CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5"

Transcription

1 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa

2 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES Today s objectives: Students will be able to 1 Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-class activities: Reading Quiz Applications Equations of Motion Using Rectangular (Cartesian) Coordinates Concept Quiz Group Problem Solving Attention Quiz

3 3 / 40 READING QUIZ 1 In dynamics, the friction force acting on a moving object is always (a) in the direction of its motion. (b) a kinetic friction. (c) a static friction. (d) zero. ANS: (b) 2 If a particle is connected to a spring, the elastic spring force is expressed by F = ks. The s in this equation is the (a) spring constant. (b) un-deformed length of the spring. (c) difference between deformed and un-deformed lengths. (d) deformed length of the spring. ANS: (c)

4 APPLICATIONS If a man is trying to move a 100 lb crate, how large a force F must he exert to start moving the crate? What factors influence how large this force must be to start moving the crate? If the crate starts moving, is there acceleration present? What would you have to know before you could find these answers? 4 / 40

5 5 / 40 APPLICATIONS(continued) Objects that move in air (or other fluid) have a drag force acting on them. This drag force is a function of velocity. If the dragster is traveling with a known velocity and the magnitude of the opposing drag force at any instant is given as a function of velocity, can we determine the time and distance required for dragster to come to a stop if its engine is shut off? How?

6 6 / 40 RECTANGULAR COORDINATES (Section 13.4) The equation of motion, F = ma, is best used when the problem requires finding forces (especially forces perpendicular to the path), accelerations, velocities, or mass. Remember, unbalanced forces cause acceleration! Three scalar equations can be written from this vector equation. The equation of motion, being a vector equation, may be expressed in terms of its three components in the Cartesian (rectangular) coordinate system as ΣF = ma or (ΣF x ) i + (ΣF y ) j + (ΣF z ) k = m(a x i + a y j + a z k) or, as scalar equations, ΣF x = ma x, ΣF y = ma y, ΣF z = ma z

7 7 / 40 PROCEDURE FOR ANALYSIS Free Body Diagram Establish your coordinate system and draw the particle s free body diagram showing only external forces. These external forces usually include the weight, normal forces, friction forces, and applied forces. Show the ma vector (sometimes called the inertial force) on a separate diagram. Make sure any friction forces act opposite to the direction of motion! If the particle is connected to an elastic linear spring, a spring force equal to ks should be included on the FBD.

8 8 / 40 PROCEDURE FOR ANALYSIS (continued) Equation of Motion If the forces can be resolved directly from the free-body diagram (often the case in 2-D problems), use the scalar form of the equation of motion. In more complex cases (usually 3-D), a Cartesian vector is written for every force and a vector analysis is often best. A Cartesian vector formulation of the second law is ΣF = ma or ΣF x i + ΣF y j + ΣF z k = m(a x i + a y j + a z k) Three scalar equations can be written from this vector equation. You may only need two equations if the motion is in 2-D.

9 9 / 40 PROCEDURE FOR ANALYSIS (continued) Kinematics The second law only provides solutions for forces and accelerations. If velocity or position have to be found, kinematics equations are used once the acceleration is found from the equation of motion. Any of the kinematics tools learned in Chapter 12 may be needed to solve a problem. Make sure you use consistent positive coordinate directions as used in the equation of motion part of the problem!

10 10 / 40 EXAMPLE Given: The 200lb mine car is hoisted up the incline. The motor M pulls in the cable with an acceleration of 4 ft/s 2. Find: The acceleration of the mine car and the tension in the cable. Plan: 1 Draw the free-body and kinetic diagrams of the car. 2 Using a dependent motion equation, determine an acceleration relationship between cable and mine car. 3 Apply the equation of motion to determine the cable tension.

11 11 / 40 Solution EXAMPLE (solution) 1. Draw the free-body and kinetic diagrams of the mine car: Since the motion is up the incline, rotate the x y axes. Motion occurs only in the x-direction. We are also neglecting any friction in the wheel bearings, etc., on the cart.

