CH 20 SOLVING FORMULAS

Size: px
Start display at page:

Download "CH 20 SOLVING FORMULAS"

Transcription

1 CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them. For emple, if ou wted to fid the temperture i the gs lw PV RT, ou might hve to solve this equtio for T. A formul (lled literl equtio m) is just equtio with two or more vriles i it, d is desiged to omplish somethig speifi. The equtio for the perimeter of retgle, P 2l + 2w, is emple of formul. If we eeded to solve for the width i this retgle formul, we would hve to isolte the vrile w usig the sme equtio-solvig tehiques we ve just studied. Review of Solvig Equtios Some studets fid the solvig of formuls to e ver strt, while others osider it muh esier th solvig regulr equtios. Let s egi this hpter with quik review of solvig oe-step equtios. To solve the equtio , we reogize tht 3 hs ee dded to the ukow. To remove the 3 -- tht is, to udo the dditio -- we sutrt 3 from eh side of the equtio. This isoltes, or solves for, the, d we get 7. Similrl, to solve the equtio 10 27, we dd 10 to eh side of the equtio, resultig i solutio of 37. To isolte the vrile i the equtio 9w 45, we otie tht multiplitio ids the 9 with the w. To remove the 9, therefore, we divide eh side of the equtio 9, ieldig vlue of 5 for w. Ch 20 Solvig Formuls

2 180 For our lst review emple i this setio, to solve the equtio we re oliged to multipl eh side of the equtio 12, sie multiplig udoes dividig. Ad so 288. I the followig setios we lso isolte vriles, ut ow we hve to remove other vriles (ot just umers) i order to isolte the oe we wt. Sie there s o rithmeti ivolved -- just lger oepts -- ou see wh some studets thik this is ot so d, fter ll. Perhps with little prtie ou ll feel the sme w. Oe-Step Emples EXAMPLE 1: Solve for : + Solutio: To isolte the we eed to remove the. Sie the is eig dded to the, we remove it sutrtig it from eh side of the equtio, thus isoltig the : + (the origil formul) + (sutrt from eh side) (simplif) EXAMPLE 2: Solve for u: u w A Solutio: To isolte the u, we eed to remove the w. Sie the w is eig sutrted from the u, we remove it ddig w to eh side of the equtio: u w A (the origil formul) u w + w A + w (dd w to eh side) u A + w (simplif) Ch 20 Solvig Formuls

3 181 EXAMPLE 3: Solve for : R Solutio: To isolte the we eed to remove the. Sie the opertio etwee the d the is multiplitio, we remove the dividig eh side of the equtio : R (the origil formul) R (divide eh side ) R (simplif) EXAMPLE 4: Solve for W: W Solutio: To isolte the W we eed to remove the. Sie W is eig divided, we remove the multiplig eh side of the equtio : W (the origil formul) W (multipl eh side ) W (ross-el the s) W (simplif) EXAMPLE 5: Solve for : ( z) Q Solutio: To isolte the we eed to remove the qutit z. We sk, Wht is the opertio oetig the with the z? It s multiplitio, so we use divisio to reverse the opertio d thus isolte the : ( z) Q (the origil formul) ( z) Q z z (divide eh side z) Q z (simplif) Ch 20 Solvig Formuls

4 182 EXAMPLE 6: Solve for the temperture T i the gs lw PV RT metioed i the Itrodutio. Solutio: PV RT (the origil gs lw) PV R PV R RT R T (divide eh side R) (simplif the right side) T PV R (reverse the equtio) EXAMPLE 7: Solve eh formul for : A. Now omes ew issue -- we kow tht we eed to multipl eh side of the equtio (i order to isolte the ). Multiplig the left side is es; it ross-els with the, levig just, the ukow. But how do we idite tht the right-hd side of the equtio, the qutit +, ll of it, must e multiplied? We put pretheses roud the qutit +, tht s how: ote the pretheses ( ) Simplifig the left side of the equtio gives. Simplifig the right side gives simpl ( + ). Thus, ( + ), or, the ommuttive propert for multiplitio, ( + ), d we re doe. Note: Aother w to write the fil solutio is to distriute d get +. But this is ot eessr, sie the gol of this hpter is to ler how to isolte vriles, ot simplif swers. Ch 20 Solvig Formuls

