ON n-fold FILTERS IN BL-ALGEBRAS

Size: px
Start display at page:

Download "ON n-fold FILTERS IN BL-ALGEBRAS"

Transcription

1 Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit P. O. Bo: 45-7 Tehr Ir e-mil: moussvi.@modres..ir 2 Mthemtis d Iformtis Reserh Group ACECR Trit Modres Uiversit P. O. Bo: Tehr Ir Astrt The otios of -fold ftsti si logi d the relted lgers -fold ftsti BL-lgers re itrodued. We lso defie -fold ftsti filters d prove some reltios etwee these filters d ostrut quotiet lgers vi these filters.. Itrodutio The oept of BL-lgers ws itrodued Hjek [5] i order to provide lgeri proof of the ompleteess theorem of si logi (BL for short). Soo fter Cigoli et l. i [2] proved tht Hjek s logi rell is the logi of otiuous t-orms s ojetured Hjek. At the sme time strted sstemti stud of BL-lgers too. Ideed 2 Mthemtis Sujet Clssifitio: 6F35 3G25. Kewords d phrses: BL-lger -fold (positive) implitive filter -fold ftsti si logi -fold ftsti BL-lger (wek) -fold ftsti filter. Reeived Septemer 29; Revised Septemer Sietifi Adves Pulishers

2 28 M. SHIRVANI-GHADIKOLAI et l. Turue i [] pulished where BL-lgers were studied dedutive sstems. Dedutive sstems orrespod to susets losed with respet to Modus Poes d the re lled filters too. I [] Boole dedutive sstems d implitive dedutive sstems were itrodued. Moreover it ws proved tht these dedutive sstems oiide. I Hveshki et l. i [7] otiued lgeri lsis of BL-lgers d the itrodued e.g. implitive filters of BL-lgers. MV-lgers [] produt lgers d Gödel lgers re the most lsses of BL-lgers. Filters theor pl importt role i studig these lgers. From logil poit of view vrious filters orrespod to vrious sets of provle formule. Hjek i [5] itrodued the oepts of (prime) filters of BL-lgers. Usig prime filters of BL-lgers he proved the ompleteess of si logi. The lguge of propositiol Hjek si logi [5] otis the ir oetives ο d d the ostt. Aioms of BL re: (A) ( ϕ v/ ) (( v/ w) ( ϕ w) ) (A2) ( ϕ ο v / ) ϕ (A3) ( ϕ ο v / ) ( v/ ο ϕ) (A4) ( ϕ ο( ϕ v / )) ( v/ ο( v/ ϕ) ) (A5) ( ϕ ( v/ w) ) (( ϕ ο v/ ) w) (A5) (( ϕ ο v/ ) w) ( ϕ ( v/ w) ) (A6) (( ϕ v/ ) w) ((( v/ ϕ) w) w) (A7) w. The ove otio is geerlied to lgeri sstem i whih the required oditios re fulfilled (Defiitio ). Filters i BL-lgers re lso itrodued i [5]. The otios of implitive d positive implitive filters were itrodued i [7]. I Setio 2 we give some defiitios d theorems whih re eeded i the rest of the pper. We the itrodue the otios of -fold ftsti si logi d -fold ftsti BL-lger. We lso itrodue

3 ON -FOLD FILTERS IN BL-ALGEBRAS 29 the otio of -fold ftsti filters. We prove tht ever -fold ftsti BL-lger is lso ( + )- fold ftsti BL-lger ut emple we show tht the overse is ot true. Some hrteritio for BL-lger to e -fold ftsti is give. We defie -fold ftsti filters fter tht we stte the equivlet oditios for -fold ftsti BL-lgers. B [8] ever -fold positive implitive filter is -fold implitive filter ut the overse is ot true. We show tht uder some oditios -fold implitive filter is -fold positive implitive filter. 2. -Fold Ftsti BL-Algers Defiitio 2.. A BL-lger is lger ( A ) of tpe ( ) stisfig the followig ioms: (BL) ( A ) is ouded lttie (BL2) ( A ) is ommuttive mooid if (BL3) d form djoit pir; i.e. if d ol for ll (BL4) ( ) (BL5) ( ) ( ). Propositio 2.2 [3 4 5]. I eh BL-lger A the followig reltios hold for ll A: (p) ( ) (p2) ( ( ) ) (p3) if d ol if (p4) ( ) ( ) (p5) If the d (p6) ( )

