NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES

Size: px
Start display at page:

Download "NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES"

Transcription

1 NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES Objectives: Students will be able to: 1. Write the equation of motion for an accelerating body. 2. Draw the free-body and kinetic diagrams for an accelerating body. Newton s Laws of Motion Newton s Law of Gravitational Attraction Equation of Motion o For A Particle or System of Particles

2 APPLICATIONS The motion of an object depends on the forces acting on it. A parachutist relies on the atmospheric drag resistance force of her parachute to limit her velocity. Knowing the drag force, how can we determine the acceleration or velocity of the parachutist at any point in time? This has some importance when landing!

3 APPLICATIONS (continued) A freight elevator is lifted using a motor attached to a cable and pulley system as shown. How can we determine the tension force in the cable required to lift the elevator and load at a given acceleration? This is needed to decide what size cable should be used. Is the tension force in the cable greater than the weight Is the tension force in the cable greater than the weight of the elevator and its load?

4 NEWTON S LAWS OF MOTION (Section 13.1) 1) The motion of a particle is governed by Newton s three laws of motion. First Law: A particle originally at rest, or moving in a straight line at constant velocity, will remain in this state if the resultant force acting on the particle is zero. Second Law: If the resultant force on the particle is not zero, the particle experiences an acceleration in the same direction as the resultant force. This acceleration has a magnitude proportional to the resultant force. Thi d L M lf f i d i b Third Law: Mutual forces of action and reaction between two particles are equal, opposite, and collinear.

5 NEWTON S LAWSOFMOTION (continued) The first and third laws were used in developing the concepts of statics. Newton s second law forms the basis of the study of dynamics. Mathematically, Newton s second law of motion can be written F = ma where F is the resultant unbalanced force acting on the particle, and a is the acceleration of the particle. The positive scalar m is called the mass of the particle. Newton s second law cannot be used when the particle s speed approaches the speed of light, or if the size of the particle is extremely small (~ size of an atom).

6 NEWTON S LAW OF GRAVITATIONAL ATTRACTION Any two particles or bodies have a mutually attractive gravitational force acting between them. Newton postulated the law governing this gravitational force as F = G(m 1 m 2 /r 2 ) where F = force of attraction between the two bodies, G = universal constant tof gravitation ti, m 1, m 2 = mass of each body, and r = distance between centers of the two bodies. When near the surface of the earth, the only gravitational force having any sizable magnitude is that between the earth and the body. This force is called the weight of the body.

7 MASS AND WEIGHT It is important to understand the difference between the mass and weight of a body! Mass is an absolute property of a body. It is independent of the gravitational field in which it is measured. The mass provides a measure of the resistance of a body to a change in velocity, as defined by Newton s second law of motion (m = F/a). / ) The weight of a body is not absolute, since it depends on the gravitational field in which it is measured. Weight is defined as W = mg where g is the acceleration due to gravity.

8 UNITS: SI SYSTEM VS. FPS SYSTEM SI system: In the SI system of units, mass is a base unit and weight htis a derived dunit. Typically, mass is specified din kilograms (kg), and weight is calculated from W = mg. If the gravitational ti acceleration (g) is specified in units of m/s 2, then the weight is expressed in newtons (N). On the earth s surface, g can be taken as g = 9.81 m/s 2. W (N) = m (kg) g (m/s 2 ) => N = kg m/s 2 FPS System: In the FPS system of units, weight is a base unit and mass is a derived unit. Weight is typically specified in pounds (lb), and mass is calculated from m = W/g. If g is specified in units of ft/s 2, then the mass is expressed in slugs. On the earth s surface, g is approximately 32.2 ft/s 2. m (slugs) = W (lb)/g g( (ft/s 2 ) => slug = lb s 2 /ft

9 EQUATION OF MOTION (Section 13.2) The motion of a particle is governed by Newton s second law, relating the unbalanced forces on a particle to its acceleration. If more than one force acts on the particle, the equation of motion can be written F = F R =ma where F R is the resultant force, which is a vector summation of all the forces. To illustrate the equation, consider a particle acted on by two forces. First, draw the particle s free-body diagram, showing all forces acting on the particle. Next, draw the kinetic diagram, showing the inertial force ma acting in the same direction as the resultant force F R.