5 183 B. z w Agi, we re trig to isolte the, d gi we will omplish this multiplig eh side of the equtio the deomitor, i this se z. Rememerig the use of pretheses (or rkets), we get C. u e w z z z, d our fil swer is w[ z], or w( z) Multiplig eh side of the equtio e produes ( u) e e e ( + u)( e) Homework 1. Solve eh formul for :. +. d. z d. T e. + m f. z L g. R + w h. i. m j. + k. + W l. z m. + w. o. + d 2. Solve eh formul for :. ( ) d. (Q + R) S. d. d e. mg P f. ( ) A 1 2 ( r r ) T 1 2 g. M h. ( ) z i. (w u) j. z k. W l. Q (g h) Ch 20 Solvig Formuls

6 Solve eh formul for :.. d e. d. t d e. w z f. z A g. w 7 h. Q i. w j. g h k k. L M N P l. u w z m. R Q T. m g h o. w u p. w q. u w deh Two-Step Emples Let s review stdrd two-step equtio. If we solve the equtio for, we rememer the dilemm of deidig whih to rid ourselves of first, the 3 or the 17. We greed tht reversig the Order of Opertios ws the seret. So, from the s poit of view, it ws multiplied 3 first, d the 17 ws sutrted. Reversig this sequee mes we first dd 17 to eh side, givig 3 99; the we divide eh side 3 to get the vlue 33. Well, it s eve esier with letters [I hope!]. EXAMPLE 8: Solve for : Solutio: The Order of Opertios tells us tht first the d the were multiplied, d the ws sutrted. To isolte the we eed to reverse the Order of Opertios: dd to eh side, d the divide eh side : (the origil formul) Ch 20 Solvig Formuls

7 (dd to eh side) + (simplif) (divide eh side ) (simplif) Note: It s ommo to use lphetil order whe writig vriles, so the swer lso e writte. EXAMPLE 9: Solve for : e d Solutio: The hs ee divided, d the e hs ee dded. Reversig these opertios produes the followig steps: e d (the origil formul) e d e e (sutrt e from eh side) d e (simplif) Now rell from the previous setio how we isolte the. We eed to multipl eh side of the equtio, d we eed to put pretheses roud the qutit d e whe we do. ( d e) (multipl eh side -- otie the pretheses) ( d e) (simplif) Homework 4. Solve eh formul for :. +. d R. + d. m Q e. e h f. Ch 20 Solvig Formuls

8 186 g. + d h. p i. k L d j. d k. + d e l. m. t + R. h h o. p. 2 + d q. 7 r. j N e 5. Solve eh formul for : Emple: Solve for : Solutio: (sutrt 3 from eh side) (sutrt 1 from eh side) (divide eh side 5) d e f g h i j k l Multi-Step Emples EXAMPLE 10: Solve for : T Solutio: To solve this formul for, we must remove the T, the, d the. At eh step determie the fil opertio, d perform the reverse opertio. Strt with the origil prolem: T The fil opertio is divisio. Remove the multiplig eh T ( ) side of the equtio : Ch 20 Solvig Formuls

