EQUATIONS OF MOTION: CYLINDRICAL COORDINATES

Size: px
Start display at page:

Download "EQUATIONS OF MOTION: CYLINDRICAL COORDINATES"

Transcription

1 Today s Objectives: Students will be able to: 1. Analyze the kinetics of a particle using cylindrical coordinates. EQUATIONS OF MOTION: CYLINDRICAL COORDINATES In-Class Activities: Check Homework Reading Quiz Applications Equations of Motion Using Cylindrical Coordinates Angle Between Radial and Tangential Directions Concept Quiz Group Problem Solving Attention Quiz

2 READING QUIZ 1. The normal force which the path exerts on a particle is always perpendicular to the A) radial line. B) transverse direction. C) tangent to the path. D) None of the above. 2. When the forces acting on a particle are resolved into cylindrical components, friction forces always act in the direction. A) radial B) tangential C) transverse D) None of the above.

3 APPLICATIONS The forces acting on the 100-lb boy can be analyzed using the cylindrical coordinate system. How would you write the equation describing the frictional force on the boy as he slides down this helical slide?

4 APPLICATIONS (continued) When an airplane executes the vertical loop shown above, the centrifugal force causes the normal force (apparent weight) on the pilot to be smaller than her actual weight. How would you calculate the velocity necessary for the pilot to experience weightlessness at A?

5 CYLINDRICAL COORDINATES (Section 13.6) This approach to solving problems has some external similarity to the normal & tangential method just studied. However, the path may be more complex or the problem may have other attributes that make it desirable to use cylindrical coordinates. Equilibrium equations or Equations of Motion in cylindrical coordinates (using r, q, and z coordinates) may be expressed in scalar form as:... F r = ma r = m (r r q 2 ).... F q = ma q = m (r q 2 r q ).. F z = ma z = m z

6 CYLINDRICAL COORDINATES (continued) If the particle is constrained to move only in the r q plane (i.e., the z coordinate is constant), then only the first two equations are used (as shown below). The coordinate system in such a case becomes a polar coordinate system. In this case, the path is only a function of q.... F r = ma r = m(r rq 2 )... F q = ma q = m(rq 2rq. ) Note that a fixed coordinate system is used, not a bodycentered system as used in the n t approach.

7 TANGENTIAL AND NORMAL FORCES If a force P causes the particle to move along a path defined by r = f (q ), the normal force N exerted by the path on the particle is always perpendicular to the path s tangent. The frictional force F always acts along the tangent in the opposite direction of motion. The directions of N and F can be specified relative to the radial coordinate by using angle y.

8 DETERMINATION OF ANGLE y The angle y, defined as the angle between the extended radial line and the tangent to the curve, can be required to solve some problems. It can be determined from the following relationship. tan y = r dq dr = r dr/dq If y is positive, it is measured counterclockwise from the radial line to the tangent. If it is negative, it is measured clockwise.

9 EXAMPLE Given: The ball (P) is guided along the vertical circular. path. W.. = 0.5 lb, q = 0.4 rad/s, q = 0.8 rad/s 2, r c = 0.4 ft Find: Plan: Force of the arm OA on the ball when q = 30.

10 EXAMPLE Given: The ball (P) is guided along the vertical circular. path. W.. = 0.5 lb, q = 0.4 rad/s, q = 0.8 rad/s 2, r c = 0.4 ft Find: Force of the arm OA on the ball when q = 30. Plan: Draw a FBD. Then develop the kinematic equations and finally solve the kinetics problem using cylindrical coordinates. Solution: Notice that r = 2r c cos q, therefore:.. r = -2r c sin q q..... r = -2r c cos q q 2 2r c sin q q

11 EXAMPLE (continued) Free Body Diagram and Kinetic Diagram : Establish the r, q inertial coordinate system and draw the particle s free body diagram. mg = ma q ma r N s 2q N OA

