Kinematic representation! Iterative methods! Optimization methods

Size: px
Start display at page:

Download "Kinematic representation! Iterative methods! Optimization methods"

Transcription

1 Human Kinematics

2

3 Kinematic representation! Iterative methods! Optimization methods

4 Kinematics Forward kinematics! given a joint configuration, what is the position of an end point on the structure?! Inverse kinematics! given the position for an end point on the structure, what angles do the joints need be to achieve that end point?

5 Quiz Which function is inverse kinematics? θ φ σ θ φ σ p θ, φ, σ = f(p) p p = f(θ, φ, σ)

6 Why inverse? More intuitive control! Maintain environment constraints! Calculate desired joint angles for control

7 Motion representation Global position and orientation are determined by 3 translational and 3 rotational DOFs Each joint can have up to 3 DOFs 1 DOF: knee 2 DOF: wrist 3 DOF: arm

8 Configurations q = x, y, z,,,, th, th, th, kn, x, y, z,,, θ thigh,φ thigh,σ thigh θ knee θ ankle,φ ankle

9 Constraints x, y, z,,, θ thigh,φ thigh,σ thigh d 0 Position constraint d 1 θ knee C(q) =h(q) p = 0 d 2 p θ ankle,φ ankle h(q) h(q) =T(x, y, z)r(,, )T(d 0 )R( th, th, th )T(d 1 )R( kn )T(d 2 )R( an, an )x a point on foot in world coordinates a point on foot in local coordinates

10 Solutions Closed form solutions can only be found for fairly simple mechanisms! Numerical solutions! No solution! Single solution! Multiple solution

11 Under-specified problem Multiple solutions! Mostly bad! How do we find the optimal solution?! Heuristics (move the outermost links first)! Closest to the current configuration! Energy minimization! Natural looking motion (whatever it means)

12

13 Kinematic representation! Iterative methods! Optimization methods

14 Iterative method Use inverse of Jacobian to iteratively step all the joint angles towards the goal! Girard and Maciejewski, Computational modeling for the computer animation of legged figures, SIGGRAPH 85

15 Jacobian matrix Constraint (m) i DOF (n) j C i q j Jacobian is a m by n matrix that relates differential changes of q to changes of C Jacobian maps the velocity in joint space to velocities in Cartesian space Jacobian depends on current state

16 IK and the Jacobian J = C q C = J q q = J 1 C q new = q + tj 1 C Linearize about current q

17 Invert Jacobian But Jacobian is most likely non-square Compute the pseudo inverse Jacobian J + C = J q J T C = J T J q (J T J) 1 J T C =(J T J) 1 J T J q J + C = q J + =(J T J) 1 J T

18 Under-constrained Where #DOFs is greater than #constraints, the problem is under-constrained and J T J is not invertible = = J T (JJ T )

19 Problems Pseudo inverse returns the least square minimum norm solution! Singularities cause deficient Jacobian! Linearization about current state causes error

20 Kinematic representation! Iterative methods! Optimization methods

21 Optimization method Find a solution that optimizes some numeric metric and satisfies constraints! Numeric metric! A function of q that measures the quantity to be minimized! Also called objective function

22 Optimization method Solve for joint configuration q min q subject to G(q) C(q) =0

23 Constraint derivatives We need a direction to move joints in such way that the handle moves towards the goal! The derivative of the constraint, i.e. Jacobian, gives directions where handles move if joints move h(q) p C(q) =h(q) p = 0 C(q) q = h(q) q

24 Constraint derivatives C(q) =h(q) p = 0 h(q) =T(x, y, z)r(θ 0,φ 0,σ 0 )TR(θ 1 )TR(θ 2,φ 2 )h k q =[x, y, z, θ 0,φ 0,σ 0,θ 1,θ 2,φ 2 ] C(q) q = h(q) q x, y, z, θ 0,φ 0,σ 0 h(q) = T(x, y, z)r(θ 0,φ 0,σ 0 )T R(θ 1) TR(θ 2,φ 2 )h k θ 1 θ 1 θ 1 p Need to know how to compute derivatives for each transformation θ 2,φ 2 h(q) h k : local coordinate of h

25 Quiz What is the derivative for the translation matrix?!!!! What is the derivative for a rotation matrix about z axis? cos sin 0 0 sin cos