10 INERTIAL FRAME OF REFERENCE This equation of motion is only valid if the acceleration is measured in a Newtonian or inertial frame of reference. What does this mean? For problems concerned with motions at or near the earth s surface, we typically assume our inertial frame to be fixed to the earth. We neglect any acceleration effects from the earth s rotation. For problems involving satellites or rockets, the inertial frame of reference is often fixed to the stars.

11 EQUATION OF MOTION FOR A SYSTEM OF PARTICLES (Section 13.3) The equation of motion can be extended to include systems of particles. This includes the motion of solids, liquids, or gas systems. As in statics, there are internal forces and external forces acting on the system. What is the difference between them? Using the definitions of m = m i as the total mass of all particles and a G as the acceleration of the center of mass G of the particles, then ma G = m i a i. The text shows the details, but for a system of particles: F = ma G where F is the sum of the external forces acting on the entire system.

12 KEY POINTS 1) Newton s second law is a law of nature -- experimentally proven, not the result of an analytical proof. 2) Mass (property of an object) is a measure of the resistance to a change in velocity of the object. 3) Weight (a force) depends on the local gravitational field. Calculating the weight of an object is an application of F=ma a, i.e., ie W=mg g. 4) Unbalanced forces cause the acceleration of objects 4) Unbalanced forces cause the acceleration of objects. This condition is fundamental to all dynamics problems!

13 PROCEDURE FOR THE APPLICATION OF THE EQUATION OF MOTION 1) Select a convenient inertial coordinate system. Rectangular, normal/tangential, or cylindrical coordinates may be used. 2) Draw a free-body diagram showing all external forces applied to the particle. Resolve forces into their appropriate components. 3) Draw the kinetic diagram, showing the particle s inertial force, ma. Resolve this vector into its appropriate components. 4) Apply the equations of motion in their scalar component form and solve these equations for the unknowns. 5) It may be necessary to apply the proper kinematic relations to generate additional equations.

14 EXAMPLE 10 kg Given: A 10-kg block is subjected to the force F=500 N. A spring of stiffness k=500 N/m is mounted against the block. When s=0, the block is at rest and the spring is uncompressed. The contact surface is smooth. Find: Draw the free-body and kinetic diagrams of the block. Plan:

15 EXAMPLE 1 Given: A 10-kg block is subjected to the force F=500 N. A spring of stiffness k=500 N/m is mounted against the block. When s=0, the block is at rest and the spring is uncompressed. The contact surface is smooth. Find: Draw the free-body and kinetic diagrams of the block. Plan: 1) Define an inertial coordinate system. 2) Draw the block s free-body diagram, showing all external forces applied to the block in the proper directions. 3) Draw the block s kinetic diagram, showing the inertial force vector ma in the proper direction.

16 EXAMPLE 1 (continued) Solution: 1) An inertial x-y frame can be defined as fixed to the ground. 2) Draw the free-body diagram of the block: F=500 (N) W = 10 g The weight force (W) acts through the 3 block s center of mass. F is the applied 4 F s =500 s (N) load odand F s =500s (N) is the spring force, y where s is the spring deformation. The x normal force (N) is perpendicular to the N surface. There is no friction force since the contact surface is smooth. 3) Draw the kinetic diagram of the block: 10 a The block will be moved to the right. The acceleration can be directed to the right if the block is speeding up or to the left if it is slowing down.

17 EXAMPLE 2 Given: The block and cylinder have a mass of m. The coefficient of kinetic friction at all surfaces of contact is μ. Block A is moving to the right. Find: Plan: Draw the free-body and kinetic diagrams of each block. 1) Define an inertial coordinate system. 2) Draw the free-body diagrams for each block, showing all external forces. 3) Draw the kinetic diagrams for each block, showing the inertial forces.