12 EXAMPLE (continued) Kinematics: at q = 30 r = 2(0.4) cos(30 ) = ft. r = - 2(0.4) sin(30 )(0.4) = ft/s.. r = - 2(0.4) cos(30 )(0.4) 2 2(0.4) sin(30 )(0.8) = ft/s 2 Acceleration components are... a r = r rq 2 = (0.693)(0.4) 2 = ft/s a q = rq + 2rq = (0.693)(0.8) + 2(-0.16)(0.4) = ft/s 2

13 F r = ma r 0.5 N s cos(30 ) 0.5 sin(30 ) = (-0.542) 32.2 N s = lb EXAMPLE (continued) Equation of motion: r direction ma q ma r =

14 F q = ma q 0.5 N OA sin(30 ) 0.5 cos(30 ) = (0.426) 32.2 N OA = 0.3 lb EXAMPLE (continued) Equation of motion: q direction ma q ma r =

15 CONCEPT QUIZ 1. When a pilot flies an airplane in a vertical loop of constant radius r at C r constant speed v, his apparent weight is maximum at D A) Point A B) Point B (top of the loop) C) Point C D) Point D (bottom of the loop) 2. If needing to solve a problem involving the pilot s weight at Point C, select the approach that would be best. A) Equations of Motion: Cylindrical Coordinates B) Equations of Motion: Normal & Tangential Coordinates C) Equations of Motion: Polar Coordinates D) No real difference all are bad. E) Toss up between B and C. B A

16 GROUP PROBLEM SOLVING Given: The smooth particle is attached to an elastic cord extending from O to P and due to the slotted arm guide moves along the horizontal circular path. The cord s stiffness is k=30 N/m unstretched length = 0.25 m m=0.08 kg, r = (0.8 sin q) m Find: Forces of the guide on the particle when q = 60 and q = 5 rad/s, which is constant. Plan:... Determine r and r by differentiating r. Draw Free Body Diagram & Kinetic Diagram. Solve for the accelerations, and apply the equation of motion to find the forces.

17 Solution: GROUP PROBLEM SOLVING (continued) Kinematics: r = 0.8 (sin q ) r = 0.8 (cos q ) q r = -0.8 (sin q ) q (cos q ) q When q = 60 ; q = 5 rad/s, q = 0 rad/s 2. r = m r = 2 m/s r = m/s 2 Accelerations : a r = r r q 2 = (0.6928) 5 2 = m/s 2 a q = r q + 2 r q = (0.6928) (2) 5 = 20 m/s 2

18 GROUP PROBLEM SOLVING (continued) Free Body Diagram & Kinetic Diagram = ma q ma r where the spring force F will be F s = k s = 30 ( ) = N Kinetics: F r = ma r => N cos 30 = 0.08 (-34.64) N = 12.1 N

19 GROUP PROBLEM SOLVING (continued) Kinetics: F q = ma q => F - N sin 30 = 0.08 (20) F = 7.67 N = ma q ma r

20 ATTENTION QUIZ 1. For the path defined by r = q 2, the angle y at q = 0.5 rad is A) 10º B) 14º C) 26º D) 75º 2. If r = q 2 and q = 2t, find the magnitude of r and q when t = 2 seconds. A) 4 cm/sec, 2 rad/sec 2 B) 4 cm/sec, 0 rad/sec 2 C) 8 cm/sec, 16 rad/sec 2 D) 16 cm/sec, 0 rad/sec 2

21

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6)

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) Today s Objectives: Students will be able to analyze the kinetics of a particle using cylindrical coordinates. APPLICATIONS The forces acting

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES

NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES Objectives: Students will be able to: 1. Write the equation of motion for an accelerating body. 2. Draw the

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s Objectives: Students will be able to: 1. Apply the equation of motion using normal and tangential coordinates. In-Class Activities: Check

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5)

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) Today s Objectives: Students will be able to apply the equation of motion using normal and tangential coordinates. APPLICATIONS Race

