Escher Degree of Non-periodic L-tilings by 2 Prototiles

Size: px
Start display at page:

Download "Escher Degree of Non-periodic L-tilings by 2 Prototiles"

Transcription

1 Origil Pper Form, 27, 37 43, 2012 Esher Degree o No-perioi L-tiligs y 2 Prototiles Kzushi Ahr, Mmi Murt Ao Ojiri Deprtmet o Mthemtis, Meiji Uiversity, Higshi-Mit, Tm-ku, Kwski, Kgw , Jp E-mil ress: hr@mth.meiji..jp (Reeive Ferury 15, 2012; Aepte April 27, 2012) For give tilig o the eulie ple E 2,well the egree o reeom o perture eges o prototiles esher egree. I this pper we osier o-perioi L-tiligs y 2 prototiles oti the esher egree o them. Key wors: L-tilig, No-perioi hierrhil tilig, Esheriztio 1. Itroutio A o-perioi L-tilig is limit o the sequee o pthes s show i Fig. 1. (Ote this is lle hir tilig.) It is well kow tht this is tilig o the eulie ple E 2 tht it hs o perioiity o prllel trsltio. I [1], Sugihr itroues esheriztio o ple tilig. Let T e tilig o E 2.Iwehve iite set S = { 1, 2,, l } o oete regios, eh tile o T is (oriettio preservig) ogruet to oe o 1, 2,, l, the we ll S the protoset 1, 2,, l prototiles. I we pertur some o eges o prototiles get other tilig o the ple, we ll the proess o perturtio esheriztio o the tilig T. This is mous tehique i rtworks o M. C. Esher. For exmple, see Fig. 2. The let igure is tilig y oe prllelogrm. We pertur the horizotl eges slte eges iepeetly s i the right igure. I this pper, we etermie the esher egree o L-tiligs, tht is, the egree o reeom o perture eges o prototiles o L-tiligs. I the protoset o L-tilig osists o oe prototile, the the esher egree is oe. This is show i Theorem A. I the protoset o L-tilig osists o two prototiles, the we show tht there re 6 types o o-trivil tiligs. (A o-trivil tilig is tilig whose esher egree is more th 1.) This is show i Theorem B Theorem C. I [2], Goom-Struss gives perioi protoset erive rom the L-tilig. We hve ew kis o protosets lso rom the L-tilig i these theorems, ut oe o them re perioi. This is show i Appeix B. From the viewpoit o tilig rules, the esher egree my give ew metho to oservig equivlet lsses o tiligs with tilig rules mthig rules. Aout mthig rules sustitutio rules, see [3]. This pper is orgize s ollows. I Setio 2 we prepre some ottios si lemms. I Setio 3 we osier L-tilig y oe prototile. I Setio 4, 5 we osier L-tiligs y two prototiles. I Appeix, we show igures o tiligs. Copyright Soiety or Siee o Form, Jp. 2. Prelimiry I this setio, irst we itroue o-perioi hierrhil tilig. Let S = { 1, 2,, l } e set o oete regios λ > 1ostt. Let i (i = 1, 2,,l)eλ sle-up opy o i. Suppose tht eh i (i = 1, 2,,l) e tile y prototiles 1,, l. Tht is, eh i e ivie ito some o opies o 1,, l. Let i e λ sle-up opy o i. The i the sme wy i e tile y 1,, l. Sustitutig 1,, l ito 1,, l,wehvetilig o i y S. The tilig rules o i sys re lle sustitutio rules. A tilig o E 2 otie y sustitutio rules is lle hierrhil tilig, i it oes t hve o perioiity o prllel trsltio, it is lle o-perioi. A L-tilig is exmple o o-perioi hierrhil tilig. Let = S ={}. Let λ = 2 =, the it gives sustitutio rule. We ll this tilig L-tilig this rule L-sustitutio. DEFINITION 2.1 (s-spread) We ll,pth o oe L-sustitutio rom, 1-spre. We ll (s),pth o s times L-sustitutio rom, s-spre. Next, we eie ege perture ege. DEFINITION 2.2 (EDGE) Let ege e pir o segmet oe-sie eighorhoo. See Fig. 3. Forege, we regr segmet s ege o prototile, oe-sie eighorhoo s isie o prototile. I the sequel, we o ot istiguish ege o prototile rom ege i this eiitio. Next, we eie perture ege. DEFINITION 2.3 (PERTURBED EDGE) For ege, ixig the oth es o the ege perturig it little, we get perture ege. See Fig. 4. For two perture eges,, = ithey re ogruet. I orer to pertur eges o prototiles, there exists restritio o wy o perturig, euse eh prototile must e oete. I our otext, we oly oer egree o reeom o perture prototiles, so we osier oly per- 37