4 3 M. SHIRVANI-GHADIKOLAI et l. (p7) ( ) ( ) (p8) ( ) ( ) (p9) [( ) ] [( ) ]. I wht follows let deotes positive iteger d A BL-lger uless otherwise speified. For elemet of A let deotes K i whih ours times d. Defiitio 2.3. A filter of BL-lger A is oempt suset F of A suh tht for ll A (f) F implies F (f2) F d impl F. F sie for ever F d F is oempt suset F. It is proved i [] tht if F is filter the it stisfies: (f3) F (f4) F d F impl F. A suset D of A is lled dedutive sstem i [] if it stisfies the ove two oditios. It is ovious tht for oempt suset D D is dedutive sstem if d ol if it is filter. Defiitio 2.4. A oempt suset F of A is lled -fold implitive filter of A if it stisfies F d: (f5) ( ) F F impl F for ll A. Theorem 2.5 [8 Theorem 4.6]. Let F e filter of A. The for ll A the followig oditios re equivlet: (i) F is -fold implitive filter of A 2 (ii) F for ll A

5 ON -FOLD FILTERS IN BL-ALGEBRAS 3 (iii) + F implies F (iv) ( ) F implies ( ) ( ) F. Defiitio 2.6. A oempt suset F of A is lled -fold positive implitive filter if it stisfies F d: (f6) (( ) ) F d F impl F for ll A. Theorem 2.7 [8 Theorem 6.2]. Ever -fold positive implitive filter of A is filter of A. Theorem 2.8 [8 Theorem 6.3]. Let F e filter of A. The for ll A the followig oditios re equivlet: (i) F is -fold positive implitive filter (ii) ( ) F implies F for ll A (iii) ( ) F implies F for ll A. Defiitio 2.9. A oempt suset F of A is lled ftsti filter if it stisfies F d: (f7) A ( ) F F impl (( ) ) F. Theorem 2. [7 Theorem 4.2]. Ever ftsti filter of A is filter of A. Defiitio 2.. Aioms of -fold ftsti si logi re those of BL plus (( ϕ v/ ) v/ ) ϕ v/ ϕ where ϕ ϕ ο ϕ ο K ο ϕ for times d where ϕ v/ deotes ϕ v/ plus /v ϕ.

6 32 M. SHIRVANI-GHADIKOLAI et l. Defiitio 2.2. A BL-lger A is lled to e -fold ftsti if it stisfies the equlit (( ) ) for ll A. Emple 2.3. Let A { }. Defie d s follows:. It is es to see tht A is m-fold ftsti BL-lger for ever m 2. Theorem 2.4. The -fold ftsti si logi is omplete for eh formul ϕ the followig oditios re equivlet: (i) The -fold ftsti si logi proves ϕ (ii) ϕ is A-tutolog for eh lierl ordered -fold ftsti BL-lger A (iii) ϕ is A-tutolog for eh -fold ftsti BL-lger A. Proof. It follows from [5 Theorem ]. This is euse -fold ftsti si logi is shemti etesio of BL. Theorem 2.5. A -fold ftsti BL-lger is m-fold ftsti BL-lger for ever m >. Proof. Let A e -fold ftsti BL-lger d m >. The we hve (( ) ) for ll A. Sie we get m m (( ) ) (( ) ). O the other hd m ( )

7 ON -FOLD FILTERS IN BL-ALGEBRAS 33 d so (( ) ). m Thus (( ) ) + whih shows tht A is m-fold ftsti BL-lger. The followig emple shows tht the overse of Theorem 2.5 is ot true. Emple 2.6. Let { }. B Defie d s follows:. The ( ) B is 2-fold ftsti BL-lger. But we hve ( ) ( ) so B is ot -fold ftsti BL-lger. Theorem 2.7. For eh BL-lger A the followig oditios re equivlet: (i) A is -fold ftsti (ii) ( ) ( ) for ll A (iii) (iv) (v) ( ).

