S. Ostadhadi-Dehkordi and B. Davvaz* Department of Mathematics, Yazd University, Yazd, Iran

Size: px
Start display at page:

Download "S. Ostadhadi-Dehkordi and B. Davvaz* Department of Mathematics, Yazd University, Yazd, Iran"

Transcription

1 IJST (03) 37A3: 5-63 Iri Jourl of Siee & Tehology Idel theory i -semihyperrigs S Ostdhdi-Dehkordi d B Dvvz* Deprtmet of Mthemtis, Yzd Uiversity, Yzd, Ir E-mil: dvvz@yzdir Astrt The oept of -semihyperrig is geerliztio of semirig, geerliztio of semihyperrig d geerliztio of -semirig Sie the theory of idels plys importt role i the theory of - semihyperrig, i this pper, we will mke itesive study of the otios of Noetheri, Artii, simple d regulr -semihyperrigs The ulk of this pper is devoted to sttig d provig logues to severl theorems i the theory of -semihyperrigs Keywords: Semihyperrig; Γ-semihyperrig; Γ-hyperrig; simple Γ-semihyperrig; regulr Γ-hyperrig Prelimiries d si defiitio I 964, Nousw [] itrodued -rigs s geerliztio of terry rigs Bres [] slightly wekeed the oditios i the defiitio of -rig i the sese of Nousw Bres [], Luh [3] d Kyuo [4] studied the struture of -rigs d otied vrious geerliztios logous to orrespodig prts i rig theory The hyperstruture theory ws or i 934, whe the otio of hypergroup ws itrodued [5] Oe of the first ooks, dedited espeilly to hypergroups, is "Prolegome of Hypergroup Theory" writte y Corsii i 993 [6] Aother ook o "Hyperstrutures d Their Represettios", y Vougiouklis, ws pulished oe yer lter [7] We metio here other importt ook for the pplitios i Geometry d for the leress of the expositio, writte y W Preowitz d J Jtosik [8] Aother ook [9] is devoted espeilly to the study of hyperrig theory Severl kids of hyperrigs re itrodued d lyzed The volume eds with outlie of pplitios i hemistry d physis, lyzig severl speil kids of hyperstrutures: e - hyperstrutures d trspositio hypergroups The theory of suitle modified hyperstrutures serve s mthemtil kgroud i the field of qutum ommuitio systems Algeri hyperstrutures re suitle geerliztio of lssil lgeri strutures I lssil lgeri struture, the ompositio of two elemets is elemet, while i lgeri hyperstruture, the ompositio of two elemets is *Correspodig uthor Reeived: 9 Novemer 0 / Aepted: 6 Deemer 0 set More extly, let H e o-empty set The, the mp : H H P * ( H) is lled hyperopertio whe P * ( H ) is the fmily of oempty susets of H Let H e o-empty set d : H H P ( H) e hyperopertio The ouple ( H, ) is lled hypergroupoid ( H, ) is lled semihypergroup if for every x, y, z H, we hve x ( y z ) = ( x y) z Moreover, if for every x H, x H = H = H x, the ( H, ) is lled hypergroup Also, my uthors studied differet spets of semihypergroups, for iste, Bosig d Corsii [0,, ], Dvvz [3], Dvvz d Pourslvti [4], Fsio d Frei [5], Gut [6] d Leoreu [7] We sy tht hypergroup ( H, ) is oil if () it is ommuttive ( x y = y x, for every x, y H ), () it hs slr idetity (lso lled slr uit), whih mes tht e H x H, e x = x e = x, (3) every elemet hs uique iverse, whih mes tht for ll x H, there exists uique x H, suh tht e x x, (4) it is reversile, whih mes tht if x y z, y z the there exist the iverses of y d of z, suh tht z y x d y x z The otio of multiplitive hyperrig ws itrodued y Rot [8] i 98 The multiplitio is hyperopertio, while the dditio is opertio, tht is why it ws lled multiplitive hyperrig A triple ( R,, ) is lled

2 IJST (03) 37A3: multiplitive hyperrig if () ( R, ) is eli group, () ( R, ) is semihypergroup, 3) for ll,, R, we hve ( ) d ( ) If i (3) we hve equlities isted of ilusios, the we sy tht the multiplitive hyperrig is strogly distriutive The otio of -semirig ws itrodued y Ro [8, 9] s geerliztio of -rig s well s of semirig For exmple, let S e the dditive ommuttive semigroup of ll m mtries over the set of ll o-egtive itegers d e the dditive ommuttive semigroup of ll m mtries over the sme set The, S is - semirig if deotes the usul mtrix produt of,, where, Sd Dutt d Srdr [0] gve the meig of left d right opertor semirigs for give -semirig Let ( R,, ) e ritrry semirig d ={} It is esy to see tht R is -semirig Thus semirig e osidered s -semirig My lssil otios of semirig hve ee exteded to - semirig I [, ], Dvvz et l studied the otio of -semihypergroup s geerliztio of semihypergroup My lssil otios of semigroups d semihypergroups hve ee exteded to -semihypergroups d lot of results o -semihypergroups re otied Let ( R, ) e hypergroupoid d e oempty set The, R is lled - hyperrig if there exists mppig RR R (imges deoted y for ll, R, d ) stisfyig the followig oditios: () ( R, ) is oil hypergroup, () there exists zero elemet tht ilterlly sorig elemet, ie, x 0=0 x =0, x 0= x, for every d x R, () ( ) =, () ( ) =, (3) ( ) = ( ) Let R e ommuttive semihypergroup d e ommuttive group The, R is lled semihyperrig if there exists mp RR P * ( R) (imge to e deoted y for, Rd ) d P * ( R) is the set of ll o-empty susets of R stisfyig the oditios 3, 4, 5 d ( ) = for every, Rd, Let R e -semihyperrig The, ( R, ) is semihypergroup for every (Let e fixed elemet i We defie = for ll, S) I the ove defiitio, if R is semigroup, the R is lled multiplitive - semihyperr ig A -semihyperrig R is lled ommuttive if x y = y x for every x, y Rd We sy tht -semihyperrig R with zero, if there exists 0 R suh tht 0 d 00, 0 0 for ll R d Let A d B e two oempty susets of -semihyperrig R We defie A B = tr t A, B, AB ={ tr t A, B, }, A B = tr t, A, B,,, i= i i i i i i i= i i i i X = tr t x x X,, A o-empty suset R of -semihyperrig R is lled su-semihyperrig if it is losed with respet to the multiplitio d dditio I other words, o-empty suset R of -semihyperrig R is su -semihyperrig if R R R d R A right (left) idel I of - semihyperrig R is dditive su semihypergroup ( R, ) suh tht IR R ( RI I ) If I is oth right d left idel of R, the we sy tht I is two-sided idel or simply idel of R Let X e o-empty suset of - semihyperrig R By the term left idel < X > l (respetively, right idel < X > r ) of R geerted y X, tht is, the itersetio of ll left idels (respetively, right idels) of R otis X Hee, () < X > l = X R X, () < X > r = X X R, (3) < >= X R X X R X R A o-empty suset I of -hyperrig R is left (right) idel if d oly if (), I implies I, () I, r R d imply r I( r I) Let I e idel of -hyperrig R suh tht x I x I for ll x R The, I is lled orml idel of R If I is orml idel of - hyperrig R, the we defie the reltio x ymodi ( ) if d oly if ( x y ) I This reltio is deoted y xi y We defie the followig opertio d hyperopertio o the set of ll lsses [ R : I ]={ I ( x) x R}, s follows: I ( x) I ( y)={ I ( z) zi ( x) I ( y)}, I ( x) I ( y)= I ( xy) The, [ R: I ] is -hyperrig of whih