26 Constraint derivatives h(q) What is the most efficient way to compute the? q Compute the gradient for the DOF on the outermost link first x, y, z, θ 0,φ 0,σ 0 h = T 0 (x, y, z)r 0 (θ 0,φ 0,σ 0 )T 1 R 1 (θ 1 )T 2 R 2 (θ 2,φ 2 )h k θ 1 p θ 2,φ 2 h(q) h k : local coordinate of h

27 Quiz What s the dimension of a system with n dofs and m position constraints?

28 Optimization method Solve for joint configuration q min q subject to G(q) C(q) =0

29 Objective functions Joint velocity! Power consumption! Similarity to the rest pose! Similarity to the natural pose

30 Unconstrained optimization Treat each constraint as a separate metric and minimize weighted sum of all metrics! Also called penalty methods! each spring pulls on constraint with force proportional to violation of the constraint

31 Unconstrained optimization Softening constraints by adding them to the objective function Minimize F (q) =G(q)+ i w i C i (q) 2

32 Gradient descent For each iteration, move in the direction of @q 2 X i w T C i Update the state q new = q α F q

33 Optimization loop while F (q) @q +2X i w i )T C i update q

34 Search step size The step size in each search iteration can be determined arbitrarily, through a binary search, or solved by another optimization process Step size: α where min α F (q + α q) q new = q + α q

35 Unconstrained optimization Pros:! simple and fast, no linear system to solve! near-singular configurations is less of a problem! Cons:! can t maintain constraints exactly! constraints fight against each other and the objective function

36 Constrained optimization Treat constraints as hard constraints! Use Lagrangian formulation to solve a nonlinear optimization L(q,λ)=G(q) λ C min q,λ L(q,λ)

37 Constrained method Pros! Enforce constraints exactly! Quadratic convergence! Cons! Large system of equations! Near-singular configurations cause instability

38 Leg example L0 hip T 0h T h1 R(q 0 )R(q 1 )R(q 2 ) L1 knee T 1k R(q 3 ) L2 T k2 ankle L3 R(q 4 )R(q 5 ) T 2a T a3 h 0

39 Leg example node0 hip q 0, q 1, q 2 q = {q 0, q 1, q 2, q 3, q 4, q 5 } node1 knee node2 q 3 To evaluate gradients of the obj function at each iteration, we need to evaluate constraint and compute Jacobian. C(q) = T 0h R 0 R 1 R 2 T h1 T 1k R 3 T k2 T 2a R 4 R 4 T a3 h 0 - p How to compute J(q)? q 4, q 5 node3 ankle h 0 p

40 Compute Jacobian T 0h T h1 R(q 0 )R(q 1 )R(q 2 ) Consider the derivative of C with respect to q 5 joint T 1k R(q 3 ) T k2 T 2a R(q 4 )R(q 5 ) T a3 h 0 = T 0h R(q 0 )R(q 1 )R(q 2 )T h1 T 1k R(q 3 )T k2 T 2a R(q 4 T a3 h 5 node->getparentbodynode()->gettransform() joint->gettransformfromparentbodynode() joint->gettransform(0) joint->gettransformderivative(1) joint->gettransformfromchildbodynode().inverse()

Reading. Realistic Character Animation. Modeling Realistic Motion. Two Approaches

Reading. Realistic Character Animation. Modeling Realistic Motion. Two Approaches Realistic Character Animation Reading Jessica Hodgins,,et.al,Animating Human Athletics,, SIGGRAPH 95 Zoran Popović, Changing Physics for Character Animation,, SIGGRAPH 00 2 Modeling Realistic Motion Model

More information

Numerical Methods for Inverse Kinematics

Numerical Methods for Inverse Kinematics Numerical Methods for Inverse Kinematics Niels Joubert, UC Berkeley, CS184 2008-11-25 Inverse Kinematics is used to pose models by specifying endpoints of segments rather than individual joint angles.

