More Protein Synthesis and a Model for Protein Transcription Error Rates

Size: px
Start display at page:

Download "More Protein Synthesis and a Model for Protein Transcription Error Rates"

Transcription

1 More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013

2 Outline 1 Signal Patterns Example One Example Two 2

3 Abstract This lecture is going to talk more about protein synthesis and a model of transcription error rates.

4 Signal Patterns Example One Now let s look at some problems where the signal to turn on and off protein production follows a given schedule. Consider the model P =.04P + 8 P(0) = 0 Let s draw a careful graph of the solution to this model using response time as the time unit. The production schedule is Production is on for 2 response times Production is off for 4 response times Production is on for 2 response time Production is off from that point on.

5 Signal Patterns Example One SS is 8.04 = 200. When the signal is off the model reduces to simple exponential decay with half life t 1/2 = ln(2)/.04 and when the signal is on the model grows using the response time t r = ln(2)/.04. So the same time scale works.

6 Signal Patterns Example Two Consider the model P =.05P + 11 P(0) = 100 Production is on for 2 response times Production is off for 3 response times Production is on for 2 response time Production is off from that point on.

7 Signal Patterns Example Two SS is = 220. When the signal is off the model reduces to simple exponential decay with half life t 1/2 = ln(2)/.05 and when the signal is on the model grows using the response time t r = ln(2)/.05. So the same time scale works.

8 Signal Patterns Example Two Homework 44 Draw a careful graph of the solution to the models below using response time as you time unit. Label important points and lines The model is P =.6P + 300; P(0) = 10. Production is on for 2 response times Production is off for 1 response times Production is on for 3 response time Production is off from that point on The model is Q =.8Q + 80; Q(0) = 20. Production is on for 1 response times Production is off for 3 response times Production is on for 3 response time Production is off from that point on.

9 Let s go back to the underlying biology again. We are going to explain why the error rate in transcription has a frequency of about To do this, we are going to look carefully at how the proteins are assembled in the ribosome and use a lot of reasoning with rates of interactions. We don t really use calculus and first order differential equations at all, although the idea of rates is indeed closely related. So grab a cup of coffee or tea and settle back for the story.

10 Let s go back to the underlying biology again. We are going to explain why the error rate in transcription has a frequency of about To do this, we are going to look carefully at how the proteins are assembled in the ribosome and use a lot of reasoning with rates of interactions. We don t really use calculus and first order differential equations at all, although the idea of rates is indeed closely related. So grab a cup of coffee or tea and settle back for the story. Recall the nucleotides in the gene Y are read three at a time to create the amino acids which form the protein Y corresponding to the gene. RNA polymerase, RNAp, binds to the promoter region and messenger RNA, mrna, is synthesized that corresponds to the specific nucleotide triplets in the gene Y. Once the mrna is formed, the protein Y is then made.

11 Now each mrna carries triplets of nucleotides which correspond to amino acids. Recall there are 64 possible triplets and 20 amino acids. A transfer RNA, trna, protein carries an amino acid which corresponds to a triplet on the mrna. We show this below. Figure: MRNA and trna in more Detail

12 When the combined structure, trna plus amino acid, binds to mrna, it is inserted into the ribosome. The amino acid it carries is added to the chain of amino acids already obtained and the trna is ejected. The next (trna plus amino acid) complex bound to the mrna is then read and the process repeats. This is drawn in below:

13 There are other (trna plus amino acid) complexes in the soup of components, proteins and other things that is what the inside of the cell looks like.

14 There are other (trna plus amino acid) complexes in the soup of components, proteins and other things that is what the inside of the cell looks like. The closest incorrect (trna plus amino acid) complex breaks apart or disassociates at the rate k d. The rate that the correct (trna plus amino acid) complex is k c and since we know the correct one should be read instead of the incorrect one, we must have k d > k c.

15 There are other (trna plus amino acid) complexes in the soup of components, proteins and other things that is what the inside of the cell looks like. The closest incorrect (trna plus amino acid) complex breaks apart or disassociates at the rate k d. The rate that the correct (trna plus amino acid) complex is k c and since we know the correct one should be read instead of the incorrect one, we must have k d > k c. We know that errors in reading are nevertheless made and experimentally we know it occurs at the frequency of Let s see if we can explain this.

16 Let the correct trna complex be denoted by c and the correct mrna triplet it corresponds to be C.

17 Let the correct trna complex be denoted by c and the correct mrna triplet it corresponds to be C. The two bind to to create another complex we will denote by cc.