8 M. SHIRVANI-GHADIKOLAI et l. 34 Proof. (i) (ii). Let A e -fold ftsti. The we hve (( ) ) (( ) ) ( ) ((( ) ) ) ( ) ( ). Hee for ll (( ) ) ( ). A Coversel ssume tht the iequlit (( ) ) ( ) holds for ll A. The ( ) ((( ) ) ) (( ) ) ( ) ( ) (( ) ) (( ) ). Hee ( ) ((( ) ) ) i.e. (( ) ). Now we hve ((( ) ) ) ( ) (( ) ) ( ) ( ) ( ) d so ((( ) ) ) ( ) tht is (( ) ). Hee A is -fold ftsti. (ii) (iii). Let A e suh tht d. Usig (p4) (p5) d oditio (ii) we hve ( ) ( ) (( ) ) ( ) ( ) ( ) ( )

9 ON -FOLD FILTERS IN BL-ALGEBRAS 35 d so i.e.. (iii) (iv). It is trivil. (iv) (v). Let A e suh tht. Note tht ( ) d (( ) ). It follows from (iv) tht ( ). (v) (ii). Sie ( ) we hve ( ) ( ) idutio. Sie ( ) it follows from (p5) d (v) tht ( ) ((( ) ) ) ( ). This ompletes the proof. 3. -Fold Ftsti Filter Defiitio 3.. A oempt suset F of A is lled -fold ftsti filter if it stisfies F d: (f8) ( ) (( ) ) F F A F. Defiitio 3.2. A oempt suset F of A is lled wek -fold ftsti filter of A if it stisfies F d: (f9) (( ) ) F F A impl ( ) F. Emple 3.3. Let { }. C Defie d s follows:.

10 36 M. SHIRVANI-GHADIKOLAI et l. The C is BL-lger. It is es to see tht F { } is 2-fold ftsti filter of C. Theorem 3.4. A -fold ftsti filter of BL-lger A is filter of A. Proof. Let F. Hee ( ) F. Sie F is -fold ftsti filter we get (( ) ) F tht is F is filter. The followig emple shows tht the overse of Theorem 3.4 is ot true. Emple 3.5. I Emple 3.3 { } is filter. Sie { } d 2 ( ) { } d (( ) ) {} {} is ot 2-fold ftsti filter. Theorem 3.6. Let F e filter of BL-lger A. The (i) F is -fold ftsti filter of A if d ol if (( ) ) F for ll A with F. (ii) F is wek -fold ftsti filter of A if d ol if (( ) ) F for ll A with ( ) F. Proof. Assume tht F is -fold ftsti filter of A d let A e suh tht F. The ( ) F d F. It follows from (f6) tht (( ) ) F. Coversel let F e filter of A suh tht (( ) ) F for ll A with F. Let A e suh tht ( ) F d F. The F (f4) d hee (( ) ) F ssumptio. Thus F is -fold ftsti filter of A. Similr rgumet idues the seod prt. Theorem 3.7. Let F d G e filters of BL-lger A suh tht F G. If F is -fold ftsti filter the so is G.

11 ON -FOLD FILTERS IN BL-ALGEBRAS 37 Proof. Let the A e suh tht G. Settig k : ( ) k (( ) ) ( ) ( ) F. Sie F is -fold ftsti filter it follows from Theorem 3.6 (i) d (p4) tht ( ) ((( k ) ) ) (( k ) ) (( ) ) (( k ) ) k F G. This implies from (f4) tht (( ) ) G. Sie k we k hve k so (( k ) ) (( ) ). Usig (f2) we kow tht (( ) ) G d hee G is - fold ftsti filter of A Theorem 3.6 (i). Corollr 3.8. Ever filter of BL-lger A is -fold ftsti filter if d ol if the filter { } is -fold ftsti. Theorem 3.9. A -fold ftsti filter is m-fold ftsti filter for ever m >. Proof. Let F e -fold ftsti filter of A d for A F d m >. Sie F is -fold ftsti filter we get (( m ) ) F d sie we hve m (( ) ) (( ) ). Hee (f2) (( ) ) F i.e. F is m-fold ftsti filter. m The followig emple shows tht the overse of Theorem 3.9 is ot true. Emple 3.. I Emple 2.6 it is ler tht F { } is 2-fold ftsti filter of B ut it is ot -fold ftsti filter. This is euse F. But (( ) ) F.