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

The Jacobian. Jesse van den Kieboom

The Jacobian. Jesse van den Kieboom The Jacobian Jesse van den Kieboom jesse.vandenkieboom@epfl.ch 1 Introduction 1 1 Introduction The Jacobian is an important concept in robotics. Although the general concept of the Jacobian in robotics

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics Robotics I Kinematics, Dynamics and Control of Robotic Manipulators Velocity Kinematics Dr. Christopher Kitts Director Robotic Systems Laboratory Santa Clara University Velocity Kinematics So far, we ve

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 3 3.4 Differential Algebraic Systems 3.5 Integration of Differential Equations 1 Outline 3.4 Differential Algebraic Systems 3.4.1 Constrained Dynamics 3.4.2 First and Second

More information

Stepping Motion for a Human-like Character to Maintain Balance against Large Perturbations

Stepping Motion for a Human-like Character to Maintain Balance against Large Perturbations Stepping Motion for a Human-like Character to Maintain Balance against Large Perturbations Shunsuke Kudoh University of Tokyo Tokyo, Japan Email: kudoh@cvl.iis.u-tokyo.ac.jp Taku Komura City University

More information

Lecture «Robot Dynamics» : Kinematics 3

Lecture «Robot Dynamics» : Kinematics 3 Lecture «Robot Dynamics» : Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15-12:00, every week exercise: HG G1 Wednesday 8:15-10:00, according to schedule (about every 2nd week) office hour: LEE

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic Functions Kinematic functions Kinematics deals with the study of four functions(called kinematic functions or KFs) that mathematically

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

Robot Dynamics Instantaneous Kinematiccs and Jacobians

Robot Dynamics Instantaneous Kinematiccs and Jacobians Robot Dynamics Instantaneous Kinematiccs and Jacobians 151-0851-00 V Lecture: Tuesday 10:15 12:00 CAB G11 Exercise: Tuesday 14:15 16:00 every 2nd week Marco Hutter, Michael Blösch, Roland Siegwart, Konrad

More information

Robotics 2 Robot Interaction with the Environment

Robotics 2 Robot Interaction with the Environment Robotics 2 Robot Interaction with the Environment Prof. Alessandro De Luca Robot-environment interaction a robot (end-effector) may interact with the environment! modifying the state of the environment

More information

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics DIFFERENTIAL KINEMATICS relationship between joint velocities and end-effector velocities Geometric Jacobian Analytical Jacobian Kinematic singularities Kinematic redundancy Inverse differential kinematics

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Articulated body dynamics

Articulated body dynamics Articulated rigid bodies Articulated body dynamics Beyond human models How would you represent a pose? Quadraped animals Wavy hair Animal fur Plants Maximal vs. reduced coordinates How are things connected?

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Modern Optimization Techniques

Modern Optimization Techniques Modern Optimization Techniques Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Stochastic Gradient Descent Stochastic

More information

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 5: Gradient Descent Scribes: Loc Do,2,3 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Robotics I. February 6, 2014

Robotics I. February 6, 2014 Robotics I February 6, 214 Exercise 1 A pan-tilt 1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base of a robot manipulator and is used for pointing at a (point-wise)

More information

Lecture Note 8: Inverse Kinematics

Lecture Note 8: Inverse Kinematics ECE5463: Introduction to Robotics Lecture Note 8: Inverse Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 8 (ECE5463

More information

MECH 576 Geometry in Mechanics November 30, 2009 Kinematics of Clavel s Delta Robot

MECH 576 Geometry in Mechanics November 30, 2009 Kinematics of Clavel s Delta Robot MECH 576 Geometry in Mechanics November 3, 29 Kinematics of Clavel s Delta Robot The DELTA Robot DELTA, a three dimensional translational manipulator, appears below in Fig.. Figure : Symmetrical (Conventional)

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Rigid body physics Particle system Most simple instance of a physics system Each object (body) is a particle Each particle

More information

Neural Network Control of Robot Manipulators and Nonlinear Systems

Neural Network Control of Robot Manipulators and Nonlinear Systems Neural Network Control of Robot Manipulators and Nonlinear Systems F.L. LEWIS Automation and Robotics Research Institute The University of Texas at Arlington S. JAG ANNATHAN Systems and Controls Research

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

Learning by constraints and SVMs (2)

Learning by constraints and SVMs (2) Statistical Techniques in Robotics (16-831, F12) Lecture#14 (Wednesday ctober 17) Learning by constraints and SVMs (2) Lecturer: Drew Bagnell Scribe: Albert Wu 1 1 Support Vector Ranking Machine pening

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Optimal control problems with PDE constraints

Optimal control problems with PDE constraints Optimal control problems with PDE constraints Maya Neytcheva CIM, October 2017 General framework Unconstrained optimization problems min f (q) q x R n (real vector) and f : R n R is a smooth function.