12 12 / The cable equation results in s p + 2s c = l t Taking the derivative twice yields a p + 2a c = 0 (1) The relative acceleration is a p = a c + a p/c. As the motor is mounted on the car, a p/c = 4 ft/s 2. So, a p = a c + 4 ft/s 2 (2) Solving equations (1) and (2), yields a C = ft/s 2

13 3. Apply the equation of motion in the x-direction: m = 200/32.2 = slug (+ ) F x = ma x 3T mg(sin 30 ) = ma x 3T (200)(sin 30 ) = 6.211(1.333) T = 36.1 lb 13 / 40

14 14 / 40 CHECK YOUR UNDERSTANDING QUIZ 1. If the cable has a tension of 3 N, determine the acceleration of block B. (a) 4.26 m/s 2 (b) 4.26 m/s 2 (c) 8.31 m/s 2 (d) 8.31 m/s 2 ANS: (d) 2. Determine the acceleration of the block. (a) 2.20 m/s 2 (b) 3.17 m/s 2 (c) 11.0 m/s 2 (d) 4.26 m/s 2 ANS: (a)

15 15 / 40 GROUP PROBLEM SOLVING Given: W A = 10 lb, W B = 20 lb, v oa = 2 ft/s( ), and µ k = 0.2 Find: v A when A has moved 4 feet to the right. Plan: Since both forces and velocity are involved, this problem requires both the equation of motion and kinematics. First, draw free body diagrams of A and B. Apply the equation of motion to each. Using dependent motion equations, derive a relationship between a A and a B and use with the equation of motion formulas.

16 GROUP PROBLEM SOLVING (Solution) Free-body and kinetic diagrams of B: Apply the equation of motion to B: + ΣF y = ma y W B 2T = m B a B 20 2T = a B (3) Free-body and kinetic diagrams of A: Apply the equations of motion to A: (+ ) ΣF y = ma y = 0 (+ ) ΣF x = ma x N = W A = 10 lb f = µ k N = 2 lb f T = m A a A 2 T = a A (4) 16 / 40

17 17 / 40 Now consider the kinematics. Constraint equation: Therefore s A + 2s B = constant v A + 2v B = 0 a A + 2a B = 0 a A = 2a B (5) (Notice a A is considered positive to the left and a B is positive downward.)

18 18 / 40 Now combine equations (3), (4), and (5) Constraint equation: T = 22 = 7.33 lb 3 a A = ft/s 2 = ft/s 2 ( ) Now use the kinematic equation: (v A ) 2 = (v 0A ) 2 + 2a A (s A s 0A ) (v A ) 2 = (2) 2 + 2( 17.16)( 4) v A = 11.9 ft/s( )

19 19 / 40 ATTENTION QUIZ 1. Determine the tension in the cable when the 400 kg box is moving upward with a 4 m/s 2 acceleration. (a) 2265 N (b) 3365 N (c) 5524 N (d) 6543 N ANS: (c) T 60 a = 4 m/s

20 20 / 40 ATTENTION QUIZ 2. A 10 lb particle has forces of F 1 = (3i + 5j) lb and F 2 = ( 7i + 9j) lb acting on it. Determine the acceleration of the particle. (a) ( 0.4i + 1.4j) ft/s 2 (b) ( 0.4i + 14j) ft/s 2 (c) ( 12.9i + 45j) ft/s 2 (d) (13i + 4j) ft/s 2 ANS: (c)

21 21 / 40 EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s objectives: Students will be able to 1 Apply the equation of motion using normal and tangential coordinates. In-class activities: Reading Quiz Applications Equation of Motion in n t Coordinates Concept Quiz Group Problem Solving Attention Quiz

22 22 / 40 READING QUIZ 1 The normal component of the equation of motion is written as ΣF n = ma n, where ΣF n is referred to as the? (a) impulse (b) centripetal force (c) tangential force (d) inertia force ANS: (b) 2 The positive n direction of the normal and tangential coordinates is. (a) normal to the tangential component (b) always directed toward the center of curvature (c) normal to the bi-normal component (d) All of the above. ANS: (d)

23 23 / 40 APPLICATIONS Race tracks are often banked in the turns to reduce the frictional forces required to keep the cars from sliding up to the outer rail at high speeds. If the car s maximum velocity and a minimum coefficient of friction between the tires and track are specified, how can we determine the minimum banking angle (θ) required to prevent the car from sliding up the track?