12 38 M. SHIRVANI-GHADIKOLAI et l. Let F e filter of A. We defie ir reltio o A s follows: For ever A if d ol if F d F. The is ogruee reltio o A. Deote F : { A} where [ ] : { A } A [ ] d defie ir opertios d o A F s follows: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] d [ ] [ ] [ ] respetivel. The ( A F ) is BL-lger. Theorem 3.. A filter F of A is -fold ftsti if d ol if ever filter of the quotiet lger A F is -fold ftsti. Proof. Assume tht F is -fold ftsti filter of A d let A e suh tht [ ] [ ]. ) F Theorem 3.6 (i). Hee The F d so (( ) (([ ] [ ]) [ ]) [ ] [(( ) ) ] [ ] whih proves tht { } is -fold ftsti filter of A F. B Corollr ever filter of filter of A F is -fold ftsti. Coversel suppose tht ever A F is -fold ftsti d let A e suh tht F. The [ ] [ ] [ ]. Sie { } filter of A F it follows from Theorem 3.6 (i) tht is -fold ftsti [(( ) ) ] (([ ] [ ]) [ ]) [ ] [ ] tht is (( ) ) F. Hee Theorem 3.6 (i) F is - fold ftsti filter of A. Theorem 3.2. A BL-lger A is -fold ftsti if d ol if its trivil filter { } is -fold ftsti filter.

13 ON -FOLD FILTERS IN BL-ALGEBRAS 39 Proof. Let A e -fold ftsti d ( ) tht is. Sie A is -fold ftsti we hve (( ) ). Hee {} is -fold ftsti filter. Coversel ssume tht {} is -fold ftsti filter of A d let k ( ) for ever A. The k (( ) ) ( ) ( ) { } d hee (( k ) ) k tht is ( ) k. Now k implies k d so ( ) ( k ). It follows tht so tht (( k ) ) k (( ) ) k (( ) ) (( ) ) (( ) ) k it mes tht ( ) ( ). Hee Theorem 2.7 A is -fold ftsti BL-lger. Theorem 3.3. Ever -fold ftsti filter is wek -fold ftsti filter. Proof. Let F e -fold ftsti filter of A. The A F is -fold ftsti. Let A e suh tht ( ) F. The [( ) ] ([ ] [ ]) [ ] k ([ ] [ ]) [ ] [( ) ] [ ] d so [( ) ] [ ] i.e. ( ) F. It follows from Theorem 3.6 (i) tht F is wek -fold ftsti filter of A. B [8] ever -fold positive implitive filter is -fold implitive filter ut the overse is ot true. Now we show uder some oditios -fold implitive filter is -fold positive implitive filter.

14 4 M. SHIRVANI-GHADIKOLAI et l. Theorem 3.4. Let F e filter of A. The F is -fold positive implitive filter if d ol if F is -fold implitive d -fold ftsti filter. Proof. Let F e -fold implitive d -fold ftsti filter d ssume tht ( 2 2 ) F. Sie ( ) ( ) Theorem 2.5 d (f2) we hve 2 ( ) ( ) F. Sie F is -fold ftsti filter d ( ) F Theorem 3.6 (i) we hve 2 (( ( )) ( )) (( ) ( )) F. 2 O the other hds sie ( ) ( ) F (f4) we hve F. Therefore Theorem 2.8 F is -fold positive implitive filter of A. Coversel let F e -fold positive implitive filter of A. Cosider A d F. Puttig k (( ) ) the Propositio (2.2) we hve ( k ) k ( k ) ((( ) ) ) (( ) ) (( k ) ) (( ) ) (( ) ) F. Hee (f2) we hve ( ) k F d sie F is -fold k positive implitive filter Theorem (2.8) k (( ) ) F i.e. F is -fold ftsti filter of A. The followig emple shows tht ever -fold ftsti filter of A is ot -fold positive implitive filter.