More information

Trajectory Planning from Multibody System Dynamics

Trajectory Planning from Multibody System Dynamics Trajectory Planning from Multibody System Dynamics Pierangelo Masarati Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Manipulators 2 Manipulator: chain of

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Robust Control of Cooperative Underactuated Manipulators

Robust Control of Cooperative Underactuated Manipulators Robust Control of Cooperative Underactuated Manipulators Marcel Bergerman * Yangsheng Xu +,** Yun-Hui Liu ** * Automation Institute Informatics Technology Center Campinas SP Brazil + The Robotics Institute

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Robotics. Kinematics. Marc Toussaint University of Stuttgart Winter 2017/18

Robotics. Kinematics. Marc Toussaint University of Stuttgart Winter 2017/18 Robotics Kinematics 3D geometry, homogeneous transformations, kinematic map, Jacobian, inverse kinematics as optimization problem, motion profiles, trajectory interpolation, multiple simultaneous tasks,

More information

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration;

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration; Robotics I April, 6 Consider a planar R robot with links of length l = and l =.5. he end-effector should move smoothly from an initial point p in to a final point p fin in the robot workspace so that the

More information

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point. Forward kinematics: X e = c 1 + c 12 Y e = s 1 + s 12 = s 1 s 12 c 1 + c 12, = s 12 c 12 Illustrate the column vector of the Jacobian in the space at the end-effector point. points in the direction perpendicular

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004

CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004 CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004 Lecture #2: 1 April 2004 Topics: Kinematics : Concepts and Results Kinematics of Ligands and

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Given U, V, x and θ perform the following steps: a) Find the rotation angle, φ, by which u 1 is rotated in relation to x 1

Given U, V, x and θ perform the following steps: a) Find the rotation angle, φ, by which u 1 is rotated in relation to x 1 1 The Jacobian can be expressed in an arbitrary frame, such as the base frame located at the first joint, the hand frame located at the end-effector, or the global frame located somewhere else. The SVD

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

Lecture Note 8: Inverse Kinematics

Lecture Note 8: Inverse Kinematics ECE5463: Introduction to Robotics Lecture Note 8: Inverse Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 8 (ECE5463

More information

MEAM 520. More Velocity Kinematics

MEAM 520. More Velocity Kinematics MEAM 520 More Velocity Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 12: October

More information

Robotics: Tutorial 3

Robotics: Tutorial 3 Robotics: Tutorial 3 Mechatronics Engineering Dr. Islam Khalil, MSc. Omar Mahmoud, Eng. Lobna Tarek and Eng. Abdelrahman Ezz German University in Cairo Faculty of Engineering and Material Science October

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

Descent methods. min x. f(x)

Descent methods. min x. f(x) Gradient Descent Descent methods min x f(x) 5 / 34 Descent methods min x f(x) x k x k+1... x f(x ) = 0 5 / 34 Gradient methods Unconstrained optimization min f(x) x R n. 6 / 34 Gradient methods Unconstrained

More information

Directional Redundancy for Robot Control

Directional Redundancy for Robot Control ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL Directional Redundancy for Robot Control Nicolas Mansard, François Chaumette, Member, IEEE Abstract The paper presents a new approach

More information

Parameter Identification by Iterative Constrained Regularization

Parameter Identification by Iterative Constrained Regularization Journal of Physics: Conference Series PAPER OPEN ACCESS Parameter Identification by Iterative Constrained Regularization To cite this article: Fabiana Zama 2015 J. Phys.: Conf. Ser. 657 012002 View the

More information

Non-Linear Optimization

Non-Linear Optimization Non-Linear Optimization Distinguishing Features Common Examples EOQ Balancing Risks Minimizing Risk 15.057 Spring 03 Vande Vate 1 Hierarchy of Models Network Flows Linear Programs Mixed Integer Linear

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

PDE-Constrained and Nonsmooth Optimization

PDE-Constrained and Nonsmooth Optimization Frank E. Curtis October 1, 2009 Outline PDE-Constrained Optimization Introduction Newton s method Inexactness Results Summary and future work Nonsmooth Optimization Sequential quadratic programming (SQP)