2 38 K. Ahr et l Fig. 1. No-perioi L-tilig. Fig. 6. Deiitio o, 1. Fig. 7. Eges o the prllelogrm. Fig. 2. Perturtio o eges o prllelogrm. Fig. 3. A ege. Fig. 8. Mthig o the tilig (P1). Fig. 4. Exmples o perture eges. Fig. 5. A exmple o prout o perture eges. = ture ege whih is little perture to voi the restritio. Next, we eie prout o perture eges. DEFINITION 2.4 (PRODUCT OF EDGES) Let 1, 2,, k e perture eges. I they re ple o stright lie rom right to let orm row, the we ll it prout o 1, 2,, k we eote this prout y 1 2 k. See Fig. 5. For perture ege, weeie two opertios, 1. For perture ege, is symmetry (right-sielet) imge o. I the sme wy, 1 is upsie-ow imge o. See Fig. 6. It is esy to show the ollowig lemm. LEMMA 2.5 (1) () =,( 1 ) 1 = (2) =,() 1 = 1 1 (3) ( 1 ) = () 1 I tilig, i tile with perture ege other tile with perture ege re eighors t, we hve = 1.Weeote this reltio y.weote sy tht mthes. The ollowig lemm is trivil. LEMMA 2.6 (1) i oly i (2) I the = (3) i oly i Let T e tilig with respet to protoset S. Suppose tht ll prototiles re polygos. Here we ssume tht there is o vertex o tile lyig o ege o other tile. DEFINITION 2.7 (ESCHERIZATION, ESCHER DEGREE) (1) Let T S e s ove. I we pertur eges o prototiles suh tht the perture prototiles give other tilig, we ll this proess esheriztio. (2) I the set o esheriztio o T is prmetrize y some perture eges, the esher egree is the umer o the prmeters. Exmple. Let e prllelogrm (P1) tilig o E 2 s i Fig. 2. Let,,, e eges o s i Fig. 7. From the mthig o the tilig, we hve. Tht is, i we pertur, the the ege hges suh tht = 1, we pertur iepeetly o. The the ege hges suh tht = 1.See Fig. 8. We ll reltios otie rom the tilig property egemthigs.