18 EXAMPLE 2 Solution: (continued) 1) An inertial x-y frame can be defined as fixed to the ground. 2) Draw the free-body diagram of each block: Block B: y Block A: y 2T W A = mg x F fa = μn A N A T The friction force opposes the motion of block A relative to the surfaces on which it slides. 3) Draw the kinetic diagram of each block: Block B: Block A: ma A ma B x W B = mg

19 EQUATIONS OF MOTION: RECTANGULAR COORDINATES Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. Equations of Motion Using Rectangular (Cartesian) Coordinates

20 APPLICATIONS If a man is trying to move a 100 lb crate, how large a force F must he exert to start moving the crate? What factors influence how large this force must be to start moving the crate? If the crate starts moving, is there acceleration present? What would you have to know before you could find these answers?

21 APPLICATIONS (continued) Objects that move in air (or other fluid) have a drag force acting on them. This drag force is a function of velocity. If the dragster is traveling with a known velocity and the magnitude of the opposing drag force at any instant is given as a function of velocity, can we determine the time and distance required for dragster to come to a stop if its engine is shut off? How?

22 RECTANGULAR COORDINATES (Section 13.4) The equation of motion, F = m a, is best used when the problem requires finding forces (especially forces perpendicular to the path), accelerations, velocities, or mass. Remember, unbalanced forces cause acceleration! Three scalar equations can be written from this vector equation. The equation of motion, being a vector equation, may be expressed in terms of its three components in the Cartesian (rectangular) coordinate system as F = ma or F x i + F y j + F z k = m(a x i + a y j + a z k) or, as scalar equations, F x = ma x, F y = ma y, and F z = ma z.

23 PROCEDURE FOR ANALYSIS Free Body Diagram (always critical!!) Establish your coordinate system and draw the particle s free body diagram showing only external forces. These external forces usually include the weight, normal forces, friction forces, and applied forces. Show the ma vector (sometimes called the inertial force) on a separate diagram. Make sure any friction forces act opposite to the direction of motion! If the particle is connected to an elastic linear spring, a spring force equal to k s should be included on the FBD.

24 PROCEDURE FOR ANALYSIS (continued) Equations of Motion If the forces can be resolved directly from the free-body diagram (often the case in 2-D problems), use the scalar form of the equation of motion. In more complex cases (usually 3-D), a Cartesian vector is written for every force and a vector analysis is often best. A Cartesian vector formulation of the second law is F = ma or F x i + F y j + F z k = m(a x i +a y j +a z k) Three scalar equations can be written from this vector equation. You may only need two equations if the motion is in 2-D.

25 Kinematics PROCEDURE FOR ANALYSIS (continued) The second law only provides solutions for forces and accelerations. If velocity or position have to be found, kinematics equations are used once the acceleration is found from the equation of motion. Any of the kinematics tools learned in Chapter 12 may be needed to solve a problem. Make sure you use consistent positive coordinate directions as used in the equation of motion part of the problem!

26 a P/c = 1.5 m/s 2 EXAMPLE 3 Given: The 100 kg mine car is hoisted up the incline. The motor M pulls in the cable with an acceleration of 1.5 m/s 2. Find: The acceleration of the mine car and the tension in the cable. Plan: Draw the free-body and kinetic diagrams of the car. Using a dependent motion equation, determine an acceleration relationship between cable and mine car. Apply the equation of motion to determine the cable tension.

27 Solution: EXAMPLE 3 (continued) 1) Draw the free-body and kinetic diagrams of the mine car: y W = mg x 30 N 3T = ma C Since the motion is up the incline, rotate the x-y axes. Motion occurs only in the x-direction. We are also neglecting any friction in the wheel bearings, etc., on the cart.