15 ON -FOLD FILTERS IN BL-ALGEBRAS 4 Emple 3.5. I Emple 2.6 { } is 2-fold ftsti filter ut 2 ( ) d hee { } is ot 2-fold positive implitive filter. The followig emple shows tht ever -fold ftsti filter of A is ot -fold implitive filter. Emple 3.6. I Emple 3.3 F { } is -fold ftsti filter ut F is ot -fold implitive filter sie ( ) F d F ut F. The followig emple shows tht ever -fold implitive filter of A is ot -fold ftsti filter. Emple 3.7. Let D { }. Defie d s follows:. The ( D ) is BL-lger. It is ler tht F { } is 2-fold implitive filter ut it is ot 2-fold ftsti filter. We hve 2 F ut (( ) ) F. Referees [] C. C. Chg Algeri lsis of m vlued logi Trs. Amer. Mth. So. 88 (958) [2] R. Cigol F. Estev d L. Godo Bsi fu logi is the logi of otiuous t-orm d their residul Soft Comput. 4 (2) 6-2. [3] A. Di Nol G. Georgesu d A. Iorgulesu Pseudo BL-Alger Prt I Mult. Vl. Logi. 8(5-6) (22) [4] A. Di Nol d L. Leuste Compt Represettios of BL-Alger Deprtmet of Computer Siee Uiversit Arhus BRICS Report Siee (22). [5] P. Hjek Metmthemtis of Fu Logi Kluwer Ademi Pulishers (988).

16 42 M. SHIRVANI-GHADIKOLAI et l. [6] P. Hjek Wht is mthemtil fu logi? Fu Sets d Sstems 57 (24) [7] M. Hveshki A. Borumd Seid d E. Eslmi Some tpes of filters i BLlgers Soft Comput. (26) [8] M. Hveshki d E. Eslmi -fold filters i BL-lgers Mth. Log. Qurt. 54 (28) [9] M. Kodo d W. A. Dudek Filter theor of BL-lgers Soft Comput. 2 (28) [] E. Turue BL-lgers of si fu logi Mth. Soft Comput. 6 (999) [] E. Turue Boole dedutive sstem of BL-lgers Arh. Mth. Logi. 4 (2) g

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007 ENGR 386 Digitl Logi Boole Alger Fll 007 Boole Alger A two vlued lgeri system Iveted y George Boole i 854 Very similr to the lger tht you lredy kow Sme opertios ivolved dditio sutrtio multiplitio Repled

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients Ge Mth Notes Vol 2 No Jury 20 pp 86-97 ISSN 229-784; Copyriht ICSRS Publitio 20 wwwi-srsor Avilble free olie t http://wwwemi Neihborhoods of Certi Clss of Alyti Futios of Complex Order with Netive Coeffiiets

More information

On AP-Henstock Integrals of Interval-Valued. Functions and Fuzzy-Number-Valued Functions.

On AP-Henstock Integrals of Interval-Valued. Functions and Fuzzy-Number-Valued Functions. Applied Mthemtis, 206, 7, 2285-2295 http://www.sirp.org/jourl/m ISSN Olie: 252-7393 ISSN Prit: 252-7385 O AP-Hestok Itegrls of Itervl-Vlued Futios d Fuzzy-Numer-Vlued Futios Muwy Elsheikh Hmid *, Alshikh

More information

S. Ostadhadi-Dehkordi and B. Davvaz* Department of Mathematics, Yazd University, Yazd, Iran

S. Ostadhadi-Dehkordi and B. Davvaz* Department of Mathematics, Yazd University, Yazd, Iran IJST (03) 37A3: 5-63 Iri Jourl of Siee & Tehology http://ijstsshirzuir Idel theory i -semihyperrigs S Ostdhdi-Dehkordi d B Dvvz* Deprtmet of Mthemtis, Yzd Uiversity, Yzd, Ir E-mil: dvvz@yzdir Astrt The

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

Fuzzy Neutrosophic Equivalence Relations

Fuzzy Neutrosophic Equivalence Relations wwwijirdm Jur 6 Vl 5 ssue SS 78 Olie u eutrsphi Equivlee eltis J Mrti Je eserh Shlr Deprtmet f Mthemtis irml Cllege fr Wme Cimtre mil du di rkiri riipl irml Cllege fr Wme Cimtre mil du di strt: his pper

More information

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz, MAT337H Itrodutio to Rel Alysis The Rel Numers RATIONAL FIELD Tke rtiols s give { m, m, R, } is field with dditio d multiplitio defied Additio: y= y, y z= yz, There eists Q suh tht = For eh Q there eists