3 Esher Degree o No-perioi L-tiligs y 2 Prototiles 39 e g h Fig. 9. Prototile. e h g Fig. 11. Perture eges o. e g h h e h g g e h g e e h g l m k j i o p Fig. 10. Mthig i 1-spre o. Fig. 12. Two prototiles. Hee ll esheriztio o the tilig (P1) is prmetrize y eges. Sothe esher egree is Esher Degree o L-tilig y Oe Prototile I this setio we show tht the esher egree o L-tilig y oe prototile is oe. We ssume tht L-igure prototile hs 8 perture eges,,,, h s i Fig. 9. THEOREM 3.1 (THEOREM A) (1) I o-perioi L- tilig y oe prototile,wehve = = e = g = = = h. (2) The esher egree o this tilig is oe. See Fig. 18. REMARK 3.2 = = e = g mes = = e = g, = = = h = = = h, Proo: (1) Cosierig 1-spre, we iretly hve,, h,,, h, g, h (see Fig. 10). This ollows tht = = e = g = = = h. (2) The proo o (1) implies the ollowig lemm. LEMMA 3.3 There exists 1-spre o i oly i stisies = = e = g = = = h. Let e 1-spre,,, h its eges (see Fig. 11). The wehve = h, =, = e = g = e, = = h = g (see Fig. 10). I = = e = g the we = = = h = = e = g esily show tht. (For exmple, h = = = = h = e implies = h = e =, h implies h.) This ollows tht 1-spre o exists, tht is, 2-spre o exists. I the sme wy, i we hve (s 1)-spre (s 1) o with eges (s 1), (s 1),, h (s 1), there exists s-spre, the it stisies tht (s 1) = (s 1) = e (s 1) = g (s 1). I we set (s 1) = (s 1) = (s 1) = h (s 1) (s) = h (s 1) (s 1), (s) = (s 1) (s 1), (s) = e (s) = g (s) = (s 1) e (s 1), (s) = (s) = h (s) = (s 1) g (s 1) iutively, the they stisy (s) = (s) = e (s) = g (s). (s) = (s) = (s) = h (s) it ollows tht 1-spre o (s) exists, tht is, we hve (s + 1)-spre o. I stisies = = e = g = = = h the s-spre (s) exists or y s. Hee the esheriztio is prmetrize y the esher egree is oe. This ompletes the proo. 4. L-tilig y Two Prototiles (1) I this setio, we osier the ses where two prototiles, (Fig. 12) mke oe 1-spre. From Theorem A, i stisies = = e = g = = = h the hs s-spre or s = 1, 2, 3,.Weoserve 5 ptters o i Fig. 13. We ll them o.8, o.4, o.2, o.3, o.5 respetively. (The umerig orer is ot seig or eseig. These umerigs re etermie y the orer o.) A we hve the ollowig theorem. THEOREM 4.1 (THEOREM B) (1) For o.2, o.3, o.4, the esher egree is 1. (2) For o.5, we hve = e = m = =, = g = i = k = o = h = j = l = p the esher egree is 2 (see Fig. 19). (3) For o.8, we hve

4 40 K. Ahr et l. o.8: o.4: o.2: o.3: o.5: Fig. 13. Five ptters o 1-spre. l = = p, k = m = o, = g = h, e = i the esher = j egree is 4 (see Fig. 20). Proo: I stisies = = e = g = = = h,the hs -spre or y. So, it is suiiet to solve the egemthig i = = e = g = = = h. For exmple, or o.5, ege-mthig is give s j i Fig. 14 we hve, i, p, e,, h k, g j, h i. = = e = g p = lm = e = lm implies = = = h k = o = g = o. We solve the system o equtio we hve = e = m = =, = g = i = k = o. Iversely i = h = j = l = p = e = m = =, = g = i = k = o = h = j = l = p the = = e = g = = = h is stisie. For other tiligs, we solve the system o reltios i similr wy. REMARK 4.2 I we hve = = e = g = i = k = m = o, it ollows tht =. = = = h = j = l = = p So we retur the se o oe prototile the esher egree is 1. This mes tht there re o solutio o two istit prototiles. I the two prototiles se, i the esher egree is more th 1, well the tilig o-trivil. There re two types (o.5 o.8) o o-trivil tiligs y two prototiles oe 1-spre. 5. L-tilig y Two Prototiles (2) I this setio, we osier two prototiles, (Fig. 12) mke two 1-spres,. There re 16 possiilities or so sor. We etermie umerig or s i Fig. 15, we represet tilig y pir o two umers or. For exmple, (5, 10) mes tht give i Fig. 16. We remove the se = two trivil ses (0, 15) (15, 0), there remis 238 omitios. I we exhge the role o, wekow tht (i, j) (15 j, 15 i) re equivlet. From the ollowig lemm, we olue tht the umer o remiig omitios is 119. LEMMA 5.1 (i, 15 i) (15 i, i) re equivlet. Proo: I we eote (s) (i, j) (resp. (s) (i, j) ) y the s- spre o (resp. ) otilig (i, j), itisesily show tht (2k 1) (i,15 i) = (2k 1) (15 i,i),(2k 1) (i,15 i) = (2k 1) (15 i,i),(2k) (i,15 i) = (2k) (15 i,i),(2k) (i,15 i) = (2k) (15 i,i) m l j k o i p p e h i o g j e h k g l m Fig. 14. or o.5 tilig. ompletes the proo. Here we hve the thir theorem., or y k = 1, 2,. This THEOREM 5.2 (THEOREM C) (1) I the esher egree o (i, j) tilig is more th 1, the (i, j) = (5, 10), (10, 5), (0, 2), (13, 15), (0, 8), (7, 15), (0, 10), (5, 15). (2) For the tilig (5, 10) (equivletly (10, 5)), = = g = m = j = l = p, e = i = k = o the esher egree is 2 (see Fig. 21). = = h = (3) For the tilig (0, 2) (equivletly (13, 15)), = = e = g = i = k the esher egree is 5 = = = h = j = p (see Fig. 22). (4) For the tilig (0, 8) (equivletly (7, 15)), = = e = g = k = m = o the esher egree = = = h = l = = p is 3 (see Fig. 23). (5) For the tilig (0, 10) (equivletly (5, 15)), = = e = g = k = o = = = h = l = p, m j, i the esher egree is 3 (see Fig. 24). For eh (i, j), wesolve system o equtios o egemthigs o s-spre (s = 1, 2, ). I some ses, oly i (resp. oly j) etermies the result. For exmple, the ollowig lemm hols. LEMMA 5.3 The esher egree o (1, j) is 1 or y j. Proo: Assume tht is o.1 (see Fig. 17). From the ege-mthig o,weget = e = k = i, = h =, g j. Eges o is give y = p, =, = e = e, = = g, g = lm, h = o