18 Let the correct trna complex be denoted by c and the correct mrna triplet it corresponds to be C. The two bind to to create another complex we will denote by cc. Once the trna is created, there is a probability p per unit time the amino acid attached to the trna will be linked to the growing amino acid chain.

19 Let the correct trna complex be denoted by c and the correct mrna triplet it corresponds to be C. The two bind to to create another complex we will denote by cc. Once the trna is created, there is a probability p per unit time the amino acid attached to the trna will be linked to the growing amino acid chain. If this happens, the freed trna unbinds from the chain and the C shifts to the next (trna plus amino acid) complex.

20 We can analyze this with a bit of mathematical modeling like this. trna + mrna k c bound complex p [c] + [C] [cc] correct amino acid. where k c is the rate at which c and C combine to form the complex cc.

21 We can analyze this with a bit of mathematical modeling like this. trna + mrna k c bound complex p [c] + [C] [cc] correct amino acid. where k c is the rate at which c and C combine to form the complex cc. The complex also breaks apart at the rate k c which we denote in equation form as k c [cc] [c] + [C].

22 Combining, we have the model k c [c] + [C] [cc] correct amino acid k c p

23 Combining, we have the model k c [c] + [C] [cc] correct amino acid k c p At equilibrium, the rate at which cc forms must equal the rate at which cc breaks apart.

24 Combining, we have the model k c [c] + [C] [cc] correct amino acid k c p At equilibrium, the rate at which cc forms must equal the rate at which cc breaks apart. The concentration of cc is written as [cc]. The concentrations of c and C are [c] and [C]. The amount of cc depends on how much of the needed recipe ingredients are available. Hence the amount made is k c [c] [C].

25 The amount of c and C made because cc breaks apart depends on how much cc is available. So this amount must be k c [cc].

26 The amount of c and C made because cc breaks apart depends on how much cc is available. So this amount must be k c [cc]. So at equilibrium, because the formation rate and disassociation rate are the same that we must have a balance k c [cc] = k c [c] [C]

27 The amount of c and C made because cc breaks apart depends on how much cc is available. So this amount must be k c [cc]. So at equilibrium, because the formation rate and disassociation rate are the same that we must have a balance k c [cc] = k c [c] [C] Solving we find the relationship [cc] = k c k c [c] [C] which is a really common equation to come up with in this kind of analysis.

28 We call the fraction k c k c the disassociation constant K c and so we can write [cc] = 1 K c [c] [C] at equilibrium.

29 We call the fraction k c k c the disassociation constant K c and so we can write [cc] = 1 K c [c] [C] at equilibrium. The incorporation rate of the correct amino acid is then R correct = ( concentration of bound complex cc) ( probability amino acid is linked to protein chain) = [cc] p = p K c [c] [C].

30 We call the fraction k c k c the disassociation constant K c and so we can write [cc] = 1 K c [c] [C] at equilibrium. The incorporation rate of the correct amino acid is then R correct = ( concentration of bound complex cc) ( probability amino acid is linked to protein chain) = [cc] p = p K c [c] [C]. The incorrect trna will be represent by d and it binds in a similar way to form the complex dc. The rates of combination and breaking apart are now given by k d and k d. The same reasoning as before gives us the model k d [d] + [C] [dc] incorrect amino acid k d p

31 And at equilibrium (we use the same reasoning!), we find [dc] = 1 K d [d] [C] where K d = k d k d. The rate of incorrect linking is then R incorrect = = incorrect rate correct rate p [d] [C] p [c] [C] /. K d K c

32 And at equilibrium (we use the same reasoning!), we find [dc] = 1 K d [d] [C] where K d = k d k d. The rate of incorrect linking is then R incorrect = = incorrect rate correct rate p [d] [C] p [c] [C] /. K d K c We can cancel the common p and [C] to get R incorrect = incorrect rate correct rate = [d] / [c] K d = K c K d K c [d] [c].

33 Now in a cell, we know from experimental data that the concentrations of the incorrect and correct trna s are about the same. Hence, [d] [c] 1 and we can say with a little bit of algebra that R incorrect K c K d = k c k d. k c k d

34 Now in a cell, we know from experimental data that the concentrations of the incorrect and correct trna s are about the same. Hence, [d] [c] 1 and we can say with a little bit of algebra that R incorrect K c K d = k c k d. k c k d From experimental data, we also know the on rate for binding of both d and c are limited by how molecules diffuse through the cell and because of that are about the same. Hence, k d k c 1 which leads to our final result. R incorrect k c k d.

