Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Size: px
Start display at page:

Download "Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session"

Transcription

1 Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling Project Matlab Session

2 Newton formulated a law of cooling by observing how the temperature of a hot object cooled. As you might expect, this is called Newton s Law Of Cooling. If we let T (t) represent the temperature of the liquid in some container and A denote the ambient temperature of the air around the container, then Newton observed that T (t) (T (t) A). We will assume that the temperature outside the container, A, is smaller than the initial temperature of the hot liquid inside. So we expect the temperature of the liquid to go down with time. Let the constant of proportionality be k. Next, we solve T (t) = k (T (t) A), T (0) = T0 where T0 is the initial temperature of the liquid. For example, we might want to solve T (t) = k(t (t) 70), T (0) = 210 where all of our temperatures are measured in degrees Fahrenheit. We use our usual solution methods to solve this. Divide both sides dt by T 70 to get T 70 = k dt. Then integrate both sides to get ln T (t) 70 = kt + C. Then, exponentiate: T (t) 70 = Be kt. Now, since we start at 210 degrees and the ambient temperature is 70 degrees, we know the temperature of our liquid will go down with time. Thus, we have T (t) 70 = Be kt.

3 Solving, we find T (t) = 70 + Be kt. Since the initial condition is T (0) = 210, we find T (0) = 210 = 70 + Be 0 = 70 + B, and so B = 140. Putting all of this together, we see the solution to the model is T (t) = e kt. Now since the temperature of our liquid is going down, it is apparent that the proportionality constant k must be negative. In fact, our common sense tells us that as time increases, the temperature of the liquid approaches the ambient temperature 70 asymptotically from above. Example Solve T (t) = k(t (t) 70) with T (0) = 210 and then use the conditions T (10) = 140 to find k. Here time is measured in minutes. Solution First, we solve as usual to find T (t) = e kt. Next, we know T (10) = 140, so we must have T (10) = 140 = e 10k. Thus 70 = 140e 10k 1 2 = e10k ln(2) = 10k. and so k = ln(2)/10 =.0693.

4 We now know the general cooling model is which has solution T (t) = k(t (t) A), T (0) = T 0. T (t) = A + Be kt. Applying the initial condition, we get T 0 = A + B. or B = T 0 A. Hence, the solution is T (t) = A + (T 0 A)e kt. The one parameter we don t know is the constant of proportionality, k. However, let s assume we have collected some data in the form {t i, T i} for 1 i N for some finite integer N. Rewrite the solution as T (t) A T 0 A = e kt. Now take the logarithm of both sides to get ( ) T (t) A ln = kt. (1) T 0 A This tell us how to estimate the value of k. Let the variable U(t) be defined to be ( ) T (t) A U(t) = ln T 0 A Then, Equation 1 can be written as U(t) = kt. Thus, the variable U is linear in t; i.e. if we graph U versus t we should see a straight line with slope k.

5 Our collected data consists of pairs of the form (time, temperature). Suppose we collected N such pairs. Label them as (t i, T i) for 1 i N. Compute the corresponding U(t i) U i points ( ) Ti A U i = ln T 0 A and plot them as a scatter plot in MatLab. Note the first value, U 1 = ln T0 A T0 A = ln(1) = 0. So our line has U intercept 0. Hence, our line is of the form y = mt and we have to find a good candidate for the slope m. This slope will then be used in our cooling model. From your data, you now have a collection of pairs (t i, U i) for 1 i N. We can find a line which comes close in an optimal way to all of this data (although the line does not have to include all the data!) by using a bit of calculus. At each time, the line has the value mt i. The discrepancy or error between the actual U value and the line value is then U i mt i. We want the cumulative error between our line and the data, so we don t want errors to cancel. Hence, we could choose an error term like U i mt i or (U i mt i) 2. Both of these are fine, but the squared one is differentiable which will allow us to use calculus methods. Define the energy function E(m) where m is the slope to be E(m) = N (U i mt i) 2. This is a nice function and so let s find where this function has a minimum by setting its derivative is zero.

6 Setting the derivative to zero, we find de N dm = 2 (U i mt i) ( t i) = 0. Simplifying a bit, we have N ( U it i = m ti 2 Solving for the critical point m, we find ). m = Uiti t2 i Finally, it is easy to see d 2 E dm 2 = 2 N ti 2 > 0. for all choices of m. Hence, the value m which is the critical point must be the global minimum Hence, the optimal slope is m = Uiti t2 i Then we can see how good our model is by plotting the model solution T (t) = T (t) = A + (T 0 A)e m t on the same plot as the actual data.