5 Esher Degree o No-perioi L-tiligs y 2 Prototiles 41 o.0: o.1: o.2: o.3: o.8: o.9 o.10: o.11: o.4: o.5: o.6: o.7: o.12: o.13: o.14: o.15: Fig. 15. Numerig or. we hve = e = h, =, i the ege-mthig o, we get itiol oitios, =, = o, p g I the ege- hee = = e = k = i = o = = = h =, g j = p. mthig i,weoti other oitio, hee g, e, we hve = = e = g = k = i = o = = = h = j = = p.ithe ege-mthig i,wehve g, hee m g, we l hve = = e = g = i = k = m = o. This implies tht = = = h = j = l = = p withi t most 4-spre ll eges,,, p re relte =. This ompletes the proo. A i similr wy, we show tht the esher egree o y tilig other th (i, j) = (5, 10), (10, 5), (0, 2), (13, 15), (0, 8), (7, 15), (0, 10), (5, 15) is 1. (2) I (i, j) = (5, 10) se, the ege-mthig o is j, i, p, e,, h k, g j, h i (see the let o Fig. 16). The ege-mthig o is k, l, h k, j m, i, p, o, p (see the right o Fig. 16). The ege-mthigs o, re equivlet to = = g = m = j = l = p, e = i = k = o = = h =. Let,,, o, p e eges o, s i Fig. 11, we hve = p, = k, = lm, = o, e = e, = g, g = lm, h = o i = hi, j = j, k = e, l = g, m = lm, = o, o = e, p = g Sie the ormul () hols or,,wehve = = g = m = j = l = p, e = i = k = o = = h =. For exmple, p = l = m implies = p = lm =, so o. These re ege-mthig o 2-spre,. Iutively, we oserve s ollows. Suppose tht we hve (s), (s). Let (s), (s),, o (s), p (s) e eges o (s), (s). = m l j k o i p p e h i o g j e h k g l m = Fig. 16. Tilig (5, 10). e g k l j h k i h l j m p g o i m p o e e g h = p =? e h i o g j e h k g l m (1,j ) se Fig. 17. (1, j) tilig. The reltio etwee (s 1) s (s) s re give y (s) = p (s 1) (s 1), (s) = (s 1) k (s 1), (s) = l (s 1) m (s 1), (s) = (s 1) o (s 1), e (s) = (s 1) e (s 1), (s) = (s 1) g (s 1), g (s) = l (s 1) m (s 1), h (s) = (s 1) o (s 1) i (s) = h (s 1) i (s 1), j (s) = j (s 1) (s 1), k (s) = (s 1) e (s 1), l (s) = (s 1) g (s 1), m (s) = l (s 1) m (s 1), (s) = (s 1) o (s 1), o (s) = (s 1) e (s 1), p (s) = (s 1) g (s 1), or y s = 0, 1, 2,. Usig simple lultios, we hve the ollowig lemm. LEMMA 5.4 (s 1) = (s 1) = g (s 1) = m (s 1) I (s 1) = j (s 1) = l (s 1) = p, (s 1)