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

CH 20 SOLVING FORMULAS

CH 20 SOLVING FORMULAS CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Ch. 12 Linear Bayesian Estimators

Ch. 12 Linear Bayesian Estimators h. Lier Byesi stimtors Itrodutio I hpter we sw: the MMS estimtor tkes simple form whe d re joitly Gussi it is lier d used oly the st d d order momets (mes d ovries). Without the Gussi ssumptio, the Geerl

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee Kngweon-Kyungki Mth. Jour. 10 (2002), No. 2, pp. 117 122 ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups Sng Keun Lee Astrt. In this pper, we give some properties of left(right) semi-regulr nd g-regulr

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM Bsic Mths Fiorell Sgllri Uiversity of Bolog, Itly Fculty of Egieerig Deprtmet of Mthemtics - CIRM Mtrices Specil mtrices Lier mps Trce Determits Rk Rge Null spce Sclr products Norms Mtri orms Positive

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

Math 201 (Introduction to Analysis) Fall

Math 201 (Introduction to Analysis) Fall Mth (Itrodutio to Alysis) Fll 4-5 Istrutor: Dr. Ki Y. Li Offie: Room 47 Offie Phoe: 58 74 e-mil ddress: myli@ust.h Offie Hours: Tu. :pm - 4:pm (or y ppoitmets) Prerequisite: A-level Mth or Oe Vrile Clulus

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley Module B.1 Siusoidl stedy-stte lysis (sigle-phse), review.2 Three-phse lysis Kirtley Chpter 2: AC Voltge, Curret d Power 2.1 Soures d Power 2.2 Resistors, Idutors, d Cpitors Chpter 4: Polyphse systems

More information

CH 39 USING THE GCF TO REDUCE FRACTIONS

CH 39 USING THE GCF TO REDUCE FRACTIONS 359 CH 39 USING THE GCF TO EDUCE FACTIONS educig Algeric Frctios M ost of us lered to reduce rithmetic frctio dividig the top d the ottom of the frctio the sme (o-zero) umer. For exmple, 30 30 5 75 75

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS) SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT - ALGEBRA II (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig seod degree equtios

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

SOME UNIFIED INTEGRALS ASSOCIATED WITH GENERALIZED STRUVE FUNCTION., S.D. Purohit

SOME UNIFIED INTEGRALS ASSOCIATED WITH GENERALIZED STRUVE FUNCTION., S.D. Purohit SOME UNIFIED INTEGRALS ASSOCIATED WIT GENERALIZED STRUVE FUNCTION D.L. Suthr S.D. Purohit d K.S. Nisr This er is devoted for the stud of e geerliztio of Struve futio te. I this er We estlish four e itegrl

More information

Orthogonality, orthogonalization, least squares

Orthogonality, orthogonalization, least squares ier Alger for Wireless Commuictios ecture: 3 Orthogolit, orthogoliztio, lest squres Ier products d Cosies he gle etee o-zero vectors d is cosθθ he l of Cosies: + cosθ If the gle etee to vectors is π/ (90º),

More information

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * * Dmis o Mrie Biologil Resores A FUNCTION * * * REVIEW OF SOME MATHEMATICS * * * z () z g(,) A tio is rle or orml whih estlishes reltioshi etwee deedet vrile (z) d oe or more ideedet vriles (,) sh tht there

More information

Escher Degree of Non-periodic L-tilings by 2 Prototiles

Escher Degree of Non-periodic L-tilings by 2 Prototiles Origil Pper Form, 27, 37 43, 2012 Esher Degree o No-perioi L-tiligs y 2 Prototiles Kzushi Ahr, Mmi Murt Ao Ojiri Deprtmet o Mthemtis, Meiji Uiversity, 1-1-1 Higshi-Mit, Tm-ku, Kwski, Kgw 214-8571, Jp E-mil

More information

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH Vol..Issue.1.14 BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH A eer Reviewed Itertiol Reserch Jourl http://www.bomsr.com RESEARCH ARTICLE INTEGRAL SOLUTIONS OF TERNARY QUADRATIC DIOHANTINE EQUATIONS