3 53 IJST (03) 37A3: 5-63 ={ } A idel I of -hyperrig R is lled ull if I I ={0} d is lled idempotet if I I = I Let ( R, ) d ( R, ) e two - d - semihyperrigs, respetively d f : e mp The, : R Ris lled (, ) - homomorphism or (shortly, homomorphism), if for every x, y Rd, () ( x y) ={ ( t) t x y} ( x) ( y), () ( x y)={ ( t) t xy} ( x) f ( ) ( y), (3) f ( x y)= f ( x) f ( y) I the ove defiitio, if ( x y)= ( x) ( y) d ( x y) = ( x) f ( ) ( y), the is lled strog homomorphism The set ker ={(, ) R R ( )= ( )} is lled the kerel of A ordered set (, f ) is lled epimorphism if : R Rd f : e surjetive d is lled isomorphism if : R R d f : re ijetive Let e equivlee reltio, A d B e two o-empty susets of R We defie ( AB, ) if for every A there exists Bsuh tht (, ) d for every Bthere exists d A suh tht ( d, ) d ( AB, ) if for every Ad B (, ) Let R e - semihyperrig d A equivlee reltio o R is lled regulr if for every x R d, (, ) imply ( x) ( x), ( x) ( x) d ( x) ( x) Let I e o-empty suset of -semihyperrig R We sy tht I is -idel of R if I stisfies the followig oditio: I R I, I R I, R I I for every A -idel I of -semihyperrig R geerte the followig regulr reltio o R : xi y x = y o r x, y I It is esy to see tht I is reflexive, symmetri, trsitive d regulr We shll ll regulr reltio of this type Rees reltio Exmple Let R e -hyperrig d I e orml idel of R The, the reltio x y( modi) is regulr reltio o R Propositio Let R e -semihyperrig d e regulr reltio o R The, R / is - semihyperrig with respet to the followig hyperopertio: ( ) ( )={ ( ) ( ) ( )}, ( ) ˆ ( )={ ( d) d ( ) ( )}, where ={ ˆ } Exmple Let ( R,, ) e semihyperrig suh tht x y = x y x y, e ommuttive group We defie x y = x y for every x, y R d The, R is -semihyperrig Exmple 3 Let ( R,, ) e semirig d (, ) e sugroup of ( R, ) d I e idel of R suh tht I = I ={0} We defie x y = x y I for every x, y R d The, R is multiplitive -semihyperrig Exmple 4 Let R = Z4 d I = ={0,} 4 The, R is multiplitive -semihyperrig with the followig hyperopertio: x ˆ y = {0, }, where x, y R, ˆ d ={ ˆ } Simple semihyperrigs I this setio R is -semihyperrig suh tht it hs elemet 0 with the followig property: x x0, 0 0 = {0} d x 0 = 0 x = {0}, for every x, y Rd Hee {0} is idel of R Defiitio A -semihyperrig R is lled simple (right simple)if () {0} d R re the oly idels (right idels), () RR {0} I the sme wy, we defie simple - hyperrig A idel I of -semihyperrig R is lled simple, if I is simple -semihyperrig This mes tht{0} d I re oly idels of I d II {0} Exmple 5 Let ( F,, ) e field, (, ) e sugroup of ( F, ) suh tht F d { A t } tf e fmily of o-empty disjoit sets i whih A o = The, S = t F A t is simple - semihyperrig with the followig hyperopertios: x y = Ag g, x y = Ag g, where x Ag, y Ag, g, g d