9 187 Simplif eh side: T Now the fil opertio is the dditio of the. Remove the T sutrtig it from oth sides: Now divide oth sides T: T T T Simplif eh side, d we re doe: T EXAMPLE 11: Solve for : w + z e f Solutio: This formul hs the sme struture s the oe i the previous emple, eept tht the deomitor d the qutit o the right osist of two terms isted of oe. The ol thig to rememer is to use pretheses wherever pproprite. w e f z w z e f z z (origil formul) (multipl eh side + z) w (e f)( + z) (simplif) ( e f )( z) w (dd w to eh side) ( e f )( z) w (divide eh side ) EXAMPLE 12: Solve for R: R d Q Solutio: This might e the pproprite ple to show ou other pproh to solvig omplited formuls. The evetul steps we will tke will e etl s we ve doe i the previous emples. But some studets like to see the Order of Opertios epliitl umered; this helps them see wht opertio to udo t eh stge of the prolem. Ch 20 Solvig Formuls

10 188 Preted ou were R, the ukow. Let s list etl wht s ee doe to ou, usig the Order of Opertios: 1. ou were multiplied 2. ws the sutrted 3. the whole thig ws the divided 4. lst, d ws dded o To utgle this mess, we eed to reverse the Order of Opertios, d reverse the opertio t eh stge of the Order of Opertios: 1. sutrt d 2. multipl 3. dd 4. divide The origil formul: R d Q 1. Sutrt d from eh side: R d d Q d Simplif: R Q d 2. Multipl eh side : R ( Q d ) Simplif: R ( Q d) 3. Add to eh side: R ( Q d) Simplif: R ( Q d) 4. Divide eh side : R ( Q d) We mde it! ( Q d) R Ch 20 Solvig Formuls

11 189 Homework 6. Solve eh formul for :. d. g. j. d. R u w t h. 3 d w. T e. L M f. m w T k. z m. 7 u w. z p. s. v.. d d q. R u w w t. d d Z i. g h d L A T l. d Q o. w r. h p p q T e e L M u. d w. z A. S z. z g h L Q w T Solvig Rel Formuls Homework 7. Solve for m i the kilometers/miles formul k 1.61m. 8. Solve for k i the kilometers/miles formul k m Ch 20 Solvig Formuls

12 Solve for C i the temperture formul F 1.8C Solve for F i the temperture formul C 32 F Solve for L i the ssets/liilities/pitl formul A L + C. 12. Solve for R i the profit/reveue/epese formul P R E. 13. Solve for t i the diste/rte/time formul d rt. 14. Solve for m i the desit/mss/volume formul d m. V 15. Solve for S i the verge formul A S. 16. Solve for i i Ohm s Lw V ir. 17. Solve for R i the gs lw PV RT. 18. Solve for m i the potetil eerg formul P mgh. 19. Solve for m i Eistei s equtio E m Solve for l i the perimeter formul P 2l + 2w. 21. Solve for i the irle re formul A r 2. Fil Note Here s prtig ommet regrdig the solvig of formul: The fil swer ever oti the vrile ou re solvig for. Ch 20 Solvig Formuls

13 191 For emple, fil solutio suh s + is outright isit. Here s wh: This solutio ss tht to determie the vlue of, we eed to kow the vlues of,,, d! A ftl se of irulr resoig, ideed. Ad ow for somethig iroi: I omputer lguges the sttemet + 3 is perfetl vlid d tremedousl useful (it merel ireses the vlue of 3.) But it is ot equtio we re trig to solve, so it does t violte the rule ove. Review Prolems 22. Solve for w i the perimeter formul P 2l + 2w. 23. Solve for w i the re formul A lw. 24. Solve for r i the irumferee formul C 2r. 25. Solve for d i the rdius formul 26. Solve for A i the formul 27. Solve eh formul for : A r 2 r d. 2.. d. 2 + R. d. N e. ( + z) f. d u g. m h. Q i. Q R j. ( ) A k. e m 1 2 l. m Your eighor solves the formul + for, d omes up with solutio of. Your ommets, plese. Ch 20 Solvig Formuls