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION JAMES MC LAUGHLIN AND PETER ZIMMER Abstrct We prove ew Biley-type trsformtio reltig WP- Biley pirs We

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

Certain inclusion properties of subclass of starlike and convex functions of positive order involving Hohlov operator

Certain inclusion properties of subclass of starlike and convex functions of positive order involving Hohlov operator Iteratioal Joural of Pure ad Applied Mathematial Siees. ISSN 0972-9828 Volume 0, Number (207), pp. 85-97 Researh Idia Publiatios http://www.ripubliatio.om Certai ilusio properties of sublass of starlike

More information

Matchings Extend to Perfect Matchings on Hypercube Networks

Matchings Extend to Perfect Matchings on Hypercube Networks Mthigs Ete to Perfet Mthigs o Hperue Networks Y-Chug Che Ku-Lug Li Astrt I this work, we ivestigte i the prolem of perfet mthigs with presrie mthigs i the -imesiol hperue etwork. We oti the followig otriutios:

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

Deriving Euler s identity and Kummer s series of Gauss s hypergeometric functions using the symmetries of Wigner d-matrix

Deriving Euler s identity and Kummer s series of Gauss s hypergeometric functions using the symmetries of Wigner d-matrix Derivig Euler s ietity Kuer s series of Guss s hypergeoetri futios usig the syetries of Wiger -trix Mehi Hge Hss To ite this versio: Mehi Hge Hss. Derivig Euler s ietity Kuer s series of Guss s hypergeoetri

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

SEMI-EXCIRCLE OF QUADRILATERAL

SEMI-EXCIRCLE OF QUADRILATERAL JP Journl of Mthemtil Sienes Volume 5, Issue &, 05, Pges - 05 Ishn Pulishing House This pper is ville online t http://wwwiphsiom SEMI-EXCIRCLE OF QUADRILATERAL MASHADI, SRI GEMAWATI, HASRIATI AND HESY

More information

Boolean Algebra. Boolean Algebra

Boolean Algebra. Boolean Algebra Boolen Alger Boolen Alger A Boolen lger is set B of vlues together with: - two inry opertions, commonly denoted y + nd, - unry opertion, usully denoted y ˉ or ~ or, - two elements usully clled zero nd

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

Fixed Point Approximation of Weakly Commuting Mappings in Banach Space

Fixed Point Approximation of Weakly Commuting Mappings in Banach Space BULLETIN of the Bull. Malaysia Math. S. So. (Seod Series) 3 (000) 8-85 MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Fied Poit Approimatio of Weakly Commutig Mappigs i Baah Spae ZAHEER AHMAD AND ABDALLA J. ASAD

More information

Inner Product Spaces (Chapter 5)

Inner Product Spaces (Chapter 5) Ier Product Spces Chpter 5 I this chpter e ler out :.Orthogol ectors orthogol suspces orthogol mtrices orthogol ses. Proectios o ectors d o suspces Orthogol Suspces We ko he ectors re orthogol ut ht out

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

Flexibility of Projective-Planar Embeddings

Flexibility of Projective-Planar Embeddings Fleiility of Projetive-Plr Emeddigs Joh Mhrry Deprtmet of Mthemtis The Ohio Stte Uiversity Columus, OH USA Neil Roertso Deprtmet of Mthemtis The Ohio Stte Uiversity Columus, OH USA Diel Slilty Deprtmet

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

SIMPLE NONLINEAR GRAPHS

SIMPLE NONLINEAR GRAPHS S i m p l e N o n l i n e r G r p h s SIMPLE NONLINEAR GRAPHS www.mthletis.om.u Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Functions. mjarrar Watch this lecture and download the slides

Functions. mjarrar Watch this lecture and download the slides 9/6/7 Mustf Jrrr: Leture Notes in Disrete Mthemtis. Birzeit University Plestine 05 Funtions 7.. Introdution to Funtions 7. One-to-One Onto Inverse funtions mjrrr 05 Wth this leture nd downlod the slides

More information

Study Guide and Intervention

Study Guide and Intervention - Stud Guide nd Intervention with the Sme Sign The quotient of two integers with the sme sign is positive. Emple. 7 The dividend nd the divisor hve the sme sign. b. () The dividend nd divisor hve the sme

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information