) = 0. You should be able to see that the basis step for your induction proof is Step (1) and for the induction step, you recognize that at the k th step, the lim x a+ calculation will have the form lim f (k) p k (y) x a + a (x) = lim y e y = 0 where p k (y) is a polynomial in the variable y = 1/(x a).

11 It doesn t matter what this polynomial looks like so you don t need to fuss about finding its actual form. What matters is that it is a polynomial. So convince yourself that this is true by taking a few more derivatives. Then to complete the induction step, you assume f a (k) (x) has the form p k (y) e for y = 1/(x a) and then the rest follows from using the product y rule to calculate f a (k+1) (x).

12 The Project Due Date: Friday November 30, 2018 You are going to do the work to prove the stuff we talk about in the background slides. Do a great job on this. I want to see you put all the stuff we have been doing together. Write well on one side of the paper and treat this like a full report. 1 f a Prove f a is differentiable for all x and in particular f a (a) = 0 Prove f a is twice differentiable for all x and in particular f a (a) = 0 Now look at what you have done and see if you can figure out how to scale your argument up to show f a has an n th derivative with f a (n) (a) = 0. The comments earlier will help with this. 2 Do the same thing for g b. 3 Now handle h ab but note it is easier because we can use the product rule. 4 Plot a nice selection of h ab s to get the feel of how they look. You will have to be careful with the plots as you can t ask MatLab etc to plot near the place where h become 0.

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2017 Outline Geometric Series The

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline 1 Domains of Continuous Functions 2 The

More information

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University ! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 2 Simple Fractional Power Abstract This lecture is going to talk

More information

Mathematical Induction

Mathematical Induction Mathematical Induction James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Introduction to the Class Mathematical Induction

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Lecture 5b: Starting Matlab

Lecture 5b: Starting Matlab Lecture 5b: Starting Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 7, 2013 Outline 1 Resources 2 Starting Matlab 3 Homework

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline Domains of Continuous Functions The Intermediate

More information

General Power Series

General Power Series General Power Series James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 29, 2018 Outline Power Series Consequences With all these preliminaries

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 23, 2018 Outline 1 Dirichlet

More information

Integration by Parts Logarithms and More Riemann Sums!

Integration by Parts Logarithms and More Riemann Sums! Integration by Parts Logarithms and More Riemann Sums! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 16, 2013 Outline 1 IbyP with

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab Abstract This

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline Dirichlet

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

The Method of Undetermined Coefficients.

The Method of Undetermined Coefficients. The Method of Undetermined Coefficients. James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 24, 2017 Outline 1 Annihilators 2 Finding The

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

A DEEPER LOOK AT USING FUNCTIONS IN MATHEMATICA

A DEEPER LOOK AT USING FUNCTIONS IN MATHEMATICA A DEEPER LOOK AT USING FUNCTIONS IN MATHEMATICA In "Getting Started with Mathematica" we learned the basics of plotting and doing computations in this platform. In this document, I will delve a little

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Big-oh stuff. You should know this definition by heart and be able to give it,

Big-oh stuff. You should know this definition by heart and be able to give it, Big-oh stuff Definition. if asked. You should know this definition by heart and be able to give it, Let f and g both be functions from R + to R +. Then f is O(g) (pronounced big-oh ) if and only if there

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

Differentiating Series of Functions

Differentiating Series of Functions Differentiating Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 017 Outline 1 Differentiating Series Differentiating

More information

Power Series Solutions of Ordinary Differential Equations

Power Series Solutions of Ordinary Differential Equations Power Series Solutions for Ordinary Differential Equations James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 2017 Outline Power

More information

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline 1 Riemann Sums 2 Riemann Sums In MatLab 3 Graphing

More information

An Introduction to Matlab

An Introduction to Matlab An Introduction to Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 25, 2013 Outline Starting Matlab Matlab Vectors and Functions

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

CS 124 Math Review Section January 29, 2018

CS 124 Math Review Section January 29, 2018 CS 124 Math Review Section CS 124 is more math intensive than most of the introductory courses in the department. You re going to need to be able to do two things: 1. Perform some clever calculations to

More information

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Cable Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 2018 Outline 1 Fourier Series Convergence Redux 2 Fourier Series

More information

First Derivative Test

First Derivative Test MA 2231 Lecture 22 - Concavity and Relative Extrema Wednesday, November 1, 2017 Objectives: Introduce the Second Derivative Test and its limitations. First Derivative Test When looking for relative extrema

More information

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline Riemann Sums Riemann Sums In MatLab Graphing