35 Now recall these terms k d and k c are rates of breaking apart the complexes. So since the incorrect binding is weaker, we know k d > k c and so we know R incorrect < 1. We also can measure these rates and they have been determined to give the ratio k c 10 k 2. So the error rate, determined by an d equilibrium analysis is 100 times higher than the true rate 10 4! What is wrong with our analysis? How do we explain this?

36 Now recall these terms k d and k c are rates of breaking apart the complexes. So since the incorrect binding is weaker, we know k d > k c and so we know R incorrect < 1. We also can measure these rates and they have been determined to give the ratio k c 10 k 2. So the error rate, determined by an d equilibrium analysis is 100 times higher than the true rate 10 4! What is wrong with our analysis? How do we explain this? The way to handle this discrepancy is to introduce the idea of kinetic proofreading. And that is what the next lecture will be about!

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline Advanced Protein Models The Bound Fraction Transcription

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline 1 Advanced Protein Models 2 The Bound Fraction

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

1. In most cases, genes code for and it is that

1. In most cases, genes code for and it is that Name Chapter 10 Reading Guide From DNA to Protein: Gene Expression Concept 10.1 Genetics Shows That Genes Code for Proteins 1. In most cases, genes code for and it is that determine. 2. Describe what Garrod

More information

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu. Translation Translation Videos Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.be/itsb2sqr-r0 Translation Translation The

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

Advanced Protein Models again: adding regulation

Advanced Protein Models again: adding regulation Advanced Protein Models again: adding regulation James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 1, 2014 Outline 1 Simple Regulations

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Types of RNA Messenger RNA (mrna) makes a copy of DNA, carries instructions for making proteins,

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis: Protein synthesis uses the information in genes to make proteins. 2 Steps

More information

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA RNA & PROTEIN SYNTHESIS Making Proteins Using Directions From DNA RNA & Protein Synthesis v Nitrogenous bases in DNA contain information that directs protein synthesis v DNA remains in nucleus v in order

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline 1 Showing The PP

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline Showing The PP Trajectories

More information

Chapter 17. From Gene to Protein. Biology Kevin Dees

Chapter 17. From Gene to Protein. Biology Kevin Dees Chapter 17 From Gene to Protein DNA The information molecule Sequences of bases is a code DNA organized in to chromosomes Chromosomes are organized into genes What do the genes actually say??? Reflecting

More information

Translation. Genetic code

Translation. Genetic code Translation Genetic code If genes are segments of DNA and if DNA is just a string of nucleotide pairs, then how does the sequence of nucleotide pairs dictate the sequence of amino acids in proteins? Simple

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper.

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper. Old FINAL EXAM BIO409/509 NAME Please number your answers and write them on the attached, lined paper. Gene expression can be regulated at several steps. Describe one example for each of the following:

More information

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Boolean models of gene regulatory networks Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Gene expression Gene expression is a process that takes gene info and creates

More information

Molecular Biology - Translation of RNA to make Protein *

Molecular Biology - Translation of RNA to make Protein * OpenStax-CNX module: m49485 1 Molecular Biology - Translation of RNA to make Protein * Jerey Mahr Based on Translation by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative

More information

ومن أحياها Translation 2. Translation 2. DONE BY :Nisreen Obeidat

ومن أحياها Translation 2. Translation 2. DONE BY :Nisreen Obeidat Translation 2 DONE BY :Nisreen Obeidat Page 0 Prokaryotes - Shine-Dalgarno Sequence (2:18) What we're seeing here are different portions of sequences of mrna of different promoters from different bacterial

More information

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

Control of Gene Expression in Prokaryotes

Control of Gene Expression in Prokaryotes Why? Control of Expression in Prokaryotes How do prokaryotes use operons to control gene expression? Houses usually have a light source in every room, but it would be a waste of energy to leave every light

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

What Kind Of Molecules Carry Protein Assembly Instructions From The Nucleus To The Cytoplasm

What Kind Of Molecules Carry Protein Assembly Instructions From The Nucleus To The Cytoplasm What Kind Of Molecules Carry Protein Assembly Instructions From The Nucleus To The Cytoplasm What kind of reaction produces large molecules by linking small molecules? molecules carry protein assembly

More information

Translation and Operons

Translation and Operons Translation and Operons You Should Be Able To 1. Describe the three stages translation. including the movement of trna molecules through the ribosome. 2. Compare and contrast the roles of three different

More information

Lecture 5. How DNA governs protein synthesis. Primary goal: How does sequence of A,G,T, and C specify the sequence of amino acids in a protein?