7 Let s see how we can manage some experimental data. Save your experimental data in a file with two columns. Column one is for time and column two is for the temperature of your liquid. Create a new file in Matlab and call it Newton.dat or some other name. Place it in your class folder. For a typical liquid (orange juice, water, tomato juice etc), we might collect the data here We have the ambient or room temperature is 76 degrees for our experiment. load the data and generate the plot of the data % l o a d i n t h e e x p e r i m e n t a l data from t h e % f i l e Newton. dat as two columns >> Data = l o a d ( Newton. dat ) ; % use t h e f i r s t column as time >> time = Data ( :, 1 ) ; % use t h e second column a s t e m p e r a t u r e >> Temperature = Data ( :, 2 ) ; % g e n e r a t e a p l o t o f t h e e x p e r i m e n t a l data >> p l o t ( time, Temperature, o ) ; % s e t x l a b e l >> x l a b e l ( Time in Minutes ) ; % s e t y l a b e l >> y l a b e l ( Temperature in Fahrenheit ) ; % s e t t i t l e >> t i t l e ( Newton Law Of Cooling Experimental Data ) ;

8 We see the plot of the measured data here: From the theory we have discussed, ( we ) know we should graph the T A transformed data given by log T0 A where A is the room temperature, T and T0 are the temperature and initial temperature of the liquid, respectively. Here A = 76 and T0 = 205. Thus, T0 A = 129. Here is how we do this in Matlab: % for t h i s data, T 0 A = = 129 >> A = 7 6 ; >> LogTemperature = l o g ( ( Temperature A) / ( ) ) ; >> p l o t ( time, LogTemperature, o ) ; >> x l a b e l ( Time in Minutes ) ; >> y l a b e l ( Transformed V a r i a b l e l n ( (T A) /( T 0 A) ) ) ; >> t i t l e ( Transformed Data Versus Time ) ;

9 You can see this transformed data here: Then, look for the best straight line through the plot making sure you have the line go through the point (0, 0) at the top. The optimal slope is then m = Uiti N. t2 i In MatLab, we can add up all the entries in the variable U and time using the sum command. The optimal slope calculation in MatLab is then >> mstar = sum ( LogTemperature. time ) /sum ( time. time ) mstar = where the variable LogTemperature plays the role of U. Note time and LogTemperature are vectors so we use.* to do component wise multiplications!

10 The syntax LogTemperature.*time means to multiply each component of LogTemperature and time separately to create the new column of values LogTemperature(1) time (1) LogTemperature(N). time (N) The command sum applied to this column then creates the sum Uiti like we need. A similar thing is happening with the term sum(time.*time). The model is thus u(t) = e t which we enter in MatLab as % compute t h e model >> u2 = exp ( mstar time ) ; Then we plot both the experimental data and the model on the same plot, % p l o t t h e model and t h e measure data on t h e same p l o t >> p l o t ( time, u2, r, time, Temperature, o ) ; >> x l a b e l ( Time In Minutes ) ; >> y l a b e l ( Temperature in Fahrenheit ) ; >> t i t l e ( F i t o f Newton Law o f C o o l i n g Model To Data : Data = o ) ; Looks pretty good! We could also have added a legend like legend( Model, Data, Location, BestOutside ); but we didn t show that. You should do that though in your report so it is really easy to see what is going on.

11 Our final plot! Here is all the code without comments! >> Data = l o a d ( Newton. dat ) ; >> time = Data ( :, 1 ) ; >> Temperature = Data ( :, 2 ) ; >> p l o t ( time, Temperature, o ) ; >> x l a b e l ( Time in Minutes ) ; >> y l a b e l ( Temperature in Fahrenheit ) ; >> t i t l e ( Newton Law Of Cooling Experimental Data ) ; % for t h i s data, T 0 A = = 129 >> A = 7 6 ; >> LogTemperature = l o g ( ( Temperature A) / ( ) ) ; >> p l o t ( time, LogTemperature, o ) ; >> x l a b e l ( Time in Minutes ) ; >> y l a b e l ( Transformed V a r i a b l e l n ( (T A) /( T 0 A) ) ) ; >> t i t l e ( Transformed Data Versus Time ) ; >> mstar = sum ( LogTemperature. time ) /sum ( time. time ) ; >> u2 = exp ( mstar time ) ; >> p l o t ( time, u2, r, time, Temperature, o ) ; >> x l a b e l ( Time In Minutes ) ; >> y l a b e l ( Temperature in Fahrenheit ) ; >> t i t l e ( F i t o f Newton Law o f C o o l i n g Model To Data : Data = o ) ;