4 IJST (03) 37A3: Exmple 6 Let { A R} e fmily of disjoit set suh tht {0} = 0 A = (0,) 0< < [ mm, ) m < m The, for every x R there exists R suh tht x A So, R is simple R -semihyperrig with the followig hyperopertio: x y = A m, x y = A m, where x A, ya d R m Exmple 7 Let R ={,, } d ={, } The, R is simple -hyperrig with the followig opertios d hyperopertio: where ={, } {,} {,,} Lemm A -semihyperrig R is simple if d oly if R R = R for every R \0 Proof: Suppose tht R is simple - semihyperrig The, R R is idel of R Sie R is simple -semihyperrig, R R is distit from {0}, hee it must e oiide with R, d it follows: RRR = R R = R Let 0 e elemet of R The, R R is idel of R d so either R R = R or R R ={0} If RR ={0}, the the set I = { x R Rx R = {0}}, otis ozero elemet Let x, y I The, R x R ={0} d R y R ={0} Sie R ( x y) R R x RR y R, I is idel of R whih implies tht I ={0} or for I = R If I = R, the R x R = {0} every x R Sie R is simple d {0} RR R R, we hve R R = R But this implies tht R = RR R={0} whih is otrditio Hee, RR = R Coversely, suppose tht R R = R for ll R\0 The, RR {0} If I is idel of R otiig o-zero elemet, the R= RR RIR I, d so I = R Therefore, R is simple -semihyperrig Lemm 3 If I is o-zero miiml idel of -semihyperrig R, the either I I ={0} or I is simple idel of R Proof: Sie I I is idel of R otied i I, we must hve either I I = {0} or I I = I Suppose tht I I = I The, ( I I) I = I I Therefore, III = I I If is o-zero elemet of I, the < > is o-zero idel of R otied i I Sie I is miiml idel of R, we hve I =< > Sie < >= R R R R, we oti II I( RRRR) I II Hee, I I = I d so I is simple idel of R Defiitio 4 Let R e -semihyperrig d for every \0 there exists suh tht for every x R, x x d x x The, R is lled -semihyperrig with -idetity Lemm 5 Let R e right simple - semihyperrig with -idetity The, R \0 is multiplitive lose suset of R Proof: We show tht for every, Rd, R \0 Suppose tht, R\0, ut ={0} Let = { x R x = {0}} The, is right idel of R Sie {0, }, we oti = R whih implies tht R ={0} Hee,

5 55 IJST (03) 37A3: 5-63 ={0} This is otrditio Therefore, R \0 Propositio 6 Let I e simple left idel of - semihyperrig R d for every left idel J of R, y rj implies tht y r J where y I The, for every d r R, I r is either {0} or miiml left idel of R Proof: Suppose tht Ir {0}, where d r R Oviously, Ir is left idel of R I order to show tht it is miiml left idel, let A e left idel of R otied i I r Assume tht ={ x I xr A} The, r A Let x A The, there exists y I suh tht x yr Hee A y r whih implies tht y r A So, r = A Ir Sie I is simple left idel d is left idel of R, the ={0} or = I Hee A ={0} or A = I r Propositio 7 Let I e miiml simple idel of R suh tht L {0} is left idel otied i I So, L L {0} Proof: Sie L R is idel of R otied i I, L R ={0} or L R = I If L R ={0}, the L is idel of R Hee, L = I d II = LI LR = {0} Tht is otrditio Hee, L R = I Sie I = II =( LR) ( LR) ( LL) R We olude tht L L {0} Lemm 8 Let R e multiplitive - semihyperrig with -idetity d I e simple left idel of R The, I = R for every I \0 Proof: Suppose tht 0 is elemet of I The, R is left idel of R otied i I Therefore, R = {0} or R = I If R ={0}, the {0, } is left idel of I Therefore, I I ={0} whih is otrditio Hee, R = I Theorem 9 Let R e simple -hyperrig otiig o-zero miiml left idel The, R is the uio of its miiml left idels Proof: Suppose tht R is simple -hyperrig d I is o-zero miiml left idel The, I Ris idel of R d so either I R ={0} or I R R Suppose tht I R ={0} The, I is idel of R Sie I {0}, it follows tht I = R d so RR R R ={0} It is otrditio We olude tht I R = R d so there exists R suh tht I {0} Let J e o-zero left idel of R otied i I The, ={ I J}, eig o-zero left idel of R otied i I d so J I = J Now, let H = { I R, } The, ertily H is o-zero left idel Let x H, y R d The, there exist, R suh tht x I Hee, x y( I) y = I( y) H Sie R is simple, H = R, d R is the uio of miiml left idels The dul of the previous theorem is true Therefore, if R is simple -hyperrig d otis miiml right idel, the R is the uio of its miiml right idel Propositio 0 Suppose tht R is simple - hyperrig otiig t lest oe miiml left idel d oe miiml right idel The, for every miiml left idel L of R there exists miiml right idel R suh tht L R = R Proof: Let L e miiml left idel of R Sie R is simple -hyperrig, L R ={0} or L R = R By Theorem 9 there exist R d suh tht L {0} Sie {0} L L R, y the dul of the previous theorem there is miiml right idel R suh tht R Sie R is simple -semihyperrig, L R must oiide with R Propositio Let I e proper orml idel of -hyperrig R, A e the set of idels of R otiig I d B e the set of idels of [ R : I ] The, the mp : J [ J : I ] is ilusiopreservig ijetio from A oto B Proof: Sie J is idel of R, [ J : I ] is

6 IJST (03) 37A3: idel of [ R : I ] Hee is well-defied Let J d J e two idels of R suh tht ( J)= ( J ) The, [ J: I ]=[ J : I ] For every elemet x J, there is y J suh tht x y ( modi ) d so x y for some I This implies tht J J I the sme wy J J Hee, J = J Let T e idel of [ R : I ] The, ={ x R I ( x) T} is idel of R d ( )= T Therefore, is ijetive Propositio If I, J re idels of - hyperrig R suh tht I J, I is orml idel d there is o idel K of R suh tht I K J The, [ J : I ] is either simple or ull idel Proof: By Propositio, [ J : I ] is miiml idel of [ R : I ] Thus [ J : I ] is ull or simple, y Lemm 3 3 Noetheri d Artii -semihyperrigs A olletio A of susets of -semihyperrig R stisfies the sedig hi oditio (or A) if there does ot exist properly sedig ifiite hi A A of susets from A Rell tht suset B A is mximl elemet of A if there does ot exist suset i A tht properly otis B Propositio 3 Let R e -semihyperrig The, the followig oditios re equivlet: () R stisfyig the A oditio o right (left) idels () Every o-empty fmily of right (left) idels hs mximl elemet (3) Every right (left) idel is fiitely geerted Defiitio 3 A semihyperrig R is right (left) Noetheri if the equivlet oditios of the ove propositios re stisfied I the sme wy, we defie Artii - semihyperrig Let I e idel of semihyperrig R d I e Noetheri semihyperrig The, I is lled Noetheri idel of R Exmple 8 Let ( R, ) e group d (, ) e sugroup of R The, R is multiplitive Noetheri (Artii) semihyperrig with respet the followig hyperopertio: x y = R Exmple 9 Let A =[, ) for every Z, S A d = Z The, S is Noetheri = Z -semihyperrig ut ot Artii - semihyperrig with respet to the followig hyperopertio: x y = A m, x y = A m, where x A d y A m Propositio 33 Let ( R,, ) e ommuttive rig, (, ) e sugroup of ( R, ) suh tht R d { A g } g R e olletio of o-empty disjoit sets The, S = grag is - semihyperrig with the followig hyperopertio: x y = Ag g, x y = Ag g, where x A g, y A g d Therefore, R is Noetheri (Artii) rig if d oly if S is Noetheri (Artii) -semihyperrig Proof: Oe see tht S is -semihyperrig with the ove hyperopertios Let I e idel of R The, SI = gi Agis idel of R Coversely, suppose tht T is idel of - semihyperrig S The, T = S, where I =< X > d X ={ g R Ag T } Therefore, the ommuttive rig R is Noetheri (Artii) if d oly if S is Noetherio (Artii) Propositio 34 Let I e -idel of - semihyperrig R Let A e the set of idels of R otiig I d B the set of idel of R / I The, the mp : J J / I is ilusio-preservig ijetio of A oto B Proof: The proof is strightforwrd Propositio 35 Let R e Noetheri - semihyperrig d I e -idel of R The, R / I is Noetheri -semihyperrig Proof: The proof is strightforwrd Theorem 36 Let I e Noetheri -idel of - semihyperrig R If R / I is Noetheri - semihyperrig, the R is Noetheri - semihyperrig Proof: Assume tht I d R / I re Noetheri d A A A3 e sedig hi of idels of R There exist sedig hi of idels A I A I, ( AI)/ I ( A I)/ I, i I d R / I, respetively The, there exists N suh tht A I = A I d ( A I)/ = ( A I)/ i I i I I