14 192 Solutios 1... d. z +, or + z d. TL, or LT e. m f. z g. W + R h. i. + m j. k. W + l. z, or z m. w. + o. d 2.. d d. d g. M j. z. S Q R e. P mg h. z k. W. f. i. l. A T r r 1 2 w u Q g h ( + ). (d e). ( + ) d. t( + d) e. ( w + z) f. A( z) g. (w + 7) h. Q( ) i. w( + ) j. k( + g h) k. P(L + M N) l. ( + z)(u + w) m. (Q + T)( R). (g h)(m ) o. (w + u)( + ) p. ( + w)( + + ) q. (d e + h)(u + w ) 4.. d. Q m. R d. e. (h + e), or (h + e) Ch 20 Solvig Formuls

15 193 f. + g. d h. pd i. (L k), or (L k) j. d k. e d l. m. R t. 0 o. p. d 2 q. e 7 r. (N + j), or (N + j) d. 7 3 e f g. 2 1 h i j l k dw. A 3 T d. R( + d) e. ( M L) f. ( w)( ) m g. w u h. ZT i. LT d j. t k. ( g h)( z) ( l. ) ( ) or m. z w u d( ). 7 o. ( )( p q) p p. d q. wd h r. e e T s. R( d) t. ( M L) ( w)( ) u. Ch 20 Solvig Formuls

16 194 v.. d w u w. w z. AS z. ( g h)( z) TQ L 7. m k 8. k 1.61m C F F 1.8C L A C 12. R P + E 13. t d r 16. i V R m E w P 2l m dv 15. S A 17. R PV T l 23. A w l 25. d 2r 26. A r 2 P 2w m P gh 21. A 2 r 24. r C d +. R. 2 d. Nu e. f. ( d) z g. (m )( + ) h. ( + Q)( Q) i. R( + ) j. m. A k. (m + e) l. 28. Whe solvig formul for, the ol letter tht t possil e i the fil swer is itself. For oe thig, solvig formul for mes to isolte it. How isolted is it whe there s o eh side of the solutio? Seod, the ogus solutio eds up i irulr resoig. Aordig to our eighor s solutio, to fid the vlue of we would eed the vlues of,, d, d! Tht is, to fid the vlue of, we would eed the vlue of. Tht s rz. Ch 20 Solvig Formuls

17 195 To d Beod de gh k f g Solve for : w z Ch 20 Solvig Formuls

18 196 Tht is wht lerig is. You suddel uderstd somethig ou ve uderstood ll our life, ut i ew w. Doris Lessig Ch 20 Solvig Formuls

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

CH 39 USING THE GCF TO REDUCE FRACTIONS

CH 39 USING THE GCF TO REDUCE FRACTIONS 359 CH 39 USING THE GCF TO EDUCE FACTIONS educig Algeric Frctios M ost of us lered to reduce rithmetic frctio dividig the top d the ottom of the frctio the sme (o-zero) umer. For exmple, 30 30 5 75 75

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

Next we encountered the exponent equaled 1, so we take a leap of faith and generalize that for any x (that s not zero),

Next we encountered the exponent equaled 1, so we take a leap of faith and generalize that for any x (that s not zero), 79 CH 0 MORE EXPONENTS Itroductio T his chpter is cotiutio of the epoet ides we ve used m times efore. Our gol is to comie epressios with epoets i them. First, quick review of epoets: 0 0 () () 0 ( ) 0

More information

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents Algebr II, Chpter 7 Hrdig Chrter Prep 06-07 Dr. Michel T. Lewchuk Test scores re vilble olie. I will ot discuss the test. st retke opportuit Sturd Dec. If ou hve ot tke the test, it is our resposibilit

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Northwest High School s Algebra 2

Northwest High School s Algebra 2 Northwest High School s Algebr Summer Review Pcket 0 DUE August 8, 0 Studet Nme This pcket hs bee desiged to help ou review vrious mthemticl topics tht will be ecessr for our success i Algebr. Istructios:

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007 ENGR 386 Digitl Logi Boole Alger Fll 007 Boole Alger A two vlued lgeri system Iveted y George Boole i 854 Very similr to the lger tht you lredy kow Sme opertios ivolved dditio sutrtio multiplitio Repled

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Exponents and Radical

Exponents and Radical Expoets d Rdil Rule : If the root is eve d iside the rdil is egtive, the the swer is o rel umber, meig tht If is eve d is egtive, the Beuse rel umber multiplied eve times by itself will be lwys positive.