12 Due Date: Friday December 8, We will use the following time and temperature data: This data gives you a set of 18 {ti, Yi} data pairs. The ambient temperture is 68 degrees Let E(m) = (Ui mti) 2 and F (m) = Ui mti Your project is this: Find the value of m that optimizes E using our calculus tools for finding extremal values. Prove this value gives a minimum. Find the values of m that optimize F using our subdifferential tools for finding extremal values. Prove this value gives a minimum. For the differentiable case, show all the MatLab code and the three appropriate graphs: the data, the transformed data, the model and data on the same graph. For the nondifferentiable case, all the work is done by hand as we have done in smaller problems for homework. Graph your model and the data on the same graph for this one too. Comment on the difference in these two optimal cooling parameter solutions.

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

MatLab Code for Simple Convex Minimization

MatLab Code for Simple Convex Minimization MatLab Code for Simple Convex Minimization, 1-8, 2017 Draft Version April 25, 2018 MatLab Code for Simple Convex Minimization James K. Peterson 1 * Abstract We look at MatLab code to solve a simple L 1

More information

A population is modeled by the differential equation

A population is modeled by the differential equation Math 2, Winter 2016 Weekly Homework #8 Solutions 9.1.9. A population is modeled by the differential equation dt = 1.2 P 1 P ). 4200 a) For what values of P is the population increasing? P is increasing

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab Abstract This

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

One common method of shaping

One common method of shaping L A B 7 NEWTON S LAW OF COOLING Exponential Decay One common method of shaping plastic products is to pour hot plastic resin into a mold. The resin, which was poured at a temperature of 300 F, is then

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline Riemann Sums Riemann Sums In MatLab Graphing

More information

Using Recursion in Models and Decision Making: Recursion Using Rate of Change IV.C Student Activity Sheet 5: Newton s Law of Cooling

Using Recursion in Models and Decision Making: Recursion Using Rate of Change IV.C Student Activity Sheet 5: Newton s Law of Cooling Have you ever noticed that a container of cold liquid, such as a glass of iced tea, creates condensation on the outside of the container? Or that a cup of hot coffee does not always stay hot? What happened

More information

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline 1 Riemann Sums 2 Riemann Sums In MatLab 3 Graphing

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

More Protein Synthesis and a Model for Protein Transcription Error Rates

More Protein Synthesis and a Model for Protein Transcription Error Rates More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Signal Patterns Example

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

2. (12 points) Find an equation for the line tangent to the graph of f(x) =

2. (12 points) Find an equation for the line tangent to the graph of f(x) = November 23, 2010 Name The total number of points available is 153 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

Regression and Covariance

Regression and Covariance Regression and Covariance James K. Peterson Department of Biological ciences and Department of Mathematical ciences Clemson University April 16, 2014 Outline A Review of Regression Regression and Covariance

More information

Integration by Parts Logarithms and More Riemann Sums!

Integration by Parts Logarithms and More Riemann Sums! Integration by Parts Logarithms and More Riemann Sums! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 16, 2013 Outline 1 IbyP with

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Mathematical Induction

Mathematical Induction Mathematical Induction James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Introduction to the Class Mathematical Induction

More information

Chill Out: How Hot Objects Cool

Chill Out: How Hot Objects Cool Chill Out: How Hot Objects Cool Activity 17 When you have a hot drink, you know that it gradually cools off. Newton s law of cooling provides us with a model for cooling. It states that the temperature

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

Algebra 2 and Trigonometry Honors

Algebra 2 and Trigonometry Honors Algebra 2 and Trigonometry Honors Chapter 8: Logarithms Part A Name: Teacher: Pd: 1 Table of Contents Day 1: Inverses and Graphs of Logarithmic Functions & Converting an Exponential Equation into a Logarithmic

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 9, 2017 Outline 1 Sin, Cos and all that! 2 A New Power Rule 3