24 APPLICATIONS(continued) The picture shows a ride at the amusement park. The hydraulically-powered arms turn at a constant rate, which creates a centrifugal force on the riders. We need to determine the smallest angular velocity of the cars A and B so that the passengers do not loose contact with the seat. What parameters do we need for this calculation? 24 / 40

25 25 / 40 APPLICATIONS(continued) Satellites are held in orbit around the earth by using the earth s gravitational pull as the centripetal force - the force acting to change the direction of the satellite s velocity. Knowing the radius of orbit of the satellite, we need to determine the required speed of the satellite to maintain this orbit. What equation governs this situation?

26 26 / 40 NORMAL & TANGENTIAL COORDINATES (Sec. 13.5) When a particle moves along a curved path, it may be more convenient to write the equation of motion in terms of normal and tangential coordinates. The normal direction (n) always points toward the path s center of curvature. In a circle, the center of curvature is the center of the circle. The tangential direction (t) is tangent to the path, usually set as positive in the direction of motion of the particle.

27 27 / 40 EQUATIONS OF MOTION Since the equation of motion is a vector equation, ΣF = ma, it may be written in terms of the n and t coordinates as ΣF t u t + ΣF n u n + ΣF b u b = ma t + ma n F t and F n are the sums of the force components acting in the t and n directions, respectively. This vector equation will be satisfied provided the individual components on each side of the equation are equal, resulting in the two scalar equations: Ft = ma t and Fn = ma n Since there is no motion in the binormal (b) direction, we can also write F b = 0.

28 28 / 40 NORMAL AND TANGENTIAL ACCERLERATIONS The tangential acceleration, a t = dv/dt, represents the time rate of change in the magnitude of the velocity. Depending on the direction of ΣF t, the particle s speed will either be increasing or decreasing. The normal acceleration, a n = v 2 /ρ, represents the time rate of change in the direction of the velocity vector. Remember, a n always acts toward the path s center of curvature. Thus, ΣF n will always be directed toward the center of the path. Recall, if the path of motion is defined as y = f(x), the radius of curvature at any point can be obtained from ρ = dy [1 + ( d2 y dx 2 dx )2 ] 3/2

29 29 / 40 SOLVING PROBLEMS WITH n t COORDINATES Use n t coordinates when a particle is moving along a known, curved path. Establish the n t coordinate system on the particle. Draw free-body and kinetic diagrams of the particle. The normal acceleration (a n ) always acts inward (the positive n-direction). The tangential acceleration (a t ) may act in either the positive or negative t direction. Apply the equations of motion in scalar form and solve. It may be necessary to employ the kinematic relations: a t = dv dt = v dv ds a n = v2 ρ (6) (7)

30 EXAMPLE Given: At the instant θ = 45, the boy with a mass of 75 kg, moves a speed of 6 m/s, which is increasing at 0.5 m/s 2. Neglect his size and the mass of the seat and cords. The seat is pin connected to the frame BC. Find: Horizontal and vertical reactions of the seat on the boy. Plan: 1 Since the problem involves a curved path and requires finding the force perpendicular to the path, use n t coordinates. 2 Draw the boy s free-body and kinetic diagrams. 3 Apply the equation of motion in the n t directions. 30 / 40

31 31 / 40 EXAMPLE (Solution) 1. The n t coordinate system can be established on the boy at angle θ = 45. Approximating the boy and seat together as a particle, the free-body and kinetic diagrams can be drawn.

32 EXAMPLE (continued) -.//01234#35,6.,+# 75"/89#35,6.,+#! '#! +,! # $ % # ()*# +, " # 2. Apply the equations of motion in the n t directions. a. ma n = R x cos θ R y sin θ + W sin θ Using a n = v 2 /ρ = 6 2 /10, W = 75(9.81) N, and m = 75 kg, we get: R x cos 45 R y sin = (75)(6 2 /10) b. ma t = R x sin θ + R y cos θ W cos θ we get: R x sin 45 + R y cos = (75)(0.5) Using above two equations, solve for R x, R y. R x = 217 N and R y = 572 N. "# $ & # "# 32 / 40