7 57 IJST (03) 37A3: 5-63 for ll i Hee, A I = A I for ll i i Suppose tht x A I If x I, the i x A I Assume tht x Ai for some i The, there exists x A I suh tht I( x)= I( x ) whih implies tht x = x or x, x I Therefore, x A I whih implies tht A I = A I for ll i Hee, for i i Ai = Ai ( Ai I)= Ai ( A I)= A ( Ai I)= A ( A I)= A So, R is Noetheri respetively The, R = R R is Noetheri (, )-semihyperrig with the followig hyperopertios if d oly if R d R re Noetheri d -semihyperrig, respetively (, ) (, )={( x, y) x, y }, (, ) (, )(, ) = {( x, y) x, } Propositio 37 Let R e -semihyperrig d A, B e two Noetheri -idels of R The, A B is Noetheri su -semihyperrig of R Proof: Sie A d B re -idels, the A B is -idel of A d B is -idel of A B Ideed, ( A B) A( A A) ( B A) A B, ( A B) A ( AA) ( BA) A B I the sme wy we see tht B is -idel of A B We defie : A/ AB ( A B)/ B, y ( AB ( x )) = B ( x ), for ll x A Let AB( x) = A B( y) for some x, y A The, ( x)= ( y) Hee, is well-defied Sie B B ( AB( x) AB( y)) = ({ AB( t) tx y}) ={ B ( t) tx y} = B( x) B( y) = ( ( x)) ( ( y)) AB AB I the sme wy, it is esy to see tht ( ( x) ( y)) = ( ( x)) ( ( y)) AB AB AB A B Hee, A/ AB ( A B)/ B By the previous propositio, A B is Noetheri Lemm 38 Let R e ordered - semihyperrig with zero The priiple idels of R forms hi with respet to ilusio if d oly if idels of R do so Proof: Suppose tht I, J re idels of R suh tht I J with zero The, J I Let x J We osider elemet y I suh tht y J By hypothesis, we hve < x > < y > or < y > < x > If < y > < x >, the y < y > < x > J, whih is impossile Thus we hve < x > < y > d so whih x < x > I Lemm 39 Let R d R e semihyperrig with zero, - d - d - -idetity, Proof: The proof is strightforwrd Propositio 30 Let R e -semirig with zero d -idetity, d e regulr reltios o R suh tht = R R d = Id R The, R / d R / re Noetheri -semirigs if d oly if R is Noetherio -semirig Proof: Let : R R / R / defied y ( x ) = ( ( x ), ( x )) We show tht is homomorphism We hve ( x y ) = ( ( x y ), ( x y )) =( ( x ), ( x )) ( ( y ), ( y )) = ( x ) ( y ) Let f : defied y f ( ) = (, ) I the sme wy, ( x y) = ( x) f ( ) ( y) Also, we hve ker ={(, ) ( )= ( )}={(, ) ( ) = ( ), ( ) = ( )} = Id R Let ( ( x ), ( y )) R / R / There exists R suh tht (, ) d (, ) whih implies tht ( ) = ( ( ), ( )) = ( ( x), ( y)) Hee R R / R / By Lemm 39, R is Noetheri -semihyperrig if d oly if R / d R / re Noetheri -semihyperrigs I the previous propositio, let R e - semihyperrig The, is homomorphism ut is ot strog homomorphism Let R e - semihyperrig A idel P of R is lled prime if AB P, implyig tht A Por B P, where A d B re idels of R A idel M of -