More information

Lecture «Robot Dynamics»: Kinematics 2

Lecture «Robot Dynamics»: Kinematics 2 Lecture «Robot Dynamics»: Kinematics 2 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Comparative Study of Numerical Methods for Optimal Control of a Biomechanical System Controlled Motion of a Human Leg during Swing Phase

Comparative Study of Numerical Methods for Optimal Control of a Biomechanical System Controlled Motion of a Human Leg during Swing Phase Comparative Study of Numerical Methods for Optimal Control of a Biomechanical System Controlled Motion of a Human Leg during Swing Phase International Master s Programme Solid and Fluid Mechanics ANDREAS

More information

Modern Optimization Techniques

Modern Optimization Techniques Modern Optimization Techniques 2. Unconstrained Optimization / 2.2. Stochastic Gradient Descent Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University

More information

C 2 Continuous Gait-Pattern Generation for Biped Robots

C 2 Continuous Gait-Pattern Generation for Biped Robots C Continuous Gait-Pattern Generation for Biped Robots Shunsuke Kudoh 1 Taku Komura 1 The University of Tokyo, JAPAN, kudoh@cvl.iis.u-tokyo.ac.jp City University of ong Kong, ong Kong, taku@ieee.org Abstract

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Least Squares Optimization

Least Squares Optimization Least Squares Optimization The following is a brief review of least squares optimization and constrained optimization techniques, which are widely used to analyze and visualize data. Least squares (LS)

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M.

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M. Introduction to nonlinear LS estimation R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, 2ed., 2004. After Chapter 5 and Appendix 6. We will use x

More information

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich Advanced Dynamics - Lecture 4 Lagrange Equations Paolo Tiso Spring Semester 2017 ETH Zürich LECTURE OBJECTIVES 1. Derive the Lagrange equations of a system of particles; 2. Show that the equation of motion

More information

Multi-Priority Cartesian Impedance Control

Multi-Priority Cartesian Impedance Control Multi-Priority Cartesian Impedance Control Robert Platt Jr. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology rplatt@csail.mit.edu Muhammad Abdallah, Charles

More information

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Gradient descent Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Gradient descent First consider unconstrained minimization of f : R n R, convex and differentiable. We want to solve

More information

Chapter 2. Optimization. Gradients, convexity, and ALS

Chapter 2. Optimization. Gradients, convexity, and ALS Chapter 2 Optimization Gradients, convexity, and ALS Contents Background Gradient descent Stochastic gradient descent Newton s method Alternating least squares KKT conditions 2 Motivation We can solve

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6)

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) Today s Objectives: Students will be able to analyze the kinetics of a particle using cylindrical coordinates. APPLICATIONS The forces acting

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

Modeling and Solving Constraints. Erin Catto Blizzard Entertainment

Modeling and Solving Constraints. Erin Catto Blizzard Entertainment Modeling and Solving Constraints Erin Catto Blizzard Entertainment Basic Idea Constraints are used to simulate joints, contact, and collision. We need to solve the constraints to stack boxes and to keep

More information

Least Squares Optimization

Least Squares Optimization Least Squares Optimization The following is a brief review of least squares optimization and constrained optimization techniques. Broadly, these techniques can be used in data analysis and visualization

More information

Mathematical optimization

Mathematical optimization Optimization Mathematical optimization Determine the best solutions to certain mathematically defined problems that are under constrained determine optimality criteria determine the convergence of the

More information

Least squares temporal difference learning

Least squares temporal difference learning Least squares temporal difference learning TD(λ) Good properties of TD Easy to implement, traces achieve the forward view Linear complexity = fast Combines easily with linear function approximation Outperforms

More information

Video 3.1 Vijay Kumar and Ani Hsieh

Video 3.1 Vijay Kumar and Ani Hsieh Video 3.1 Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Dynamics of Robot Arms Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Lagrange s Equation of Motion Lagrangian Kinetic Energy Potential

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Generalized Forces. Hamilton Principle. Lagrange s Equations

Generalized Forces. Hamilton Principle. Lagrange s Equations Chapter 5 Virtual Work and Lagrangian Dynamics Overview: Virtual work can be used to derive the dynamic and static equations without considering the constraint forces as was done in the Newtonian Mechanics,