More information

CURVILINEAR MOTION: CYLINDRICAL COMPONENTS

CURVILINEAR MOTION: CYLINDRICAL COMPONENTS CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Today s Objectives: Students will be able to: 1 Determine velocity and acceleration components using cylindrical coordinates In-Class Activities: Check Homework

More information

Kinetics of Particles

Kinetics of Particles Kinetics of Particles A- Force, Mass, and Acceleration Newton s Second Law of Motion: Kinetics is a branch of dynamics that deals with the relationship between the change in motion of a body and the forces

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 8 Kinetics of a particle: Work and Energy (Chapter 14) - 14.1-14.3 W. Wang 2 Kinetics

More information

An Overview of Mechanics

An Overview of Mechanics An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics concerned with the geometric aspects of

More information

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections )

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections ) NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections 13.1-13.3) Today s Objectives: Students will be able to: a) Write the equation of motion for an accelerating body. b) Draw the free-body and kinetic

More information

Chapter 3 Kinetics of Particle: Work & Energy

Chapter 3 Kinetics of Particle: Work & Energy Chapter 3 Kinetics of Particle: Work & Energy Dr. Khairul Salleh Basaruddin Applied Mechanics Division School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) khsalleh@unimap.edu.my THE WORK

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration INTRODUCTION According to Newton s law, a particle will accelerate when it is subjected to unbalanced force. Kinetics is the study of the relations between unbalanced forces and resulting changes in motion.

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1)

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) Linear momentum: L = mv vector mv is called the linear momentum denoted as L (P in 1120) vector has the same direction as v. units of (kg m)/s or

More information

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION Today s Objectives : Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center

More information

Exam 2 October 17, 2013

Exam 2 October 17, 2013 Exam 2 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use an approved calculator during the exam. Usage of mobile phones and other

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1 Section 4: TJW Force-mass-acceleration: Example 1 The beam and attached hoisting mechanism have a combined mass of 1200 kg with center of mass at G. If the inertial acceleration a of a point P on the hoisting

More information

MOMENT OF A COUPLE. Today s Objectives: Students will be able to. a) define a couple, and, b) determine the moment of a couple.

MOMENT OF A COUPLE. Today s Objectives: Students will be able to. a) define a couple, and, b) determine the moment of a couple. Today s Objectives: Students will be able to MOMENT OF A COUPLE a) define a couple, and, b) determine the moment of a couple. In-Class activities: Check Homework Reading Quiz Applications Moment of a Couple

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Physics 170 Week 9 Lecture 2

Physics 170 Week 9 Lecture 2 Physics 170 Week 9 Lecture 2 http://www.phas.ubc.ca/ gordonws/170 Physics 170 Week 9 Lecture 2 1 Textbook Chapter 1: Section 1.6 Physics 170 Week 9 Lecture 2 2 Learning Goals: We will solve an example

More information

PLANAR RIGID BODY MOTION: TRANSLATION &

PLANAR RIGID BODY MOTION: TRANSLATION & PLANAR RIGID BODY MOTION: TRANSLATION & Today s Objectives : ROTATION Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

ENGR DYNAMICS. Rigid-body Lecture 4. Relative motion analysis: acceleration. Acknowledgements

ENGR DYNAMICS. Rigid-body Lecture 4. Relative motion analysis: acceleration. Acknowledgements ENGR 2030 -DYNAMICS Rigid-body Lecture 4 Relative motion analysis: acceleration Acknowledgements These lecture slides were provided by, and are the copyright of, Prentice Hall (*) as part of the online

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Check Homework. Reading Quiz Applications Equations of Equilibrium Example Problems Concept Questions Group Problem Solving Attention Quiz

Check Homework. Reading Quiz Applications Equations of Equilibrium Example Problems Concept Questions Group Problem Solving Attention Quiz THREE-DIMENSIONAL FORCE SYSTEMS Today s Objectives: Students will be able to solve 3-D particle equilibrium problems by a) Drawing a 3-D free body diagram, and, b) Applying the three scalar equations (based

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

More information

DOT PRODUCT. Statics, Fourteenth Edition in SI Units R.C. Hibbeler. Copyright 2017 by Pearson Education, Ltd. All rights reserved.