33 CONCEPT QUIZ &"!"#"$"%" 1. A 10 kg sack slides down a smooth surface. If the normal force on the surface at the flat spot, A, is 98.1 N ( ), the radius of curvature is (a) 0.2 m (b) 0.4 m (c) 1.0 m (d) None of the above ANS: (d) 2. A 20 lb block is moving along a smooth surface. If the normal force on the surface at A is 10 lb, the velocity is. (a) 7.6 ft/s (b) 9.6 ft/s (c) 10.6 ft/s (d) 12.6 ft/s ANS: (c) 33 / 40

34 GROUP PROBLEM SOLVING Given: A 800 kg car is traveling over the hill having the shape of a parabola. When it is at point A, it is traveling at 9 m/s and increasing its speed at 3 m/s 2. Find: The resultant normal force and resultant frictional force exerted on the road at point A. Plan: 1 Treat the car as a particle. 2 Draw the free-body and kinetic diagrams. 3 Apply the equations of motion in the n t directions. 4 Use calculus to determine the slope and radius of curvature of the path at point A. 34 / 40

35 1. The n t coordinate system can be established on the car at point A. Treat the car as a particle and draw the free-body and kinetic diagrams: W = mg = weight of car N = resultant normal force on road F = resultant friction force on road 35 / 40

36 36 / Apply the equations of motion in the n t directions: W cos θ N = ma n Using W = mg and a n = v 2 /ρ = (9) 2 /ρ (800)(9.81) cos θ N = (800)(81/ρ) N = 7848 cos θ 64800/ρ (8) W sin θ F = ma t Using W = mg and a t = 3m/s 2 (given) (800)(9.81) sin θ F = (800)(3) F = 7848 sin θ 2400 (9)

37 37 / Determine ρ by differentiating y = f(x) at x = 80 m: y = 20(1 x 2 /6400) dy/dx = ( 40)x/6400 d 2 y/dx 2 = ( 40)/640 (10) dy [1 + ( dx ρ x=80 = )2 ] 3/2 [1 + ( 0.5) 2 ] 3/2 d2 y = = meter dx 2 Determine θ from the slope of the curve at A: tan θ = dy/dx x=80 = 40x 6400 = 0.5 x=80 θ = tan 1 ( dy dx ) = tan 1 ( 0.5) = 26.6

38 38 / 40 From Eq. (8): N = 7848 cos θ 64800/ρ = 7848 cos(26.6 ) 64800/223.6 = 6728 N (11) From Eq.(9) : F = 7848 sin θ 2400 = 7848 sin(26.6 o ) 2400 = 1114 N (12)

39 39 / 40 ATTENTION QUIZ 1 The tangential acceleration of an object (a) represents the rate of change of the velocity vector s direction. (b) represents the rate of change in the magnitude of the velocity. (c) is a function of the radius of curvature. (d) Both (b) and (c). ANS: (b)

40 40 / 40 ATTENTION QUIZ 1 The block has a mass of 20 kg and a speed of v = 30 m/s at the instant it is at its lowest point. Determine the tension in the cord at this instant. (a) 1596 N (b) 1796 N (c) 1996 N (d) 2196 N #$"%"!" &"'"($"%)*" ANS: (c)

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s Objectives: Students will be able to: 1. Apply the equation of motion using normal and tangential coordinates. In-Class Activities: Check

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5)

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) Today s Objectives: Students will be able to apply the equation of motion using normal and tangential coordinates. APPLICATIONS Race

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3

CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3 1 / 20 CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Monday, November 1, 2011 2 / 20 PLANAR KINETIC

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections )

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections ) NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections 13.1-13.3) Today s Objectives: Students will be able to: a) Write the equation of motion for an accelerating body. b) Draw the free-body and kinetic

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 8 Kinetics of a particle: Work and Energy (Chapter 14) - 14.1-14.3 W. Wang 2 Kinetics

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES Today s Objectives: Students will be able to: 1. Analyze the kinetics of a particle using cylindrical coordinates. EQUATIONS OF MOTION: CYLINDRICAL COORDINATES In-Class Activities: Check Homework Reading

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 33: Ch.19, Sec.1 2

CEE 271: Applied Mechanics II, Dynamics Lecture 33: Ch.19, Sec.1 2 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 33: Ch.19, Sec.1 2 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Thursday, December 6, 2012 2 / 36 LINEAR