More information

Section 7.4: Inverse Laplace Transform

Section 7.4: Inverse Laplace Transform Section 74: Inverse Laplace Transform A natural question to ask about any function is whether it has an inverse function We now ask this question about the Laplace transform: given a function F (s), will

More information

3.4 Complex Zeros and the Fundamental Theorem of Algebra

3.4 Complex Zeros and the Fundamental Theorem of Algebra 86 Polynomial Functions 3.4 Complex Zeros and the Fundamental Theorem of Algebra In Section 3.3, we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline 1 Showing The PP

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline 1 2 What Does the Lagrange Multiplier Mean? Let

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

TAYLOR POLYNOMIALS DARYL DEFORD

TAYLOR POLYNOMIALS DARYL DEFORD TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really

More information

More Protein Synthesis and a Model for Protein Transcription Error Rates

More Protein Synthesis and a Model for Protein Transcription Error Rates More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Signal Patterns Example

More information

Math Lecture 4 Limit Laws

Math Lecture 4 Limit Laws Math 1060 Lecture 4 Limit Laws Outline Summary of last lecture Limit laws Motivation Limits of constants and the identity function Limits of sums and differences Limits of products Limits of polynomials

More information

Math 253 Homework due Wednesday, March 9 SOLUTIONS

Math 253 Homework due Wednesday, March 9 SOLUTIONS Math 53 Homework due Wednesday, March 9 SOLUTIONS 1. Do Section 8.8, problems 11,, 15, 17 (these problems have to do with Taylor s Inequality, and they are very similar to what we did on the last homework.

More information

Power Series Solutions for Ordinary Differential Equations

Power Series Solutions for Ordinary Differential Equations Power Series Solutions for Ordinary Differential Equations James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 2017 Outline 1 Power

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline Showing The PP Trajectories

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

Upper and Lower Bounds

Upper and Lower Bounds James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 30, 2017 Outline 1 2 s 3 Basic Results 4 Homework Let S be a set of real numbers. We

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables Constrained Optimization in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline Constrained Optimization

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

Cauchy Integral Formula Consequences

Cauchy Integral Formula Consequences Cauchy Integral Formula Consequences Monday, October 28, 2013 1:59 PM Homework 3 due November 15, 2013 at 5 PM. Last time we derived Cauchy's Integral Formula, which we will present in somewhat generalized

More information

Projections and Least Square Solutions. Recall that given an inner product space V with subspace W and orthogonal basis for

Projections and Least Square Solutions. Recall that given an inner product space V with subspace W and orthogonal basis for Math 57 Spring 18 Projections and Least Square Solutions Recall that given an inner product space V with subspace W and orthogonal basis for W, B {v 1, v,..., v k }, the orthogonal projection of V onto

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

More on infinite series Antiderivatives and area

More on infinite series Antiderivatives and area More on infinite series Antiderivatives and area September 28, 2017 The eighth breakfast was on Monday: There are still slots available for the October 4 breakfast (Wednesday, 8AM), and there s a pop-in

More information

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

Lower semicontinuous and Convex Functions

Lower semicontinuous and Convex Functions Lower semicontinuous and Convex Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2017 Outline Lower Semicontinuous Functions

More information

MATH 118, LECTURES 27 & 28: TAYLOR SERIES

MATH 118, LECTURES 27 & 28: TAYLOR SERIES MATH 8, LECTURES 7 & 8: TAYLOR SERIES Taylor Series Suppose we know that the power series a n (x c) n converges on some interval c R < x < c + R to the function f(x). That is to say, we have f(x) = a 0

More information

Math 421, Homework #6 Solutions. (1) Let E R n Show that = (E c ) o, i.e. the complement of the closure is the interior of the complement.

Math 421, Homework #6 Solutions. (1) Let E R n Show that = (E c ) o, i.e. the complement of the closure is the interior of the complement. Math 421, Homework #6 Solutions (1) Let E R n Show that (Ē) c = (E c ) o, i.e. the complement of the closure is the interior of the complement. 1 Proof. Before giving the proof we recall characterizations

More information

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December Homework for MATH 4603 (Advanced Calculus I) Fall 2015 Homework 13: Due on Tuesday 15 December 49. Let D R, f : D R and S D. Let a S (acc S). Assume that f is differentiable at a. Let g := f S. Show that

More information

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1)

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1) MACLAURIN SERIES SERIES 4 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Maclaurin Series 1/ 21 Adrian Jannetta Recap: Binomial Series Recall that some functions can be rewritten as a power series