More information

Math-3 Lesson 8-7. b) ph problems c) Sound Intensity Problems d) Money Problems e) Radioactive Decay Problems. a) Cooling problems

Math-3 Lesson 8-7. b) ph problems c) Sound Intensity Problems d) Money Problems e) Radioactive Decay Problems. a) Cooling problems Math- Lesson 8-7 Unit 5 (Part-) Notes 1) Solve Radical Equations ) Solve Eponential and Logarithmic Equations ) Check for Etraneous solutions 4) Find equations for graphs of eponential equations 5) Solve

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematics 256 a course in differential equations for engineering students Chapter 1. How things cool off One physical system in which many important phenomena occur is that where an initial uneven temperature

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008 Mathematics 32 Calculus for Physical and Life Sciences 2 Eam 3 Review Sheet April 5, 2008 Sample Eam Questions - Solutions This list is much longer than the actual eam will be (to give you some idea of

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Solving Linear Systems of ODEs with Matlab

Solving Linear Systems of ODEs with Matlab Solving Linear Systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 27, 2013 Outline Linear Systems Numerically

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline 1 Advanced Protein Models 2 The Bound Fraction

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 9, 2014 Outline Sin, Cos and all that! A New Power Rule Derivatives

More information

An Introduction to Matlab

An Introduction to Matlab An Introduction to Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 25, 2013 Outline Starting Matlab Matlab Vectors and Functions

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Fault Tolerant Computing CS 530DL

Fault Tolerant Computing CS 530DL Fault Tolerant Computing CS 530DL Additional Lecture Notes Modeling Yashwant K. Malaiya Colorado State University March 8, 2017 1 Quantitative models Derived from first principles: Arguments are actual

More information

Exponential Growth (Doubling Time)

Exponential Growth (Doubling Time) Exponential Growth (Doubling Time) 4 Exponential Growth (Doubling Time) Suppose we start with a single bacterium, which divides every hour. After one hour we have 2 bacteria, after two hours we have 2

More information

Math 1320, Section 10 Quiz IV Solutions 20 Points

Math 1320, Section 10 Quiz IV Solutions 20 Points Math 1320, Section 10 Quiz IV Solutions 20 Points Please answer each question. To receive full credit you must show all work and give answers in simplest form. Cell phones and graphing calculators are

More information

Class President: A Network Approach to Popularity. Due July 18, 2014

Class President: A Network Approach to Popularity. Due July 18, 2014 Class President: A Network Approach to Popularity Due July 8, 24 Instructions. Due Fri, July 8 at :59 PM 2. Work in groups of up to 3 3. Type up the report, and submit as a pdf on D2L 4. Attach the code

More information

Lecture 5b: Starting Matlab

Lecture 5b: Starting Matlab Lecture 5b: Starting Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 7, 2013 Outline 1 Resources 2 Starting Matlab 3 Homework

More information

dq = λa T Direction of heat flow dq = λa T h T c

dq = λa T Direction of heat flow dq = λa T h T c THERMAL PHYSIS LABORATORY: INVESTIGATION OF NEWTON S LAW OF OOLING Along a well-insulated bar (i.e., heat loss from the sides can be neglected), it is experimentally observed that the rate of heat flow

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline Advanced Protein Models The Bound Fraction Transcription

More information

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models 197 Objective #1: Find Equations of Populations that Obey the Law of Uninhibited Growth. In the last section, we saw that when interest

More information

Civil Engineering Computation. Initial Meeting and Class Setup EXCEL Review Problems

Civil Engineering Computation. Initial Meeting and Class Setup EXCEL Review Problems Civil Engineering Computation Initial Meeting and Class Setup EXCEL Review Problems Class Meeting Times The class runs from 12:30 until 2:20 on Monday with the lab following at 2:30 This was the original

More information

Math , Spring 2010: Exam 2 Solutions 1. #1.) /5 #2.) /15 #3.) /20 #4.) /10 #5.) /10 #6.) /20 #7.) /20 Total: /100

Math , Spring 2010: Exam 2 Solutions 1. #1.) /5 #2.) /15 #3.) /20 #4.) /10 #5.) /10 #6.) /20 #7.) /20 Total: /100 Math 231.04, Spring 2010: Exam 2 Solutions 1 NAME: Math 231.04 Exam 2 Solutions #1.) /5 #2.) /15 #3.) /20 #4.) /10 #5.) /10 #6.) /20 #7.) /20 Total: /100 Instructions: There are 5 pages and a total of