8 IJST (03) 37A3: semihyperrig R is lled mximl, if M R d there re o idels i " etwee" M d R I other words, if I is idel whih otis M s suset, the either I = R or I = M Let R e ommuttive -semihyperrig with zero d - idetity The, every mximl idel of R is prime Exmple 0 Let R ={,,, d }, = d =0, = The, R, is -semihyperrig with the followig hyperopertios: d {,} {,} {,d} {,d} {,} {,} {,d} {,d} {,d} {,d} {,} {,} d {,d} {,d} {,d} {,} d {,} {,} {,} {,} {,} {,} {,} {,} {,} {,} {,d} {,d} d {,} {,} {,d} {,d} For every x, y Rwe defie x y ={, } I this exmple P ={, } is prime idel of R Propositio 3 Let R e ommuttive - semihyperrig with zero d -idetity d M, M,, M differet mximl idels i R The, M, M,, M is proper idel of M M M Proof: It is strightforwrd Propositio 3 Let R e multiplitive - semihyperrig with zero, I d J e o-empty susets of F / d R, respetively The, ) If I is idel of F /, the I R is idel of R ) If J is idel of R, the J F / is idel of F / Proof: () Sie I is o-empty set, there exists =( x, ) I Hee elemet i i i = x (0, ) (, ) (0, ) I for every i i i, whih implies tht I R is o-empty set Now, let x, y I R, the ( x, ), ( y, ) I for every Hee ( x y, ) = ( x, ) ( y, ) I for every d so x y I Let x I R, y R d The, ( x, ) I for every Sie I is idel of F /, ( x, ) ( y, ) I So { ( t, ) t xy} I whih implies tht x y I Hee, I R is idel of R () Let J e idel of R The, 0 J, whih implies tht (0, ) J F / Hee, J F / is o-empty set Let m i = ( xi, i ) d j =( y j, j ) e elemets of J F / The, m i= i i j= j j x xd y x I for every x R m i i j j Hee, i= x x j=y x I whih implies tht m i = x x j = y j jx JF / i i I the sme wy, J F / is losed with respet to the ove hyperopertio Hee, J F / is idel of F / Theorem 33 Let R e multiplitive - semihyperrig with -idetity d zero, I d J e idels of F / d R, respetively The, () ( J ) = I, () ( I ) = J, F / R R F / Proof: () We hve ( JF/ ) R ={ x R ( x, ) JF/ } ={ x R ( x, ) JF /, for every } ={ x R x J, for every, R} Sie R hs -idetity, the ( J F / ) R J Therefore, ( J F / ) R = J () By defiitio, we hve i ( I ) = ( x, ) x x I, for ll x R R F/ i i i i R = i = i i ii i = i = = ( x, ( t, ) I for every t x x, x R This implies tht ( IR ) F / F / I Sie R is with -idetity, ( IR ) F / I Hee, ( IR ) / = I Corollry 34 Let J d J e two idels of R d A d B e two idels of F / suh tht J A J d A B The, ( J) ( J) d R B R F F/ F/ Corollry 35 Let R e multiplitive - semihyperrig The, R is Noetheri (Artii) if d oly if F / is Noetheri (Artii) multiplitive hyperrig Corollry 36 Let R e Artii -rig The, R is Noetheri -rig

9 59 IJST (03) 37A3: Regulr -hyperrigs Let R e -hyperrig A elemet x R is (, )- regulr or shortly regulr if for every x R there exist y R d, suh tht x = x y x Let every elemet of R e regulr The, R is lled regulr -hyperrig A elemet e R is idempotet, if there exists suh tht e = e e I this se, we sy tht e is -idempotet We deote tht the set of ll - idempotet elemet with E Hee, if E is set of ll idempotet elemets of R, the E = E If every elemet of R is idempotet, the R is lled idempotet -hyperrig For elemet i -hyperrig R if there exist elemet R d, suh tht = d =, the is sid to e (, )- iverse of I this se, we write V ( ) Notie tht elemet with iverse is eessry regulr d every (, )-regulr elemet hs (, ) -iverse: if there exist x R d,, = x, the defie = x x d oserve tht = ( xx) =( x) x = x= =( x x) ( x x)= x ( x) ( x x) = x( x) x = xx = Hee, i regulr -hyperrig every elemet hs iverse Let e (, )-regulr elemet of R The, V ( ) A idel I of - hyperrig R is lled (, )-regulr, if x ( x xyx) I implies tht there exist x, x x x y x suh tht x = x xfor some I Let I e idel of -hyperrig R d for every x I there exist, d y I suh tht x = xy x The, I is lled regulr idel of R Exmple Let ( R,, ) e regulr ommuttive rig, (, ) e o-empty suset of R d e equivlee reltio defied s follows: x y x = y or x = y The, the set R / ={ ( x) x R} eomes regulr -hyperrig with respet to the hyperopertio ( x ) ( y)={ ( x y), ( x y)} d multiplitio ( x ) ( y)= ( x y) Propositio 4 Let R e regulr -hyperrig with zero The, every priipl (right) left idel of R is geerted y idempotet elemet Proof: Suppose tht x is elemet of R The, there exist y R d, suh tht x = xyx Sie, m < x > l = y R y ix rjjx, i,, m, j j, rj R, j m i= j= We hve < x > l =< y x > l Moreover, ( y x) ( yx)= y( xyx)= y x Hee, y x is -idempotet elemet of R This ompletes the proof Propositio 4 Let R e -hyperrig with - idetity d for every x R there exists idempotet elemet er suh tht x R = er The, R is regulr -hyperrig Proof: Sie R is -hyperrig with -idetity, there exist x, x R d suh, tht x = ex d e = xx Sie e is idempotet elemet of R, there exists suh tht e = e e Hee, x = ex =( ee) x = ( xx ) ( xx ) x = xx ( xxx) = xx x The, x is regulr elemet of R Therefore, R is regulr -hyperrig Propositio 43 Let R e regulr -hyperrig The, every oe-sided idel of R is idempotet Proof: Suppose tht I is right idel of R d x I The, x = xyx for some, d y R Cosequetly, x =( x y) x II Thus, I I = I Propositio 44 Let I, J e two idels i - hyperrig R suh tht I J If J is regulr, the I is regulr too Proof: Suppose tht x I The, there exist y J d, suh tht x = xy x Hee, z = yx y is elemet of I suh tht x zx = x( yxy) x = ( xyx) ( yx)= xyx = x Propositio 45 Let R e -hyperrig d I J re idels of R suh tht I is (, )- regulr idel of R The, I d [ J : I ] re oth regulr if d oly if J is regulr Proof: By Propositio 44, it is ovious tht if J is