More information

UNIT-07. Newton s Three Laws of Motion

UNIT-07. Newton s Three Laws of Motion 1. Learning Objectives: UNIT-07 Newton s Three Laws of Motion 1. Understand the three laws of motion, their proper areas of applicability and especially the difference between the statements of the first

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Announcements. Equilibrium of a Particle in 2-D

Announcements. Equilibrium of a Particle in 2-D nnouncements Equilibrium of a Particle in 2-D Today s Objectives Draw a free body diagram (FBD) pply equations of equilibrium to solve a 2-D problem Class ctivities pplications What, why, and how of a

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Circular Motion & Gravitation FR Practice Problems

Circular Motion & Gravitation FR Practice Problems 1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Isaac Newton ( )

Isaac Newton ( ) Isaac Newton (1642-1727) In the beginning of 1665 I found the rule for reducing any degree of binomial to a series. The same year in May I found the method of tangents and in November the method of fluxions

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion Lecture 10 Goals: Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapters 8 & 9, due 3/4, Wednesday) For Tuesday: Finish reading Chapter 8, start Chapter 9. Physics 207: Lecture

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6)

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) Today s Objectives: Students will be able to analyze the kinetics of a particle using cylindrical coordinates. APPLICATIONS The forces acting

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Centripetal force keeps an Rotation and Revolution

Centripetal force keeps an Rotation and Revolution Centripetal force keeps an object in circular motion. Which moves faster on a merry-go-round, a horse near the outside rail or one near the inside rail? While a hamster rotates its cage about an axis,

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

SECOND MIDTERM -- REVIEW PROBLEMS

SECOND MIDTERM -- REVIEW PROBLEMS Physics 10 Spring 009 George A. WIllaims SECOND MIDTERM -- REVIEW PROBLEMS A solution set is available on the course web page in pdf format. A data sheet is provided. No solutions for the following problems:

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

Dynamics II Motion in a Plane. Review Problems

Dynamics II Motion in a Plane. Review Problems Dynamics II Motion in a Plane Review Problems Problem 1 A 500 g model rocket is on a cart that is rolling to the right at a speed of 3.0 m/s. The rocket engine, when it is fired, exerts an 8.0 N thrust

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Forces I. Newtons Laws

Forces I. Newtons Laws Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without Chapter 10: Friction 10-1 Chapter 10 Friction A gem cannot be polished without friction, nor an individual perfected without trials. Lucius Annaeus Seneca (4 BC - 65 AD) 10.1 Overview When two bodies are

More information

P211 Spring 2004 Form A

P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION Today s Objectives : Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

9/20/11. Physics 101 Tuesday 9/20/11 Class 8" Chapter " Weight and Normal forces" Frictional Forces"

9/20/11. Physics 101 Tuesday 9/20/11 Class 8 Chapter  Weight and Normal forces Frictional Forces Reading Quiz Physics 101 Tuesday 9/20/11 Class 8" Chapter 5.6 6.1" Weight and Normal forces" Frictional Forces" The force due to kinetic friction is usually larger than the force due to static friction.

More information

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010 Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label free-body diagrams showing the forces

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Circular Velocity and Centripetal Acceleration

Circular Velocity and Centripetal Acceleration 1. An object is spun around in circular motion such that it completes 100 cycles in 25 s. a. What is the period of its rotation? [0.25 s] b. If the radius is 0.3 m what is the velocity? [7.54 m/s] c. Draw

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 5 To use and apply Newton s Laws

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities

Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the

More information

PES Physics 1 Practice Questions Exam 2. Name: Score: /...

PES Physics 1 Practice Questions Exam 2. Name: Score: /... Practice Questions Exam /page PES 0 003 - Physics Practice Questions Exam Name: Score: /... Instructions Time allowed for this is exam is hour 5 minutes... multiple choice (... points)... written problems

More information

Hint 1. The direction of acceleration can be determined from Newton's second law

Hint 1. The direction of acceleration can be determined from Newton's second law Chapter 5 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 5 Due: 11:59pm on Sunday, October 2, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Constant Acceleration. Physics General Physics Lecture 7 Uniform Circular Motion 9/13/2016. Fall 2016 Semester Prof.