Lecture 5. How DNA governs protein synthesis. Primary goal: How does sequence of A,G,T, and C specify the sequence of amino acids in a protein? Lecture 5 (FW) February 4, 2009 Translation, trna adaptors, and the code Reading.Chapters 8 and 9 Lecture 5. How DNA governs protein synthesis. Primary goal: How does sequence of A,G,T, and C specify the

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

Laith AL-Mustafa. Protein synthesis. Nabil Bashir 10\28\ First

Laith AL-Mustafa. Protein synthesis. Nabil Bashir 10\28\ First Laith AL-Mustafa Protein synthesis Nabil Bashir 10\28\2015 http://1drv.ms/1gigdnv 01 First 0 Protein synthesis In previous lectures we started talking about DNA Replication (DNA synthesis) and we covered

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Lesson Overview. Ribosomes and Protein Synthesis 13.2

Lesson Overview. Ribosomes and Protein Synthesis 13.2 13.2 The Genetic Code The first step in decoding genetic messages is to transcribe a nucleotide base sequence from DNA to mrna. This transcribed information contains a code for making proteins. The Genetic

More information

ومن أحياها Translation 1. Translation 1. DONE BY :Maen Faoury

ومن أحياها Translation 1. Translation 1. DONE BY :Maen Faoury Translation 1 DONE BY :Maen Faoury 0 1 ومن أحياها Translation 1 2 ومن أحياها Translation 1 In this lecture and the coming lectures you are going to see how the genetic information is transferred into proteins

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples

More information

PROTEIN SYNTHESIS INTRO

PROTEIN SYNTHESIS INTRO MR. POMERANTZ Page 1 of 6 Protein synthesis Intro. Use the text book to help properly answer the following questions 1. RNA differs from DNA in that RNA a. is single-stranded. c. contains the nitrogen

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 9, 2014 Outline Sin, Cos and all that! A New Power Rule Derivatives

More information

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy.

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy. 1 C2005/F2401 '10-- Lecture 15 -- Last Edited: 11/02/10 01:58 PM Copyright 2010 Deborah Mowshowitz and Lawrence Chasin Department of Biological Sciences Columbia University New York, NY. Handouts: 15A

More information

2015 FALL FINAL REVIEW

2015 FALL FINAL REVIEW 2015 FALL FINAL REVIEW Biomolecules & Enzymes Illustrate table and fill in parts missing 9A I can compare and contrast the structure and function of biomolecules. 9C I know the role of enzymes and how

More information

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell.

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell. RNAs L.Os. Know the different types of RNA & their relative concentration Know the structure of each RNA Understand their functions Know their locations in the cell Understand the differences between prokaryotic

More information

Getting Started With The Predator - Prey Model: Nullclines

Getting Started With The Predator - Prey Model: Nullclines Getting Started With The Predator - Prey Model: Nullclines James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline The Predator

More information

Why This Class? James K. Peterson. August 22, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Why This Class? James K. Peterson. August 22, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Why This Class? James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 22, 2013 Outline 1 Our Point of View Mathematics, Science and Computer

More information

From gene to protein. Premedical biology

From gene to protein. Premedical biology From gene to protein Premedical biology Central dogma of Biology, Molecular Biology, Genetics transcription replication reverse transcription translation DNA RNA Protein RNA chemically similar to DNA,

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Prokaryotic Regulation

Prokaryotic Regulation Prokaryotic Regulation Control of transcription initiation can be: Positive control increases transcription when activators bind DNA Negative control reduces transcription when repressors bind to DNA regulatory

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Organic Chemistry Option II: Chemical Biology

Organic Chemistry Option II: Chemical Biology Organic Chemistry Option II: Chemical Biology Recommended books: Dr Stuart Conway Department of Chemistry, Chemistry Research Laboratory, University of Oxford email: stuart.conway@chem.ox.ac.uk Teaching

More information

What Organelle Makes Proteins According To The Instructions Given By Dna

What Organelle Makes Proteins According To The Instructions Given By Dna What Organelle Makes Proteins According To The Instructions Given By Dna This is because it contains the information needed to make proteins. assemble enzymes and other proteins according to the directions

More information

Mathematical Induction

Mathematical Induction Mathematical Induction James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Introduction to the Class Mathematical Induction

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 9, 2017 Outline 1 Sin, Cos and all that! 2 A New Power Rule 3