10 IJST (03) 37A3: regulr, the [ J : I ] d I re regulr Coversely, ssume tht I d [ J : I ] re oth regulr d x J It follows from regulrity [ J : I ] tht ( x x y x) I for some, d y J Suppose tht x ( x xyx) I The, there exist x, x x x y x suh tht some J Hee x = x x for x x x yx = xx xyx ( x xyx) ( x xyx) xyx = x x xxyx xyxx xyxxyx = x( xy yx yxxy y) x Cosequetly, from whih we olude tht x = xzx from some z J Hee, J is regulr Propositio 46 Let R e -hyperrig, I e regulr idel d J e orml idel suh tht (, ) -regulr The, I J is regulr idel of R Proof: Clerly, J is orml idel of I J d I J is orml idel of I Cosequetly, oe see [ I J : J ] [ I :( I J) ] Sie I is regulr, [ I :( I J) ] is regulr By Propositio 45, we oti I J is regulr idel of R Let R e -rig suh tht every elemet of R e (, )-regulr (This mes tht for every x R there exists y Rd suh tht x = x y x ) The, R is lled (, ) -regulr -rig A idel P of ommuttive -rig R is lled qusi prime if ARB P implies tht A Por B P, where A, B re susets of R d R A A, RB B Theorem 47 Let R e ommuttive -rig d suh tht () R e Noetheri rig, () R / P is (, ) -regulr for ll qusi prime idels of R, (3) {0} is qusi prime idel of R The, R is (, ) -regulr -rig Proof: Assume tht R is ot (, )-regulr - hyperrig The, there is some x R suh tht x xrx Note tht {0} is qusi prime idel of R suh tht xx R {0} Hee, ={ I R x xrx I, I is qusi idel of R} is o-empty set Sie R is Noetheri -rig, there is qusi idel J i R whih is mximl with reset to the property x x R x J Suppose tht x J e (, ) -regulr elemet of R/ J Thus, there is y R suh tht x x yxj xrx J whih is otrditio Hee, R / J is ot (, ) -regulr Therefore, J is ot qusi prime idel of R Thus there exist idels I suh tht I RI J d I, I re ot susets of Now, set A ={ r R rri J} d B ={ rr ARr J} Sie J is qusi prime idel, we olude tht A d B re qusi prime idels of R Clerly, I A d of mximlity of, I B Hee, A d B properly oti J Beuse J x R x A d x x R x B Hee, there exist r, r R d, suh tht x = x r x d x = xr x where Ad B We hve x x ( rr rxr) x=( xxrx) ( xxrx) rxa I the sme wy, we see x x ( rr rxr) x B Hee, x x R x A B Note lso tht, sie ( A B) R( AB) ARB J, the we hve A B J Hee, xx R x J, whih is otrditio Therefore, R is (, ) - regulr -rig Propositio 48 Let R e ommuttive - hyperrig with -idetity The, IJ = I J for ll idels I d J if d oly if R is regulr Proof: Suppose tht R is regulr d I, J re two idels of R By Propositio 43, I J is idempotet The, I J =( I J) ( I J) I J Hee, IJ = I J Coversely, suppose tht IJ = IJ, where I d J re idels of R Let x R The, x R d R x re idels of R So, ( x R) ( Rx)= ( xr) ( Rx) Sie R hs - idetity, x x R d x R x d so x ( x R) ( Rx)=( xr) ( Rx) xrx Hee, R is regulr Propositio 49 Let e regulr reltio o regulr - hyperrig R, ( ) is -idempotet elemet i R / d e (, )-regulr elemet of R The, there exists idempotet elemet e R suh tht ( )= ( e ), where e is -idempotet elemet of R Proof: It is strightforwrd Propositio 40 Let R e regulr -hyperrig d e e e (, )-regulr elemet of R, where

11 6 IJST (03) 37A3: 5-63 d, e E, e E The, E ( e, e) ={ x V ( ee) E xe = x e = x, ex = ex = x}, is o-empty set of R Proof: Sie e e is (, )-regulr, V ( e e) is o-empty set of R Suppose tht yv ( ee ) d x = e y e The, ( ee ) x ( ee ) = ( ee ) ( eye ) ( ee ) = e ( ee ) y ( ee ) e = ( ee ) y ( ee ) = ee Also, we hve x ( e e) x =( e ye) ( ee) ( e ye) = ey( ee) ( ee) ye = eyeeye = e( yeey) e = eye = x, d so x V ( e e) Also, x x =( e ye) ( ey e) = e( y( ee) y) e = eye = x, d so x E Filly, it is ler tht x e = x d e x= x Therefore, x E ( e, e) whih implies tht E ( e, e) is o-empty set of R Propositio 4 Let R e regulr -hyperrig d e e e (, )-regulr elemet of R, where, d e E, e E The, E ( e, e ) ={ x E xe = e x = x, exe = ee } Proof: Suppose tht x E, x e = e x = xd e xe = e e The, ( ee) x( ee) =( ee) ( xe) e = e( ex) e = exe = e e x( ee) x = ( xe) ex = x x = x Hee, x V ( e e) d so x E ( e, e) Coversely, let x E ( e, e) The, x E d ( ee ) x( ee ) = e e Moreover, ( e e ) x( e e ) = ( e e ) ( xe ) e =( e e ) xe = e ( e x) e = e xe Therefore, e xe = e e Propositio 4 Let R e regulr -hyperrig, e ee (, )-regulr elemet of R, where e E, e E The, E ( e, e) is su semigroup of Proof: By Propositio 4, E ( e, e) is oempty set Let x, x E ( e, e) The, x, x E d x e = e x = x, e x e = e e, x e = e x = x, e x e = e e Moreover, x xx =( xe) x( ex) = x( exe) x = x( ee) x =( xe) ( ex) = x x = x It follows tht ( x x) ( xx) = ( xxx) x = x x, d so x x is -idempotet elemet Also, ( x x) e = x( xe ) = x x, e ( xx) = ( ex) x = x x e ( xx ) e =( ex) ( e x ) e =( exe) x e =( ee) x e = e( ex ) e = e x e, d so x x E ( e, e) This implies tht E ( e, e ) is su semigroup of R Propositio 43 Let R e regulr -hyperrig, is (, ) -regulr, is (, )-regulr d for every -idempotet elemets e, e R, e e E ( e, e ) The, V ( ) V ( ) V ( ) V Proof: Sie is (, ) -regulr d is (, ) -regulr elemets, V ( ) d () re o