6 42 K. Ahr et l. Fig. A.1. Tilig o oe prototile. Fig. A.4. Tilig o two prototiles (5,10). Fig. A.2. Tilig o two prototiles, o.5. Fig. A.5. Tilig o two prototiles (0,2). Fig. A.3. Tilig o two prototiles, o.8. Fig. A.6. Tilig o two prototiles (0,8). e (s 1) = i (s 1) = k (s 1) = o (s 1), the (s 1) = (s 1) = h (s 1) = (s 1) (s) = (s) = g (s) = m (s) (s) = j (s) = l (s) = p, e(s) = i (s) = k (s) = o (s) (s) (s) = (s) = h (s) =. (s) Proo: For exmple, p (s 1) = l (s 1) (s 1) = m (s 1) implies (s) = p (s 1) (s 1) = l (s 1) m (s 1) = (s). Other reltios re show i similr wy. From this lemm, (s + 1)-spres (s+1), (s+1) exist or y s. (3), (4), (5) re show i similr wy s (2). REMARK 5.5 I Appeix, we show igures o these tiligs. I (0, 2), (0, 8) tiligs, (s) otis oly oe tile. This mes tht these tiligs re equivlet to tilig o s tiligs. Akowlegmets. The uthos woul like to thk Pro Koukihi Sugihr or his givig them suh iterestig topis. The uthors lso thk the reree or his ki useul vie. Fig. A.7. Tilig o two prototiles (0,10). Appeix A. From Figs. A.1 to A.7 re pitures o tiligs pperig i Theorems A, B, C. Appeix B. For protoset S, i y tilig y S hs o perioiity

7 Esher Degree o No-perioi L-tiligs y 2 Prototiles 43 Fig. B.1. Perioi tilig o oe prototile. Fig. B.2. Perioi tilig o two prototiles o.8. Fig. B.3. Perioi tilig o two prototiles o.5. Fig. B.4. Perioi tilig o two prototiles (5,10). o prllel trsltio the we ll S perioi protoset. Ay tiligs we oti i this pper re ot perioi protosets. From Figs. B.1 to B.4 re igures o perioi tiligs. [2] Goom-Struss, C. (1999) A smll perioi set o tiles, Eur. J. Comitoris, 20, [3] Goom-Struss, C. (1998) Mthig rules sustitutio tiligs, A. Mth., 147, Reerees [1] Sugihr, K. (2011) Esher Mgi, Uiversity o Tokyo Press (i Jpese).

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

Generalization of Fibonacci Sequence. in Case of Four Sequences

Generalization of Fibonacci Sequence. in Case of Four Sequences It. J. Cotem. Mth. iees Vol. 8 03 o. 9 4-46 HIKARI Lt www.m-hikri.om Geerliztio of Fioi euee i Cse of Four euees jy Hre Govermet College Meleswr M. P. Ii Bijer igh hool of tuies i Mthemtis Vikrm Uiversity

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Matchings Extend to Perfect Matchings on Hypercube Networks

Matchings Extend to Perfect Matchings on Hypercube Networks Mthigs Ete to Perfet Mthigs o Hperue Networks Y-Chug Che Ku-Lug Li Astrt I this work, we ivestigte i the prolem of perfet mthigs with presrie mthigs i the -imesiol hperue etwork. We oti the followig otriutios:

More information

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Proportions: A ratio is the quotient of two numbers. For example, 2 3 Proportions: rtio is the quotient of two numers. For exmple, 2 3 is rtio of 2 n 3. n equlity of two rtios is proportion. For exmple, 3 7 = 15 is proportion. 45 If two sets of numers (none of whih is 0)