28 EXAMPLE 3 (continued) 2) The cable equation results in s p + 2 s c = l t Taking the derivative twice yields a p + 2 a c = 0 (eqn. 1) The relative acceleration equation is a p = a c + a p/c As the motor is mounted on the car, a p/c = -1.5 m/s 2 So, a p = a c -1.5 m/s 2 (eqn. 2) a P/c = 1.5m/s 2 P/c s c s p Solving equations 1 and 2, yields a C =0.5 m/s 2

29 EXAMPLE 3 (continued) 3) Apply the equation of motion in the x-direction: a P/c = 4ft/s 2 + F x = ma x => 3T mg(sin30 ) = ma x => 3T (100)(sin 30 ) = (100) (0.5) => T = 33.3 N

30 EXAMPLE 4 Given: W A = 10 N W B = 20 N v oa = 2 m/s μ k = 0.2 Find: v A when A has moved 1 m to the right. Plan: This is not an easy problem, so think carefully about how to approach it!

31 EXAMPLE 4 (continued) Solution: Free-body and dkinetic diagrams of B: 2T = W B m B a B Apply the equation of motion to B: + F y = m a y W B 2T = m B a B 10 2T = 20 a B (1)

32 EXAMPLE 4 (continued) Free-body and kinetic diagrams of A: W A T = m A a A F = μ k N N Apply the equations of motion to A: + F y = m a y = 0 N=W A =10N F = μ k N = 2 N + F x = m a x F T = m A a A 2 T = 10 a A (2)

33 EXAMPLE 4 (continued) Now consider the kinematics. s A x y Datums s B Constraint equation: s A + 2 s B = constant or v A + 2 v B = 0 Therefore a A + 2a B = 0 a A = 2 a B (3) (Notice a A is considered positive to the left and a B is positive downward.)

34 EXAMPLE 4 (continued) Now combine equations (1), (2), and (3). 12 T = = 4N 3 a A = 0.2 m/s 2 Now use the kinematic equation: (v 2 = (v 2 A ) 0A ) +2 a A A( (s A s 0A ) (v A ) 2 = (2) 2 +2 (-0.2)(-1) v A = 2.09 m/s

35 EXAMPLE 13.2 A 10-kg projectile is fired vertically upward from the ground, with an initial velocity of 50 m/s. Determine the maximum height to which it will travel if (a) atmospheric resistance is neglected; and (b) atmospheric resistance is measured as F D = 0.01 v 2 N, where v is the speed of the projectile at any instant, measured in m/s.

36 EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s Objectives: Students will be able to: 1. Apply the equation of motion using normal and tangential coordinates. Equation of Motion in n-t Coordinates

37 APPLICATIONS Race tracks are often banked in the turns to reduce the frictional forces required to keep the cars from sliding up to the outer rail at high speeds. If the car s maximum velocity and a minimum coefficient of y friction between the tires and track are specified, how can we determine the minimum banking angle (θ) required to prevent the car from sliding up the track?

38 APPLICATIONS (continued) The picture shows a ride at the amusement park. The hydraulically-powered y arms turn at a constant rate, which creates a centrifugal force on the riders. We need to determine the smallest angular velocity of the cars A and B so that the passengers do not loose contact with the seat. What parameters do we need for this calculation?

39 APPLICATIONS (continued) Satellites are held in orbit around the earth by using the earth s gravitational pull as the centripetal force the force acting to change the direction of the satellite s velocity. Knowing the radius of orbit of the satellite, we need to determine the required speed of the satellite to maintain this orbit. What equation governs this situation?

40 NORMAL & TANGENTIAL COORDINATES (Section 13.5) When a particle moves along a curved path, it may be more convenient to write the equation of motion in terms of normal and tangential coordinates. The normal direction (n) always points toward the path s center of curvature. In a circle, the center of curvature is the center of the circle. The tangential direction (t) is tangent to the path, usually set as positive in the direction of motion of the particle.

41 EQUATIONS OF MOTION Since the equation of motion is a vector equation, F =ma ma, it may be written in terms of the n & t coordinates as F t u t + F n u n + F b u b = ma t +ma n Here F t & F n are the sums of the force components acting in the t & n directions, respectively. This vector equation will be satisfied provided d the individual id components on each side of the equation are equal, resulting in the two scalar equations: F t =ma t and F n =ma n. Since there is no motion in the binormal (b) direction, we can also write F b = 0.