12 IJST (03) 37A3: empty susets of R Suppose tht V ( ) d V ( ) Let g E (, ) The, ( ) ( g ) ( ) = ( g) ( ) = ( g) = g =( ) g( ) = ( g ) = ( ) =( ) ( ) = ( g ) ( ) ( g )= ( g) ( g) = ( gg) = g Hee, g V ( ) Oe see tht d re -idempotet elemets of R Hee ( ) ( ) E (, ) This implies tht (( ) ( )) V ( ) Thus, ( ) ( ) V ( ) whih implies tht V ( ) Therefore, V () V () V ( ) Propositio 44 Let R e regulr -hyperrig with the set E of -idempotet elemets, e e is (, )-regulr elemet of R where e, e E d V () e E for every e E The, E is su semigroup of R Proof: Suppose tht e, e E, x V ( e e) d y = e x e The, ( ee) y( ee) =( ee) ( exe) ( ee) = e( ee) x( ee) e =( ee) x( ee) = e e y ( ee) y = ( exe) ( ee) ( exe) = ex( ee) ( ee) xe = e( xeex) e = e xe Hee, y V ( e e) Moreover, y y =( exe) ( e xe) = e ( xe e x ) e = e xe = y, whih implies tht y is -idempotet elemet But e e V ( y ) E Hee, E is su semigroup of R 5 Colusio I this work, we preseted the oept of - semihyperrig whih is ew kid of hyperlger d is geerliztio of semihyperrigs, hyperrigs d rigs d proved some results I prtiulr, the study of the otios of Noetheri, Artii, simple d regulr -semihyperrigs Referees [] Nousw, N (964) O geerliztio of the rig theory Osk J Mth, [] Bres, W E (966) O the -rigs of Nousw Pifi J Mth, 8(3), 4-4 [3] Luh, J (969) O the theory of simple -rigs Mihig Mth J, 6, [4] Kyuo, S (978) O prime -rigs Pifi J Mth, 75(), [5] Mrty, F (934) Sur ue g e erliztio de l otio de groupe 8th Cogress Mth Sdeves, Stokholm, [6] Corsii, P (993) Prolegome of hypergroup theory Seod editio, Avii editor [7] Vougiouklis, T (994) Hyperstrutures d their represettios Florid, Hdroi Press [8] Preowitz, W & Jtosik J (979) Joi Geometries Spriger-Verlg, UTM [9] Dvvz, B & Leoreu-Fote, V (007) Hyperrig Theory d Applitios USA: Itertiol Ademi Press [0] Bosig, P & Corsii, P (98) O semihypergroup d hypergroup homomorphisms Boll U Mt Itl B, 6(), [] Corsii, P (980) Sur les semi-hypergroupes Att i So Pelori-t Si Fis Mt Ntur, 6, [] Corsii, P & Leoreu, V (003) Applitios of hyperstruture theory Adves i Mthemtis, Kluwer Ademi Pulishers, Dordreht [3] Dvvz, B (000) Some results o ogruees o semihypergroups Bull Mlys Mth Si So (), 3, [4] Dvvz, B & Pourslvti, N S Semihypergroups d S-hypersystems, Pure Mth Appl, (000), [5] Fsio, D & Frei, D (007) Existee of proper semihypergroups of type U o the right Disrete Mth, 307, [6] Gut, C (99) Simplifile semihypergroups Algeri hyperstrutures d pplitios (Xthi, 990), 03-, World Si Pul, Teek, NJ [7] Leoreu, V (000) Aout the simplifile yli semihypergroups Itertiol Alger Coferee (Isi, 998), Itl J Pure Appl Mth, 7, [8] Rot, R (98) Sugli iperelli moltiplitivi Red Di Mt, Series (4), 7-74 [9] Ro, M K (995) -semirig Southest Asi Bulleti of Mths, 9, [0] Dutt, T K & Srdr, S K (00) O the opertor semirigs of -semirig Southest Asi Bull

13 63 IJST (03) 37A3: 5-63 Mth, 6, 03-3 [] Avriyeh, S M, Mirvkili, S & Dvvz, B (00) O -hyperidels i -semihypergroups Crpthi J Mth, 6(), -3 [] Heidri, D, Dehkordi, S O & Dvvz, B (00) -Semihypergroups d their properties UPB Si Bull, Series A, 7, 97-0

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients Ge Mth Notes Vol 2 No Jury 20 pp 86-97 ISSN 229-784; Copyriht ICSRS Publitio 20 wwwi-srsor Avilble free olie t http://wwwemi Neihborhoods of Certi Clss of Alyti Futios of Complex Order with Netive Coeffiiets

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007 ENGR 386 Digitl Logi Boole Alger Fll 007 Boole Alger A two vlued lgeri system Iveted y George Boole i 854 Very similr to the lger tht you lredy kow Sme opertios ivolved dditio sutrtio multiplitio Repled

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

On AP-Henstock Integrals of Interval-Valued. Functions and Fuzzy-Number-Valued Functions.

On AP-Henstock Integrals of Interval-Valued. Functions and Fuzzy-Number-Valued Functions. Applied Mthemtis, 206, 7, 2285-2295 http://www.sirp.org/jourl/m ISSN Olie: 252-7393 ISSN Prit: 252-7385 O AP-Hestok Itegrls of Itervl-Vlued Futios d Fuzzy-Numer-Vlued Futios Muwy Elsheikh Hmid *, Alshikh

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations) KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS 6-7 CLASS - XII MATHEMATICS (Reltions nd Funtions & Binry Opertions) For Slow Lerners: - A Reltion is sid to e Reflexive if.. every A

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz, MAT337H Itrodutio to Rel Alysis The Rel Numers RATIONAL FIELD Tke rtiols s give { m, m, R, } is field with dditio d multiplitio defied Additio: y= y, y z= yz, There eists Q suh tht = For eh Q there eists

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS *

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS * J. ci. I. R. Ir Vol., No. 3, ummer 2000 GENERALIZED POITIVE DEFINITE FUNCTION AND COMPLETELY MONOTONE FUNCTION ON FOUNDATION EMIGROUP * M. Lshkrizdeh Bmi Deprtmet of Mthemtics, Istitute for tudies i Theoreticl

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too.