DOT PRODUCT. Statics, Fourteenth Edition in SI Units R.C. Hibbeler. Copyright 2017 by Pearson Education, Ltd. All rights reserved. DOT PRODUCT Today s Objective: Students will be able to use the vector dot product to: a) determine an angle between two vectors and, b) determine the projection of a vector along a specified line. In-Class

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

ME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given:

ME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given: PROBLEM No. 2 (20 pts.) Given: Blocks A and B (having masses of 2m and m, respectively) are connected by an inextensible cable, with the cable being pulled over a small pulley of negligible mass. Block

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-7: ROTATIONAL KINETIC ENERGY Questions From Reading Activity? Big Idea(s): The interactions of an object with other objects can be described by

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Announcements. Equilibrium of a Particle in 2-D

Announcements. Equilibrium of a Particle in 2-D nnouncements Equilibrium of a Particle in 2-D Today s Objectives Draw a free body diagram (FBD) pply equations of equilibrium to solve a 2-D problem Class ctivities pplications What, why, and how of a

More information

Chapter 4 Force System Resultant Moment of a Force

Chapter 4 Force System Resultant Moment of a Force Chapter 4 Force System Resultant Moment of a Force MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today s Objectives : Students will be

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

3. Kinetics of Particles

3. Kinetics of Particles 3. Kinetics of Particles 3.1 Force, Mass and Acceleration 3.3 Impulse and Momentum 3.4 Impact 1 3.1 Force, Mass and Acceleration We draw two important conclusions from the results of the experiments. First,

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections ) Today s Objectives: Students will be able to: a) Apply the three equations of

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections ) Today s Objectives: Students will be able to: a) Apply the three equations of PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections 17.2-17.3) Today s Objectives: Students will be able to: a) Apply the three equations of motion for a rigid body in planar motion. b) Analyze problems

More information

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ APPLICATIONS CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: The quality of a tennis ball

More information

a) Calculate the moment of inertia of the half disk about the z-axis. (The moment of inertia of a full disk

a) Calculate the moment of inertia of the half disk about the z-axis. (The moment of inertia of a full disk 4-[5 pts.] A thin uniform half disk having mass m, radius R is in the x-y plane and it can rotate about the z-axis as shown in the figure (z-axis is out of page). Initially, the half disk is positioned

More information

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body

More information

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer:

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer: PROBLEM 2 10 points A disk of mass m is tied to a block of mass 2m via a string that passes through a hole at the center of a rotating turntable. The disk rotates with the turntable at a distance R from

More information

MOMENT OF A COUPLE. Today s Objectives: Students will be able to a) define a couple, and, b) determine the moment of a couple.

MOMENT OF A COUPLE. Today s Objectives: Students will be able to a) define a couple, and, b) determine the moment of a couple. MOMENT OF A COUPLE Today s Objectives: Students will be able to a) define a couple, and, b) determine the moment of a couple. In Class activities: Check Homework Reading Quiz Applications Moment of a Couple

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Circular Motion Dynamics

Circular Motion Dynamics Circular Motion Dynamics 8.01 W04D2 Today s Reading Assignment: MIT 8.01 Course Notes Chapter 9 Circular Motion Dynamics Sections 9.1-9.2 Announcements Problem Set 3 due Week 5 Tuesday at 9 pm in box outside

More information

Final Exam December 15, 2014

Final Exam December 15, 2014 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use the ME approved calculator only during the exam. Usage of mobile phones

More information

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i Chapter 3 continued b. Since the rocket takes off from the ground, d i 0.0 m, and at its highest point, v f 0.0 m/s. v f v i a t f (d f d i ) 0 v i a t f d f v i d f a t f (450 m/s) ( 9.80 m/s )(4.6 s)