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Sigl Represettio d Bsed Processig Versio ECE IIT, Khrgpur Lesso 5 Orthogolity Versio ECE IIT, Khrgpur Ater redig this lesso, you will ler out Bsic cocept o orthogolity d orthoormlity; Strum -

More information

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients Ge Mth Notes Vol 2 No Jury 20 pp 86-97 ISSN 229-784; Copyriht ICSRS Publitio 20 wwwi-srsor Avilble free olie t http://wwwemi Neihborhoods of Certi Clss of Alyti Futios of Complex Order with Netive Coeffiiets

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function * Advces i Pure Mthemtics 0-7 doi:0436/pm04039 Pulished Olie July 0 (http://wwwscirporg/jourl/pm) Multiplictio d Trsltio Opertors o the Fock Spces or the -Modiied Bessel Fuctio * Astrct Fethi Solti Higher

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

3.4. DIRECT METHODS

3.4. DIRECT METHODS 3.4. DIRECT METHODS 66 V =. -. -.75.5 -.5.65. -.5.5» flops %prit flop out s = 8» flops();h3_ivu(u)flops %iitilize flop out the ivert s =. -. -.75.5 -.5.65. -.5.5 s = 57 3.4.3 Gussi elimitio Gussi elimitio

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007 ENGR 386 Digitl Logi Boole Alger Fll 007 Boole Alger A two vlued lgeri system Iveted y George Boole i 854 Very similr to the lger tht you lredy kow Sme opertios ivolved dditio sutrtio multiplitio Repled

More information

Image Motion Analysis

Image Motion Analysis Deprtmet o Computer Egieerig Uiersit o Cliori t St Cru Imge Motio Alsis CME 64: Imge Alsis Computer Visio Hi o Imge sequece motio Deprtmet o Computer Egieerig Uiersit o Cliori t St Cru Imge sequece processig

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

G8-11 Congruence Rules

G8-11 Congruence Rules G8-11 ogruee Rules If two polgos re ogruet, ou ple the oe o top of the other so tht the th etl. The verties tht th re lled orrespodig verties. The gles tht th re lled orrespodig gles. The sides tht th

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang CS 33 Desig d Alysis of Algorithms -- Divide d Coquer Dr. Disy Tg Divide-Ad-Coquer Geerl ide: Divide problem ito subproblems of the sme id; solve subproblems usig the sme pproh, d ombie prtil solutios,

More information

Homework 2 solutions

Homework 2 solutions Sectio 2.1: Ex 1,3,6,11; AP 1 Sectio 2.2: Ex 3,4,9,12,14 Homework 2 solutios 1. Determie i ech uctio hs uique ixed poit o the speciied itervl. gx = 1 x 2 /4 o [0,1]. g x = -x/2, so g is cotiuous d decresig

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Solution of Transcendental Equation Using Clamped Cubic Spline

Solution of Transcendental Equation Using Clamped Cubic Spline Dhk Uiv. J. i. 6: 47-5 Jury *Author or orresoee olutio o Trseetl Equtio Usig Clme Cui lie Mostk Ahme mir Kumr Bhowmik. Dertmet o Mthemtis Jgth Uiversity Dhk- Bglesh. Dertmet o Mthemtis Uiversity o Dhk

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Area and Perimeter. Area and Perimeter. Solutions. Curriculum Ready.

Area and Perimeter. Area and Perimeter. Solutions. Curriculum Ready. Are n Perimeter Are n Perimeter Solutions Curriulum Rey www.mthletis.om How oes it work? Solutions Are n Perimeter Pge questions Are using unit squres Are = whole squres Are = 6 whole squres = units =

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

CH 20 SOLVING FORMULAS

CH 20 SOLVING FORMULAS CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Part I: Study the theorem statement.

Part I: Study the theorem statement. Nme 1 Nme 2 Nme 3 A STUDY OF PYTHAGORAS THEOREM Instrutions: Together in groups of 2 or 3, fill out the following worksheet. You my lift nswers from the reding, or nswer on your own. Turn in one pket for

More information

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts.