Constant Acceleration. Physics General Physics Lecture 7 Uniform Circular Motion 9/13/2016. Fall 2016 Semester Prof. Physics 22000 General Physics Lecture 7 Uniform Circular Motion Fall 2016 Semester Prof. Matthew Jones 1 2 Constant Acceleration So far we have considered motion when the acceleration is constant in both

More information

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

More information

Name Period Date A) B) C) D)

Name Period Date A) B) C) D) Example Problems 9.2 E1. A car rounds a curve of constant radius at a constant speed. Which diagram best represents the directions of both the car s velocity and acceleration? Explain: A) B) C) D) E2.

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

Physics General Physics. Lecture 7 Uniform Circular Motion. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 7 Uniform Circular Motion. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 7 Uniform Circular Motion Fall 2016 Semester Prof. Matthew Jones 1 2 Constant Acceleration So far we have considered motion when the acceleration is constant in both

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 1. The 50-kg crate is projected along the floor with an initial

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich LECTURE 9 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 9 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs Static friction 3 Static friction is the frictional force

More information

Physics 207 Lecture 12. Lecture 12

Physics 207 Lecture 12. Lecture 12 Lecture 12 Goals: Chapter 8: Solve 2D motion problems with friction Chapter 9: Momentum & Impulse v Solve problems with 1D and 2D Collisions v Solve problems having an impulse (Force vs. time) Assignment:

More information

Physics 1401V October 28, 2016 Prof. James Kakalios Quiz No. 2

Physics 1401V October 28, 2016 Prof. James Kakalios Quiz No. 2 This is a closed book, closed notes, quiz. Only simple (non-programmable, nongraphing) calculators are permitted. Define all symbols and justify all mathematical expressions used. Make sure to state all

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Physics, Chapter 3: The Equilibrium of a Particle

Physics, Chapter 3: The Equilibrium of a Particle University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 3: The Equilibrium of a Particle

More information

There are two main types of friction:

There are two main types of friction: Section 4.15: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along

More information

Circular Motion Dynamics

Circular Motion Dynamics Circular Motion Dynamics 8.01 W04D2 Today s Reading Assignment: MIT 8.01 Course Notes Chapter 9 Circular Motion Dynamics Sections 9.1-9.2 Announcements Problem Set 3 due Week 5 Tuesday at 9 pm in box outside

More information

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2 v = v i + at a dv dt = d2 x dt 2 A sphere = 4πr 2 x = x i + v i t + 1 2 at2 x = r cos(θ) V sphere = 4 3 πr3 v 2 = v 2 i + 2a x F = ma R = v2 sin(2θ) g y = r sin(θ) r = x 2 + y 2 tan(θ) = y x a c = v2 r

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

Physics 201, Lecture 10

Physics 201, Lecture 10 Physics 201, Lecture 10 Today s Topics n Circular Motion and Newton s Law (Sect. 6.1,6.2) n Centripetal Force in Uniform Circular Motion n Examples n n Motion in Accelerated Frame (sec. 6.3, conceptual

More information

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Copyright 2010 Pearson Education, Inc. Force and Mass Copyright 2010 Pearson Education, Inc. Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion

More information

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

11-2 A General Method, and Rolling without Slipping

11-2 A General Method, and Rolling without Slipping 11-2 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration

More information

Speed and Velocity. Circular and Satellite Motion

Speed and Velocity. Circular and Satellite Motion Name: Speed and Velocity Read from Lesson 1 of the Circular and Satellite Motion chapter at The Physics Classroom: http://www.physicsclassroom.com/class/circles/u6l1a.html MOP Connection: Circular Motion

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Multiple Choice (A) (B) (C) (D)

Multiple Choice (A) (B) (C) (D) Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions are: (A) (B) (C) (D) 2.

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Physics 207 Lecture 17

Physics 207 Lecture 17 Physics 207, Lecture 17, Oct. 31 Agenda: Review for exam Exam will be held in rooms B102 & B130 in Van Vleck at 7:15 PM Example Gravity, Normal Forces etc. Consider a women on a swing: Assignment: MP Homework

More information

Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring (taken from Giancoli, 4 th edition) Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

More information

Review - Chapter 1. Ans: 2.12m

Review - Chapter 1. Ans: 2.12m Review - Chapter 1 The distance d that a certain particle moves may be calculated from the expression d = at + bt 2 where a and b are constants; and t is the elapsed time. The dimensions of the quantities

More information