More information

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata CS/Math 24: Introduction to Discrete Mathematics 4/2/2 Lecture 23 : Nondeterministic Finite Automata Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we designed finite state automata

More information

Generating Function Notes , Fall 2005, Prof. Peter Shor

Generating Function Notes , Fall 2005, Prof. Peter Shor Counting Change Generating Function Notes 80, Fall 00, Prof Peter Shor In this lecture, I m going to talk about generating functions We ve already seen an example of generating functions Recall when we

More information

Temperature measurement

Temperature measurement Luleå University of Technology Johan Carlson Last revision: July 22, 2009 Measurement Technology and Uncertainty Analysis - E7021E Lab 3 Temperature measurement Introduction In this lab you are given a

More information

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x Factoring trinomials In general, we are factoring ax + bx + c where a, b, and c are real numbers. To factor an expression means to write it as a product of factors instead of a sum of terms. The expression

More information

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Module No. # 04 Thermodynamics of Solutions Lecture No. # 25

More information

Math 24 Spring 2012 Questions (mostly) from the Textbook

Math 24 Spring 2012 Questions (mostly) from the Textbook Math 24 Spring 2012 Questions (mostly) from the Textbook 1. TRUE OR FALSE? (a) The zero vector space has no basis. (F) (b) Every vector space that is generated by a finite set has a basis. (c) Every vector

More information

MAPLE Worksheet Number 7 Derivatives in Calculus

MAPLE Worksheet Number 7 Derivatives in Calculus MAPLE Worksheet Number 7 Derivatives in Calculus The MAPLE command for computing the derivative of a function depends on which of the two ways we used to define the function, as a symbol or as an operation.

More information

Convergence of Sequences

Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 2 Homework Definition Let (a n ) n k be a sequence of real numbers.

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

Integration and Differentiation Limit Interchange Theorems

Integration and Differentiation Limit Interchange Theorems Integration and Differentiation Limit Interchange Theorems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 11, 2018 Outline A More General

More information

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On Basics of Proofs The Putnam is a proof based exam and will expect you to write proofs in your solutions Similarly, Math 96 will also require you to write proofs in your homework solutions If you ve seen

More information

Homework 1 Solutions

Homework 1 Solutions 18-9 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 18 Homework 1 Solutions Part One 1. (8 points) Consider the DT signal given by the algorithm: x[] = 1 x[1] = x[n] = x[n 1] x[n ] (a) Plot

More information

The Existence of the Riemann Integral

The Existence of the Riemann Integral The Existence of the Riemann Integral James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 18, 2018 Outline The Darboux Integral Upper

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Review for Final Exam, MATH , Fall 2010

Review for Final Exam, MATH , Fall 2010 Review for Final Exam, MATH 170-002, Fall 2010 The test will be on Wednesday December 15 in ILC 404 (usual class room), 8:00 a.m - 10:00 a.m. Please bring a non-graphing calculator for the test. No other

More information

Math 151a week 1 discussion notes

Math 151a week 1 discussion notes Math 151a week 1 discussion notes Jean-Michel Maldague January 1, 017 Logistics I am your TA! My name is Jean-Michel Maldague. Welcome to numerical analysis. OH: Tuesdays 11-1, Thursdays 1-1, and by appointment,

More information

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo 2008-11-07 Graded Project #1 Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo This homework is due to be handed in on Wednesday 12 November 2008 before 13:00 in the post box of the numerical

More information

Derivatives of Constant and Linear Functions

Derivatives of Constant and Linear Functions These notes closely follow the presentation of the material given in James Stewart s textbook Calculus, Concepts an Contexts (2n eition). These notes are intene primarily for in-class presentation an shoul

More information

Math 131, Lecture 20: The Chain Rule, continued

Math 131, Lecture 20: The Chain Rule, continued Math 131, Lecture 20: The Chain Rule, continued Charles Staats Friday, 11 November 2011 1 A couple notes on quizzes I have a couple more notes inspired by the quizzes. 1.1 Concerning δ-ε proofs First,

More information

In case (1) 1 = 0. Then using and from the previous lecture,

In case (1) 1 = 0. Then using and from the previous lecture, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

An Outline of Some Basic Theorems on Infinite Series

An Outline of Some Basic Theorems on Infinite Series An Outline of Some Basic Theorems on Infinite Series I. Introduction In class, we will be discussing the fact that well-behaved functions can be expressed as infinite sums or infinite polynomials. For

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information