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts. Frtions equivlent frtions Equivlent frtions hve the sme vlue ut they hve ifferent enomintors. This mens they hve een ivie into ifferent numer of prts. Use the wll to fin the equivlent frtions: Wht frtions

More information

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

Deriving Euler s identity and Kummer s series of Gauss s hypergeometric functions using the symmetries of Wigner d-matrix

Deriving Euler s identity and Kummer s series of Gauss s hypergeometric functions using the symmetries of Wigner d-matrix Derivig Euler s ietity Kuer s series of Guss s hypergeoetri futios usig the syetries of Wiger -trix Mehi Hge Hss To ite this versio: Mehi Hge Hss. Derivig Euler s ietity Kuer s series of Guss s hypergeoetri

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

Answers and Solutions to (Some Even Numbered) Suggested Exercises in Chapter 11 of Grimaldi s Discrete and Combinatorial Mathematics

Answers and Solutions to (Some Even Numbered) Suggested Exercises in Chapter 11 of Grimaldi s Discrete and Combinatorial Mathematics Answers n Solutions to (Some Even Numere) Suggeste Exercises in Chpter 11 o Grimli s Discrete n Comintoril Mthemtics Section 11.1 11.1.4. κ(g) = 2. Let V e = {v : v hs even numer o 1 s} n V o = {v : v

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper SET - GSE tch : 0th Std. Eg. Medium MHESH TUTILS SUJET : Mths(0) First Prelimiry Exm Model swer Pper PRT -.. () like does ot exist s biomil surd. () 4.. 6. 7. 8. 9. 0... 4 (c) touches () - d () -4 7 (c)

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley Module B.1 Siusoidl stedy-stte lysis (sigle-phse), review.2 Three-phse lysis Kirtley Chpter 2: AC Voltge, Curret d Power 2.1 Soures d Power 2.2 Resistors, Idutors, d Cpitors Chpter 4: Polyphse systems

More information

Flexibility of Projective-Planar Embeddings

Flexibility of Projective-Planar Embeddings Fleiility of Projetive-Plr Emeddigs Joh Mhrry Deprtmet of Mthemtis The Ohio Stte Uiversity Columus, OH USA Neil Roertso Deprtmet of Mthemtis The Ohio Stte Uiversity Columus, OH USA Diel Slilty Deprtmet

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

Inference on One Population Mean Hypothesis Testing

Inference on One Population Mean Hypothesis Testing Iferece o Oe Popultio Me ypothesis Testig Scerio 1. Whe the popultio is orml, d the popultio vrice is kow i. i. d. Dt : X 1, X,, X ~ N(, ypothesis test, for istce: Exmple: : : : : : 5'7" (ull hypothesis:

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Aperiodic tilings and substitutions

Aperiodic tilings and substitutions Aperioi tilings n sustitutions Niols Ollinger LIFO, Université Orléns Journées SDA2, Amiens June 12th, 2013 The Domino Prolem (DP) Assume we re given finite set of squre pltes of the sme size with eges

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Identifying and Classifying 2-D Shapes

Identifying and Classifying 2-D Shapes Ientifying n Clssifying -D Shpes Wht is your sign? The shpe n olour of trffi signs let motorists know importnt informtion suh s: when to stop onstrution res. Some si shpes use in trffi signs re illustrte

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

Boolean Algebra cont. The digital abstraction

Boolean Algebra cont. The digital abstraction Boolen Alger ont The igitl strtion Theorem: Asorption Lw For every pir o elements B. + =. ( + ) = Proo: () Ientity Distriutivity Commuttivity Theorem: For ny B + = Ientity () ulity. Theorem: Assoitive

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

Steady State Solution of the Kuramoto-Sivashinsky PDE J. C. Sprott

Steady State Solution of the Kuramoto-Sivashinsky PDE J. C. Sprott Stey Stte Soltio of the Krmoto-Sivshisy PDE J. C. Srott The Krmoto-Sivshisy etio is simle oe-imesiol rtil ifferetil etio PDE tht ehiits hos er some oitios. I its simlest form, the etio is give y t 0 where

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

GM1 Consolidation Worksheet

GM1 Consolidation Worksheet Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

More information