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

Ideal Gas and Latent Heat

Ideal Gas and Latent Heat Ideal Gas and Latent Heat Objectives: To understand the significance of the ideal gas law. To determine the value of absolute zero on the Centigrade scale. To design an experiment to measure the latent

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

AP CHEMISTRY LAB RATES OF CHEMICAL REACTIONS (II)

AP CHEMISTRY LAB RATES OF CHEMICAL REACTIONS (II) PURPOSE: Observe a redox reaction. AP CHEMISTRY LAB RATES OF CHEMICAL REACTIONS (II) Apply graphing techniques to analyze data. Practice computer skills to develop a data table. Determine the order of

More information

MA 0090 Section 21 - Slope-Intercept Wednesday, October 31, Objectives: Review the slope of the graph of an equation in slope-intercept form.

MA 0090 Section 21 - Slope-Intercept Wednesday, October 31, Objectives: Review the slope of the graph of an equation in slope-intercept form. MA 0090 Section 21 - Slope-Intercept Wednesday, October 31, 2018 Objectives: Review the slope of the graph of an equation in slope-intercept form. Last time, we looked at the equation Slope (1) y = 2x

More information

MATH 408N PRACTICE MIDTERM 1

MATH 408N PRACTICE MIDTERM 1 02/0/202 Bormashenko MATH 408N PRACTICE MIDTERM Show your work for all the problems. Good luck! () (a) [5 pts] Solve for x if 2 x+ = 4 x Name: TA session: Writing everything as a power of 2, 2 x+ = (2

More information

Experiment Flow Analysis

Experiment Flow Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.1X Fall Term 22 Handed out: November 26 Due: Dec 6 at 4 pm Experiment Flow Analysis Problem 1: Here is a summary of the measurements,

More information

Introduction to Determining Power Law Relationships

Introduction to Determining Power Law Relationships 1 Goal Introduction to Determining Power Law Relationships Content Discussion and Activities PHYS 104L The goal of this week s activities is to expand on a foundational understanding and comfort in modeling

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 1, 218 Outline Conjugate Exponents Hölder s

More information

MAPLE Worksheet Number 7 Derivatives in Calculus

MAPLE Worksheet Number 7 Derivatives in Calculus MAPLE Worksheet Number 7 Derivatives in Calculus The MAPLE command for computing the derivative of a function depends on which of the two ways we used to define the function, as a symbol or as an operation.

More information

Review for Final Exam, MATH , Fall 2010

Review for Final Exam, MATH , Fall 2010 Review for Final Exam, MATH 170-002, Fall 2010 The test will be on Wednesday December 15 in ILC 404 (usual class room), 8:00 a.m - 10:00 a.m. Please bring a non-graphing calculator for the test. No other

More information

1 Implicit Differentiation

1 Implicit Differentiation 1 Implicit Differentiation In logarithmic differentiation, we begin with an equation y = f(x) and then take the logarithm of both sides to get ln y = ln f(x). In this equation, y is not explicitly expressed

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

6.5 Separable Differential Equations and Exponential Growth

6.5 Separable Differential Equations and Exponential Growth 6.5 2 6.5 Separable Differential Equations and Exponential Growth The Law of Exponential Change It is well known that when modeling certain quantities, the quantity increases or decreases at a rate proportional

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

Outline. Additional Nonlinear Systems. Abstract. Finding Equilibrium Points Numerically. Newton s Method

Outline. Additional Nonlinear Systems. Abstract. Finding Equilibrium Points Numerically. Newton s Method Outline Finding Equilibrium Points Numerically Additional Nonlinear Systems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University June 13, 2017

More information

7.2 Logarithmic Functions Name: 1

7.2 Logarithmic Functions Name: 1 Write your questions and thoughts here 7.2 Logarithmic Functions Name: 1 Definition of Logarithm: y = log x if and only if b = x b > 0, b 1, x > 0 How does Mr. Bean say log x? How does Mr. Kelly say log

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, FALL 2016 ANSWER KEY

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, FALL 2016 ANSWER KEY REVIEW PROBLEMS FOR MIDTERM I MATH 2373, FALL 2016 ANSWER KEY This list of problems is not guaranteed to be an absolutely complete review. For a complete review make sure that you know how to do all the