42 NORMAL AND TANGENTIAL ACCERLERATIONS The tangential acceleration, a t = dv/dt, represents the time rate of change in the magnitude of the velocity. Depending on the direction of F t, the particle s speed will either be increasing or decreasing. The normal acceleration, a n = v 2 /ρ, represents the time rate of change in the direction of the velocity vector. Remember, a n always acts toward the path s center of curvature. Thus, F n will always be directed toward the center of the path. Recall, if the path of motion is defined d dy as y = f(x), the radius of curvature at dx ρ = any point can be obtained from [1 + ( ) 2 ] 3/2 d 2 y dx 2

43 SOLVING PROBLEMS WITH n-t COORDINATES Use n-t coordinates when a particle is moving along a known, curved path. Establish the n-t coordinate system on the particle. Draw free-body and kinetic diagrams of the particle. The normal acceleration (a n ) always acts inward (the positive n-direction). The tangential acceleration (a t ) may act in either the positive or negative t direction. Apply the equations of motion in scalar form and solve. It may be necessary to employ the kinematic relations: a t = dv/dt = v dv/ds a n = v 2 /ρ

44 EXAMPLE 1 Given:At the instant θ = 45, the boy with a mass of 75 kg, moves a speed of 6 m/s, which is increasing at 0.5 m/s 2. Neglect his size and the mass of the seat and cords. The seat is pin connected to the frame BC. Find: Horizontal and vertical reactions of the seat on the boy. Plan: 1) Since the problem involves a curved path and requires finding the force perpendicular to the path, use n-t coordinates. Draw the boy s free-body and dkinetic diagrams. 2) Apply the equation of motion in the n-t directions.

45 Solution: EXAMPLE 1 (continued) 1) The n-t coordinate system can be established on the boy at angle 45. Approximating the boy and seat together as a particle, the free-body and kinetic i diagrams can be drawn. Free-body diagram t W R x n 45 R y = Kinetic diagram t ma t n ma n

46 EXAMPLE 1 (continued) 2) Apply the equations of motion in the n-t directions. (a) F n = ma n => R x cos 45 R y sin 45 +W sin 45 = ma n Ui Using a n = v 2 /ρ = 6 2 /10, W = 75(9.81) N, and m = 75 kg, we get: R = 2 x cos R y sin = (75)(6 /10) (1) (b) FF t = ma t => R x sin 45 + R y cos 45 W cos 45 = ma t we get: R x sin 45 + R y cos = 75 (0.5) (2) Using equations (1) and (2), solve for R x, R y. R x = 217 N, R y =572 N

47 Example 2 Given: A 800 kg car is traveling over the hill having the shape of a parabola. When it is at point A, itistravelingat9m/sand is traveling at and increasing its speed at 3 m/s 2. Find: The resultant normal force and resultant frictional force exerted on the road at point A. Plan: 1) Treat the car as a particle. Draw the free-body and kinetic diagrams. 2) Apply the equations of motion in the n-t tdirections. 3) Use calculus to determine the slope and radius of curvature of the path at point A.

48 EXAMPLE 2 (continued) Solution: 1) The n-t coordinate system can be established on the car at point ita. Treat tthe car as a particle and draw the free- body and kinetic diagrams: n F N W θ θ t = ma n W = mg = weight of car N = resultant normal force on road F = resultant friction force on road n ma t t

49 EXAMPLE2 (continued) 2) Apply the equations of motion in the n-t directions: F n = ma n => W cos θ N = ma n Using W = mg and a n = v 2 /ρ ρ = (9) 2 /ρρ => (800)(9.81) cos θ N = (800) (81/ρ) => N = 7848 cos θ 64800/ρ (1) F t = ma t =>Wsinθ θ F = ma t Using W = mg and a t = 3 m/s 2 (given) => (800)(9.81) sin θ F = (800) (3) => F = 7848 sin θ 2400 (2)

50 EXAMPLE 2 (continued) 3) Determine ρ by differentiating y = f(x) at x = 80 m: y = 20(1 x 2 /6400) => dy/dx = ( 40) x / 6400 => d 2 y/dx 2 = ( 40) / 6400 [1 + ( dy ) 2 ] 3/2 [1 + ( 0.5) 05) dx 2 ] 3/2 ρ = = d 2 y x = 80 m dx 2 Determine θ from the slope of the curve at A: = m dy θ dx tan θ = dy/dx x = 80 m θ = tan -1 (dy/dx) = tan -1 (-0 0.5) = 26.6