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

G8-11 Congruence Rules

G8-11 Congruence Rules G8-11 ogruee Rules If two polgos re ogruet, ou ple the oe o top of the other so tht the th etl. The verties tht th re lled orrespodig verties. The gles tht th re lled orrespodig gles. The sides tht th

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

( x) [ ] ( ) ( ) ( ) ( )( ) ACID-BASE EQUILIBRIUM PROBLEMS. Because HCO / K = 2.8 < 100 the xin the denominator is not going to be negligible.

( x) [ ] ( ) ( ) ( ) ( )( ) ACID-BASE EQUILIBRIUM PROBLEMS. Because HCO / K = 2.8 < 100 the xin the denominator is not going to be negligible. ACID-BASE EQUILIBRIUM PROBLEMS 1. Clculte the ph of solutio tht cotis 0.165 M olic cid. Clculte the cocetrtio of the olte io i this solutio. 1 H C O 4 + H O Ý H 3O + + HC O 1 5.9 HC O + H O Ý H 3O + +

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 1: Working with the Number System Instruction

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 1: Working with the Number System Instruction Lesso : Workig with the Nuber Syste Istructio Prerequisite Skills This lesso requires the use of the followig skills: evlutig expressios usig the order of opertios evlutig expoetil expressios ivolvig iteger

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity.

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity. Numercy Itroductio to Logrithms Logrithms re commoly credited to Scottish mthemtici med Joh Npier who costructed tle of vlues tht llowed multiplictios to e performed y dditio of the vlues from the tle.

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Name: Period: Date: 2.1 Rules of Exponents

Name: Period: Date: 2.1 Rules of Exponents SM NOTES Ne: Period: Dte:.1 Rules of Epoets The followig properties re true for ll rel ubers d b d ll itegers d, provided tht o deoitors re 0 d tht 0 0 is ot cosidered. 1 s epoet: 1 1 1 = e.g.) 7 = 7,

More information

Lincoln Land Community College Placement and Testing Office

Lincoln Land Community College Placement and Testing Office Licol Ld Commuity College Plcemet d Testig Office Elemetry Algebr Study Guide for the ACCUPLACER (CPT) A totl of questios re dmiistered i this test. The first type ivolves opertios with itegers d rtiol

More information

NUMBERS AND THE RULES OF ARITHMETIC

NUMBERS AND THE RULES OF ARITHMETIC MathScope. Mathematics for Egieerig ad Sciece Studets NUMBERS AND THE RULES OF ARITHMETIC. INDICES (POWERS OF NUMBERS). Notatio ( represets a umer) () is writte as ( raised to the power of or squared)

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

11/16/2010 The Inner Product.doc 1/9. The Inner Product. So we now know that a continuous, analog signal v t can be expressed as:

11/16/2010 The Inner Product.doc 1/9. The Inner Product. So we now know that a continuous, analog signal v t can be expressed as: 11/16/2010 The Ier Product.doc 1/9 The Ier Product So we ow kow tht cotiuous, log sigl v t c be epressed s: v t t So tht cotiuous, log sigl c be (lmost) completel specified b discrete set of umbers:,,,,,,

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

The limit comparison test

The limit comparison test Roerto s Notes o Ifiite Series Chpter : Covergece tests Sectio 4 The limit compriso test Wht you eed to kow lredy: Bsics of series d direct compriso test. Wht you c ler here: Aother compriso test tht does

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Laws of Integral Indices

Laws of Integral Indices A Lws of Itegrl Idices A. Positive Itegrl Idices I, is clled the se, is clled the idex lso clled the expoet. mes times.... Exmple Simplify 5 6 c Solutio 8 5 6 c 6 Exmple Simplify Solutio The results i