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples

More information

PHYSICS 211 LAB #8: Periodic Motion

PHYSICS 211 LAB #8: Periodic Motion PHYSICS 211 LAB #8: Periodic Motion A Lab Consisting of 6 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

Convergence of Sequences

Convergence of Sequences Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline Convergence of Sequences Definition Let

More information

Solve by equating exponents

Solve by equating exponents EXAMPLE 1 x Solve 4 = 1 Solve by equating exponents x 3 SOLUTION x 1 4 = x x 3 1 ( ) = ( ) x x + 3 = x = x + 3 x = 1 x 3 Write original equation. Rewrite 4 and base. 1 as powers with Power of a power property

More information

Some Basic Modeling with Differential Equations

Some Basic Modeling with Differential Equations Some Basic Modeling with Differential Equations S. F. Ellermeyer Kennesaw State University October 6, 2003 1 What is a Mathematical Model? A mathematical model is an equation or set of equations that attempt

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.8 Exponential Growth and Decay In this section, we will: Use differentiation to solve real-life problems involving exponentially growing quantities. EXPONENTIAL

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples

More information

22: Applications of Differential Calculus

22: Applications of Differential Calculus 22: Applications of Differential Calculus A: Time Rate of Change The most common use of calculus (the one that motivated our discussions of the previous chapter) are those that involve change in some quantity

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2017 Outline Geometric Series The

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline 1 Domains of Continuous Functions 2 The

More information

Appendix A. Common Mathematical Operations in Chemistry

Appendix A. Common Mathematical Operations in Chemistry Appendix A Common Mathematical Operations in Chemistry In addition to basic arithmetic and algebra, four mathematical operations are used frequently in general chemistry: manipulating logarithms, using

More information

4.1 Solutions to Exercises

4.1 Solutions to Exercises 4.1 Solutions to Exercises 1. Linear, because the average rate of change between any pair of points is constant. 3. Exponential, because the difference of consecutive inputs is constant and the ratio of

More information

Modeling Via Differential Equations

Modeling Via Differential Equations Modeling Via Differential Equations S. F. Ellermeyer Kennesaw State University May 31, 2003 Abstract Mathematical modeling via differential equations is introduced. We partially follow the approach in

More information

Homework Solutions:

Homework Solutions: Homework Solutions: 1.1-1.3 Section 1.1: 1. Problems 1, 3, 5 In these problems, we want to compare and contrast the direction fields for the given (autonomous) differential equations of the form y = ay

More information

The Basics of Physics with Calculus Part II. AP Physics C

The Basics of Physics with Calculus Part II. AP Physics C The Basics of Physics with Calculus Part II AP Physics C The AREA We have learned that the rate of change of displacement is defined as the VELOCITY of an object. Consider the graph below v v t lim 0 dx

More information

UTILIZING NEWTON S LAW OF COOLING TO CORROBORATE THE MPEMBA EFFECT

UTILIZING NEWTON S LAW OF COOLING TO CORROBORATE THE MPEMBA EFFECT UTILIZING NEWTON S LAW OF COOLING TO CORROBORATE THE MPEMBA EFFECT Eric Undergraduate, Junior University of Oklahoma Norman, Oklahoma 7319 1. INTRODUCTION Newton presented the Law of Cooling in a paper

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

ISP 207L Supplementary Information

ISP 207L Supplementary Information ISP 207L Supplementary Information Scientific Notation Numbers written in Scientific Notation are composed of two numbers. 1) Digit term A number between 1 and 10 2) Exponential term Integer power of 10

More information

Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date:

Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date: Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date: Purpose: To investigate the behavior of exponential and logarithmic functions Investigations For investigations 1 and 2, enter

More information

Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need)

Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need) Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need) Reaction Rate: The most important issue in kinetics is

More information

Regression I - the least squares line

Regression I - the least squares line Regression I - the least squares line The difference between correlation and regression. Correlation describes the relationship between two variables, where neither variable is independent or used to predict.

More information

Math 160 Final Exam Info and Review Exercises

Math 160 Final Exam Info and Review Exercises Math 160 Final Exam Info and Review Exercises Fall 2018, Prof. Beydler Test Info Will cover almost all sections in this class. This will be a 2-part test. Part 1 will be no calculator. Part 2 will be scientific

More information

Convergence of Fourier Series

Convergence of Fourier Series MATH 454: Analysis Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April, 8 MATH 454: Analysis Two Outline The Cos Family MATH 454: Analysis

More information