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus) AP Physics C Work and Energy Free-Response Problems (Without Calculus) 1. A block with a mass m =10 kg is released from rest and slides a distance d = 5 m down a frictionless plane inclined at an angle

More information

CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION

CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION Today s Objective: Students will be able to: a) Understand the characteristics of dry friction. b) Draw a FBD including friction. c) Solve

More information

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS UNIVERSITY OF SASKATCHEWAN GE 226.3 MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT NUMBER: EXAMINATION

More information

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich LECTURE 9 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 9 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs Static friction 3 Static friction is the frictional force

More information

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ]

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ] PROLEM 15.113 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns b) Identify support reactions c) Recognize

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Physics 111 Lecture 22 (Walker: 11.1-3) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Lecture 22 1/26 Torque (τ) We define a quantity called torque which is a measure of twisting effort.

More information

Physics 53. Dynamics 2. For every complex problem there is one solution that is simple, neat and wrong. H.L. Mencken

Physics 53. Dynamics 2. For every complex problem there is one solution that is simple, neat and wrong. H.L. Mencken Physics 53 Dynamics 2 For every complex problem there is one solution that is simple, neat and wrong. H.L. Mencken Force laws for macroscopic objects Newton s program mandates studying nature in order

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

More information

= m. 30 m. The angle that the tangent at B makes with the x axis is f = tan-1

= m. 30 m. The angle that the tangent at B makes with the x axis is f = tan-1 1 11. When the roller coaster is at B, it has a speed of 5 m>s, which is increasing at at = 3 m>s. Determine the magnitude of the acceleration of the roller coaster at this instant and the direction angle

More information

Announcements. Equilibrium of a Rigid Body

Announcements. Equilibrium of a Rigid Body Announcements Equilibrium of a Rigid Body Today s Objectives Identify support reactions Draw a free body diagram Class Activities Applications Support reactions Free body diagrams Examples Engr221 Chapter

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 3 Equilibrium of a Particle Chapter Objectives To introduce the concept of the free-body diagram for a particle To show how to solve particle equilibrium

More information

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass? NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass

More information

AP PHYSICS 1 Learning Objectives Arranged Topically

AP PHYSICS 1 Learning Objectives Arranged Topically AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters

More information

LECTURE 10- EXAMPLE PROBLEMS. Chapter 6-8 Professor Noronha-Hostler Professor Montalvo

LECTURE 10- EXAMPLE PROBLEMS. Chapter 6-8 Professor Noronha-Hostler Professor Montalvo LECTURE 10- EXAMPLE PROBLEMS Chapter 6-8 Professor Noronha-Hostler Professor Montalvo TEST!!!!!!!!! Thursday November 15, 2018 9:40 11:00 PM Classes on Friday Nov. 16th NO CLASSES week of Thanksgiving

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

CONSERVATIVE FORCES, POTENTIAL ENERGY AND CONSERVATION OF ENERGY

CONSERVATIVE FORCES, POTENTIAL ENERGY AND CONSERVATION OF ENERGY CONSERVATIVE FORCES, POTENTIAL ENERGY AND CONSERVATION OF ENERGY Today s Objectives: Students will be able to: 1. Use the concept of conservative forces and determine the potential energy of such forces.

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 23

ENGR-1100 Introduction to Engineering Analysis. Lecture 23 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

Conservation of Energy Concept Questions

Conservation of Energy Concept Questions Conservation of Energy Concept Questions Question 1: A block of inertia m is attached to a relaxed spring on an inclined plane. The block is allowed to slide down the incline, and comes to rest. The coefficient

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#: Faculty of Engineering and Department of Physics ENPH 131 Final Examination Saturday, April 20, 2013; 2:00 pm 4:30 pm Universiade Pavilion Section EB01 (BEAMISH): Rows 1, 3, 5(seats 1-45) Section EB02

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 1 / 42 CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, November 27, 2012 2 / 42 KINETIC

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3

CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3 1 / 20 CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Monday, November 1, 2011 2 / 20 PLANAR KINETIC

More information