More information

LECTURE # - NEURAL COMPUTATION, Feb 04, Linear Regression. x 1 θ 1 output... θ M x M. Assumes a functional form

LECTURE # - NEURAL COMPUTATION, Feb 04, Linear Regression. x 1 θ 1 output... θ M x M. Assumes a functional form LECTURE # - EURAL COPUTATIO, Feb 4, 4 Linear Regression Assumes a functional form f (, θ) = θ θ θ K θ (Eq) where = (,, ) are the attributes and θ = (θ, θ, θ ) are the function parameters Eample: f (, θ)

More information

Automatic Task-specific Model Reduction for Humanoid Robots

Automatic Task-specific Model Reduction for Humanoid Robots Automatic Task-specific Model Reduction for Humanoid Robots Umashankar Nagarajan and Katsu Yamane Abstract Simple inverted pendulum models and their variants are often used to control humanoid robots in

More information

arxiv: v1 [math.oc] 22 May 2018

arxiv: v1 [math.oc] 22 May 2018 On the Connection Between Sequential Quadratic Programming and Riemannian Gradient Methods Yu Bai Song Mei arxiv:1805.08756v1 [math.oc] 22 May 2018 May 23, 2018 Abstract We prove that a simple Sequential

More information

The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion

The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion 7 IEEE International Conference on Robotics and Automation Roma, Italy, 1-14 April 7 FrC3.3 The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion Fumihiko Asano

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

A new large projection operator for the redundancy framework

A new large projection operator for the redundancy framework 21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA A new large projection operator for the redundancy framework Mohammed Marey

More information

Abstract. Final Degree Project - Olga Pätkau

Abstract. Final Degree Project - Olga Pätkau Abstract I Abstract In this thesis, two different control strategies are applied to the forward dynamic simulation of multibody systems in order to track a given reference motion. For this purpose, two

More information

Numerical Methods for Rigid Multibody Dynamics

Numerical Methods for Rigid Multibody Dynamics Numerical Methods for Rigid Multibody Dynamics Claus Führer Centre for Mathematical Sciences Lund University Lappenranta 2012 Unit 0: Preface These notes serve as a skeleton for the compact course. They

More information

Port-based Modeling and Control for Efficient Bipedal Walking Machines

Port-based Modeling and Control for Efficient Bipedal Walking Machines Port-based Modeling and Control for Efficient Bipedal Walking Machines Vincent Duindam vincentd@eecs.berkeley.edu Control Laboratory, EE-Math-CS University of Twente, Netherlands Joint work with Stefano

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

Inverse Kinematics. Mike Bailey. Oregon State University. Inverse Kinematics

Inverse Kinematics. Mike Bailey. Oregon State University. Inverse Kinematics Inverse Kinematics Mike Bailey mjb@cs.oregonstate.edu inversekinematics.pptx Inverse Kinematics Forward Kinematics solves the problem if I know the link transformation parameters, where are the links?.

More information

TRACKING and DETECTION in COMPUTER VISION

TRACKING and DETECTION in COMPUTER VISION Technischen Universität München Winter Semester 2013/2014 TRACKING and DETECTION in COMPUTER VISION Template tracking methods Slobodan Ilić Template based-tracking Energy-based methods The Lucas-Kanade(LK)

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Advanced Robotic Manipulation Handout CS37A (Spring 017 Solution Set # Problem 1 - Redundant robot control The goal of this problem is to familiarize you with the control of a robot that is redundant with

More information

Optimality conditions for Equality Constrained Optimization Problems

Optimality conditions for Equality Constrained Optimization Problems International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 4767 P-ISSN: 2321-4759 Volume 4 Issue 4 April. 2016 PP-28-33 Optimality conditions for Equality Constrained Optimization

More information

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Sensitivity and Reliability Analysis of Nonlinear Frame Structures Sensitivity and Reliability Analysis of Nonlinear Frame Structures Michael H. Scott Associate Professor School of Civil and Construction Engineering Applied Mathematics and Computation Seminar April 8,

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES Today s Objectives: Students will be able to: 1. Analyze the kinetics of a particle using cylindrical coordinates. EQUATIONS OF MOTION: CYLINDRICAL COORDINATES In-Class Activities: Check Homework Reading

More information