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too. 12. No-stdrd lysis October 2, 2011 I this sectio we give brief itroductio to o-stdrd lysis. This is firly well-developed field of mthemtics bsed o model theory. It dels ot just with the rels, fuctios o

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Ch. 12 Linear Bayesian Estimators

Ch. 12 Linear Bayesian Estimators h. Lier Byesi stimtors Itrodutio I hpter we sw: the MMS estimtor tkes simple form whe d re joitly Gussi it is lier d used oly the st d d order momets (mes d ovries). Without the Gussi ssumptio, the Geerl

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Commutativity in Permutation Groups

Commutativity in Permutation Groups Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

The Modified Heinz s Inequality

The Modified Heinz s Inequality Journl of Applied Mthemtics nd Physics, 03,, 65-70 Pulished Online Novemer 03 (http://wwwscirporg/journl/jmp) http://dxdoiorg/0436/jmp03500 The Modified Heinz s Inequlity Tkshi Yoshino Mthemticl Institute,

More information

Math 201 (Introduction to Analysis) Fall

Math 201 (Introduction to Analysis) Fall Mth (Itrodutio to Alysis) Fll 4-5 Istrutor: Dr. Ki Y. Li Offie: Room 47 Offie Phoe: 58 74 e-mil ddress: myli@ust.h Offie Hours: Tu. :pm - 4:pm (or y ppoitmets) Prerequisite: A-level Mth or Oe Vrile Clulus

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

ON ALMOST WN-INJECTIVE RINGS **

ON ALMOST WN-INJECTIVE RINGS ** Jord Jourl of Mthemtics d Sttistics (JJMS) 6 (1), 013, pp. 61-79 ON ALMOST WN-INJECTIVE INGS ** ABSTACT: Let be rig. Let AIDA D.M. (1) AND AKAM S.M. () M be module with S = Ed M ).The module M is ( clled

More information

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee Kngweon-Kyungki Mth. Jour. 10 (2002), No. 2, pp. 117 122 ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups Sng Keun Lee Astrt. In this pper, we give some properties of left(right) semi-regulr nd g-regulr

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang CS 33 Desig d Alysis of Algorithms -- Divide d Coquer Dr. Disy Tg Divide-Ad-Coquer Geerl ide: Divide problem ito subproblems of the sme id; solve subproblems usig the sme pproh, d ombie prtil solutios,

More information

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Content. Languages, Alphabets and Strings. Operations on Strings. a ab abba baba. aaabbbaaba b 5. Languages. A language is a set of strings

Content. Languages, Alphabets and Strings. Operations on Strings. a ab abba baba. aaabbbaaba b 5. Languages. A language is a set of strings CD5560 FABER Forml guges, Automt d Models of Computtio ecture Mälrdle Uiversity 006 Cotet guges, Alphets d Strigs Strigs & Strig Opertios guges & guge Opertios Regulr Expressios Fiite Automt, FA Determiistic

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

CH 20 SOLVING FORMULAS

CH 20 SOLVING FORMULAS CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Fuzzy Neutrosophic Equivalence Relations

Fuzzy Neutrosophic Equivalence Relations wwwijirdm Jur 6 Vl 5 ssue SS 78 Olie u eutrsphi Equivlee eltis J Mrti Je eserh Shlr Deprtmet f Mthemtis irml Cllege fr Wme Cimtre mil du di rkiri riipl irml Cllege fr Wme Cimtre mil du di strt: his pper

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

Generalization of Fibonacci Sequence. in Case of Four Sequences

Generalization of Fibonacci Sequence. in Case of Four Sequences It. J. Cotem. Mth. iees Vol. 8 03 o. 9 4-46 HIKARI Lt www.m-hikri.om Geerliztio of Fioi euee i Cse of Four euees jy Hre Govermet College Meleswr M. P. Ii Bijer igh hool of tuies i Mthemtis Vikrm Uiversity

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM Bsic Mths Fiorell Sgllri Uiversity of Bolog, Itly Fculty of Egieerig Deprtmet of Mthemtics - CIRM Mtrices Specil mtrices Lier mps Trce Determits Rk Rge Null spce Sclr products Norms Mtri orms Positive

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

On Matrices Over Semirings

On Matrices Over Semirings Aals of Pure ad Applied Mathematics Vol. 6, No. 1, 14, 1-1 ISSN: 79-87X (P, 79-888(olie Pulished o 16 April 14 www.researchmathsci.org Aals of O Matrices Over Semirigs K. R.Chowdhury 1, Aeda Sultaa, N.K.Mitra

More information

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION JAMES MC LAUGHLIN AND PETER ZIMMER Abstrct We prove ew Biley-type trsformtio reltig WP- Biley pirs We

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

A negative answer to a question of Wilke on varieties of!-languages

A negative answer to a question of Wilke on varieties of!-languages A negtive nswer to question of Wilke on vrieties of!-lnguges Jen-Eric Pin () Astrct. In recent pper, Wilke sked whether the oolen comintions of!-lnguges of the form! L, for L in given +-vriety of lnguges,

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals Kig Fhd Uiversity of Petroleum & Mierls DEPARTMENT OF MATHEMATICAL CIENCE Techicl Report eries TR 434 April 04 A Direct Proof of the Joit Momet Geertig Fuctio of mple Me d Vrice Awr H. Jorder d A. Lrdji

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

5. Solving recurrences

5. Solving recurrences 5. Solvig recurreces Time Complexity Alysis of Merge Sort T( ) 0 if 1 2T ( / 2) otherwise sortig oth hlves mergig Q. How to prove tht the ru-time of merge sort is O( )? A. 2 Time Complexity Alysis of Merge

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 9. Modules over PID This week we re proving the fundmentl theorem for finitely generted modules over PID, nmely tht they re ll direct sums of cyclic modules.

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Advanced Calculus Test File Spring Test 1

Advanced Calculus Test File Spring Test 1 Advced Clculus Test File Sprig 009 Test Defiitios - Defie the followig terms.) Crtesi product of A d B.) The set, A, is coutble.) The set, A, is ucoutble 4.) The set, A, is ifiite 5.) The sets A d B re

More information

ON THE SM -OPERATORS

ON THE SM -OPERATORS Soepara d O The SM-operators ON THE SM -OPERTORS Soepara Darawijaya Musli sori da Supaa 3 3 Matheatis Departeet FMIP UGM Yogyaarta eail: aspoo@yahoo.o Matheatis Departeet FMIP Uiversitas Lapug Jl. Soeatri

More information