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Chapter 6.2. p

Chapter 6.2. p Chapter 6.2 p. 148-155 Day M T W Th F Question Name Period Weekly Lifeline Using the following template: GTACTTATCGT what is the complementary strand of DNA? B_ Check KICK-OFF LEARNING LOG KICK-OFF Response

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University ! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 2 Simple Fractional Power Abstract This lecture is going to talk

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

Lecture 5: Processes and Timescales: Rates for the fundamental processes 5.1

Lecture 5: Processes and Timescales: Rates for the fundamental processes 5.1 Lecture 5: Processes and Timescales: Rates for the fundamental processes 5.1 Reading Assignment for Lectures 5-6: Phillips, Kondev, Theriot (PKT), Chapter 3 Life is not static. Organisms as a whole are

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

Convergence of Fourier Series

Convergence of Fourier Series MATH 454: Analysis Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April, 8 MATH 454: Analysis Two Outline The Cos Family MATH 454: Analysis

More information

APGRU6L2. Control of Prokaryotic (Bacterial) Genes

APGRU6L2. Control of Prokaryotic (Bacterial) Genes APGRU6L2 Control of Prokaryotic (Bacterial) Genes 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP u if they have enough of a product, need to stop production

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Lecture 4: Transcription networks basic concepts

Lecture 4: Transcription networks basic concepts Lecture 4: Transcription networks basic concepts - Activators and repressors - Input functions; Logic input functions; Multidimensional input functions - Dynamics and response time 2.1 Introduction The

More information

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab Abstract This

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

RNA Processing: Eukaryotic mrnas

RNA Processing: Eukaryotic mrnas RNA Processing: Eukaryotic mrnas Eukaryotic mrnas have three main parts (Figure 13.8): 5! untranslated region (5! UTR), varies in length. The coding sequence specifies the amino acid sequence of the protein

More information

Section 7. Junaid Malek, M.D.

Section 7. Junaid Malek, M.D. Section 7 Junaid Malek, M.D. RNA Processing and Nomenclature For the purposes of this class, please do not refer to anything as mrna that has not been completely processed (spliced, capped, tailed) RNAs

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Quiz answers Kinase: An enzyme

More information

Name: Date: Period: BIOLOGY Final Exam Study Guide. 3. List the 4 major macromolecules (biomolecules), their monomers AND their functions. a.

Name: Date: Period: BIOLOGY Final Exam Study Guide. 3. List the 4 major macromolecules (biomolecules), their monomers AND their functions. a. Name: Date: Period: Water and Cells BIOLOGY Final Exam Study Guide 1. Define homeostasis: 2. Match the property of water with its correct description: a. High specific heat b. High heat of vaporization

More information

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 1 GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 2 DNA Promoter Gene A Gene B Termination Signal Transcription

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Bioinformatics Chapter 1. Introduction

Bioinformatics Chapter 1. Introduction Bioinformatics Chapter 1. Introduction Outline! Biological Data in Digital Symbol Sequences! Genomes Diversity, Size, and Structure! Proteins and Proteomes! On the Information Content of Biological Sequences!

More information

BCH 4054 Spring 2001 Chapter 33 Lecture Notes

BCH 4054 Spring 2001 Chapter 33 Lecture Notes BCH 4054 Spring 2001 Chapter 33 Lecture Notes Slide 1 The chapter covers degradation of proteins as well. We will not have time to get into that subject. Chapter 33 Protein Synthesis Slide 2 Prokaryotic

More information

Gene Switches Teacher Information

Gene Switches Teacher Information STO-143 Gene Switches Teacher Information Summary Kit contains How do bacteria turn on and turn off genes? Students model the action of the lac operon that regulates the expression of genes essential for

More information

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR IAS 2012 Von Neumann s universal constructor Self-reproducing machine: constructor + tape (1948/9). Program on tape: (i) retrieve parts from

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

Biology I Level - 2nd Semester Final Review

Biology I Level - 2nd Semester Final Review Biology I Level - 2nd Semester Final Review The 2 nd Semester Final encompasses all material that was discussed during second semester. It s important that you review ALL notes and worksheets from the

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Lecture 15: Programming Example: TASEP

Lecture 15: Programming Example: TASEP Carl Kingsford, 0-0, Fall 0 Lecture : Programming Example: TASEP The goal for this lecture is to implement a reasonably large program from scratch. The task we will program is to simulate ribosomes moving

More information

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine.

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. Protein Synthesis & Mutations RNA 1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. RNA Contains: 1. Adenine 2.

More information