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

LAWS OF INDICES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

LAWS OF INDICES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mthetics Revisio Guides Lws of Idices Pge of 7 Author: Mrk Kudlowski M.K. HOME TUITION Mthetics Revisio Guides Level: GCSE Higher Tier LAWS OF INDICES Versio:. Dte: 0--0 Mthetics Revisio Guides Lws of

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by Alger Iportt Thigs to Kow Chpters 8. Chpter - Qudrtic fuctios: The stdrd for of qudrtic fuctio is f ( ) c, where 0. c This c lso e writte s (if did equl zero, we would e left with The grph of qudrtic fuctio

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

Logarithms LOGARITHMS.

Logarithms LOGARITHMS. Logrithms LOGARITHMS www.mthletis.om.u Logrithms LOGARITHMS Logrithms re nother method to lulte nd work with eponents. Answer these questions, efore working through this unit. I used to think: In the

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autr Kw Bejmi Rigsby http://m.mthforcollege.com Trsformig Numericl Methods Eductio for STEM Udergrdutes http://m.mthforcollege.com . solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Ch. 12 Linear Bayesian Estimators

Ch. 12 Linear Bayesian Estimators h. Lier Byesi stimtors Itrodutio I hpter we sw: the MMS estimtor tkes simple form whe d re joitly Gussi it is lier d used oly the st d d order momets (mes d ovries). Without the Gussi ssumptio, the Geerl

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals: and

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals: and 128 Sect 10.3 - Simplifyig Rdicl Expressios Cocept #1 Multiplictio d Divisio Properties of Rdicls We c use our properties of expoets to estlish two properties of rdicls: () 1/ 1/ 1/ & ( Multiplictio d

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

Introduction to Algorithms 6.046J/18.401J

Introduction to Algorithms 6.046J/18.401J Itrodutio to Algorithms.04J/8.40J The divide-d-oquer desig prdigm. Divide the problem (iste) ito subproblems.. Coquer the subproblems by solvig them reursively. 3. Combie subproblem solutios. Leture 3

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

M098 Carson Elementary and Intermediate Algebra 3e Section 10.2

M098 Carson Elementary and Intermediate Algebra 3e Section 10.2 M09 Crso Eleetry d Iteredite Alger e Sectio 0. Ojectives. Evlute rtiol epoets.. Write rdicls s epressios rised to rtiol epoets.. Siplify epressios with rtiol uer epoets usig the rules of epoets.. Use rtiol

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS) SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT - ALGEBRA II (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig seod degree equtios

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

( x y ) x y. a b. a b. Chapter 2Properties of Exponents and Scientific Notation. x x. x y, Example: (x 2 )(x 4 ) = x 6.

( x y ) x y. a b. a b. Chapter 2Properties of Exponents and Scientific Notation. x x. x y, Example: (x 2 )(x 4 ) = x 6. Chpter Properties of Epoets d Scietific Nottio Epoet - A umer or symol, s i ( + y), plced to the right of d ove other umer, vrile, or epressio (clled the se), deotig the power to which the se is to e rised.

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Section 3.6: Rational Exponents

Section 3.6: Rational Exponents CHAPTER Sectio.6: Rtiol Epoets Sectio.6: Rtiol Epoets Objectives: Covert betwee rdicl ottio d epoetil ottio. Siplif epressios with rtiol epoets usig the properties of epoets. Multipl d divide rdicl epressios

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

Algebra 2 Readiness Summer Packet El Segundo High School

Algebra 2 Readiness Summer Packet El Segundo High School Algebr Rediess Suer Pcket El Segudo High School This pcket is desiged for those who hve copleted Geoetry d will be erolled i Algebr (CP or H) i the upcoig fll seester. Suer Pcket Algebr II Welcoe to Algebr

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information