51 GROUP PROBLEM SOLVING (continued) From Eq.(1): N = 7848 cos θ / ρ = 7848 cos (26.6 ) / = 6728 N From Eq.(2): F = 7848 sin θ 2400 = 7848 sin (26.6 )) 2400 = 1114 N

52 Today s Objectives: Students will be able to: 1. Analyze the kinetics of a particle using cylindrical coordinates. EQUATIONS OF MOTION: CYLINDRICAL COORDINATES Equations of Motion Using Cylindrical Coordinates Angle Between Radial and Tangential Directions

53 APPLICATIONS The forces acting on the 100-lb boy can be analyzed using the cylindrical coordinate system. How would you write the equation describing the frictional force on the boy as he slides down this helical slide?

54 APPLICATIONS (continued) When an airplane executes the vertical loop shown above, the centrifugal tif lforce causes the normal lf force (apparent weight) on the pilot to be smaller than her actual weight. How would you calculate the velocity necessary for the pilot to experience weightlessness at A?

55 CYLINDRICAL COORDINATES (Section 13.6) This approach to solving problems has some external similarity to the normal & tangential method just studied. However, the path may be more complex or the problem may have other attributes that make it desirable to use cylindrical coordinates. Equilibrium equations or Equations of Motion in cylindrical coordinates (using r, θ, and z coordinates) may be expressed in scalar form as:... F = = m(r 2 r ma r r θ ).... F θ = ma θ = m (r θ 2 r θ ).. F z =ma z =mz

56 CYLINDRICAL COORDINATES (continued) If the particle is constrained to move only in the r θ plane (i.e., the z coordinate is constant), then only the first two equations are used (as shown below). The coordinate system in such a case becomes a polar coordinate system. In this case, the path is only a function of θ. θ... F = = 2 r ma r m(r rθ )... F θ = ma θ = m(rθ 2rθ. ) Note that a fixed coordinate system is used, not a bodycentered system as used in the n t approach.

57 TANGENTIAL AND NORMAL FORCES If a force P causes the particle to move along a path defined by r = f (θ ), the normal force N exerted by the path on the particle is always perpendicular to the path s tangent. The frictional force F always acts along the tangent in the opposite direction of motion. The directions of N and F can be specified relative to the radial coordinate by using angle ψ.

58 DETERMINATION OF ANGLE ψ The angle ψ, defined as the angle between the extended radial line and the tangent to the curve, can be required to solve some problems. It can be determined from the following relationship. tan ψ = r dθ dr = r dr/dθ If ψ is positive, it is measured counterclockwise from the radial If ψ is positive, it is measured counterclockwise from the radial line to the tangent. If it is negative, it is measured clockwise.

59 EXAMPLE 1 Given: The ball (P) is guided along the vertical circular. path. W.. = 0.5 lb, θ = 0.4 rad/s, θ = rad/s 2, r c = 04f 0.4 ft Find: Plan: Force of the arm OA on the ball when θ = 30.

60 EXAMPLE 1 Given: The ball (P) is guided along the vertical circular. path. W.. = 0.5 lb, θ = 0.4 rad/s, θ = rad/s 2, r c = 04f 0.4 ft Find: Force of the arm OA on the ball when θ = 30. Plan: Draw a FBD. Then develop the kinematic i equations and finally solve the kinetics problem using cylindrical coordinates. Solution: o Notice that r = 2r c cos θ,therefore: eeoe:.. r = -2r c sin θθ..... r = -2r c cos θ θ 2 2r c sin θ θ

61 EXAMPLE 1 (continued) Free Body Diagram and Kinetic Diagram : Establish the r, θ inertial coordinate system and draw the particle s free body diagram. mg = ma θ ma r N s 2θ N OA

62 EXAMPLE 1 (continued) Kinematics: at θ = 30 r = 2(0.4) cos(30 ) = ft. r = - 2(0.4) sin(30 )(0.4) = ft/s.. r = - 2(0.4) cos(30 )(0.4) 2 2(0.4) sin(30 )(0.8) = ft/s 2 Acceleration components are... a r = r rθ 2 = (0.693)(0.4) ) 2 = ft/s a θ = rθ + 2rθ = (0.693)(0.8) + 2(-0.16)(0.4) = ft/s 2

63 EXAMPLE 1 (continued) Equation of motion: r direction F r = ma r 0.5 N s cos(30 ) 0.5 sin(30 ) = (-0.542) N s = lb = ma θ ma r

64 EXAMPLE 1 (continued) Equation of motion: θ direction F θ = ma θ 0.5 N OA sin(30 ) 0.5 cos(30 ) = (0.426) N OA = 0.3 lb ma θ ma r =

65

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES

More information

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections )

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections ) NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections 13.1-13.3) Today s Objectives: Students will be able to: a) Write the equation of motion for an accelerating body. b) Draw the free-body and kinetic

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5)

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) Today s Objectives: Students will be able to apply the equation of motion using normal and tangential coordinates. APPLICATIONS Race

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s Objectives: Students will be able to: 1. Apply the equation of motion using normal and tangential coordinates. In-Class Activities: Check

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

An Overview of Mechanics

An Overview of Mechanics An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics concerned with the geometric aspects of

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6)

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) Today s Objectives: Students will be able to analyze the kinetics of a particle using cylindrical coordinates. APPLICATIONS The forces acting

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES Today s Objectives: Students will be able to: 1. Analyze the kinetics of a particle using cylindrical coordinates. EQUATIONS OF MOTION: CYLINDRICAL COORDINATES In-Class Activities: Check Homework Reading

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

Kinetics of Particles

Kinetics of Particles Kinetics of Particles A- Force, Mass, and Acceleration Newton s Second Law of Motion: Kinetics is a branch of dynamics that deals with the relationship between the change in motion of a body and the forces

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 8 Kinetics of a particle: Work and Energy (Chapter 14) - 14.1-14.3 W. Wang 2 Kinetics

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m 91962_05_R1_p0479-0512 6/5/09 3:53 PM Page 479 R1 1. The ball is thrown horizontally with a speed of 8 m>s. Find the equation of the path, y = f(x), and then determine the ball s velocity and the normal

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1 Section 4: TJW Force-mass-acceleration: Example 1 The beam and attached hoisting mechanism have a combined mass of 1200 kg with center of mass at G. If the inertial acceleration a of a point P on the hoisting

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem! PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Physics 207 Lecture 7. Lecture 7

Physics 207 Lecture 7. Lecture 7 Lecture 7 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

1 Motion of a single particle - Linear momentum, work and energy principle

1 Motion of a single particle - Linear momentum, work and energy principle 1 Motion of a single particle - Linear momentum, work and energy principle 1.1 In-class problem A block of mass m slides down a frictionless incline (see Fig.). The block is released at height h above

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Isaac Newton ( )

Isaac Newton ( ) Isaac Newton (1642-1727) In the beginning of 1665 I found the rule for reducing any degree of binomial to a series. The same year in May I found the method of tangents and in November the method of fluxions

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

P - f = m a x. Now, if the box is already moving, for the frictional force, we use

P - f = m a x. Now, if the box is already moving, for the frictional force, we use Chapter 5 Class Notes This week, we return to forces, and consider forces pointing in different directions. Previously, in Chapter 3, the forces were parallel, but in this chapter the forces can be pointing

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Solved Problems. 3.3 The object in Fig. 3-1(a) weighs 50 N and is supported by a cord. Find the tension in the cord.

Solved Problems. 3.3 The object in Fig. 3-1(a) weighs 50 N and is supported by a cord. Find the tension in the cord. 30 NEWTON'S LAWS [CHAP. 3 Solved Problems 3.1 Find the weight on Earth of a body whose mass is (a) 3.00 kg, (b) 200 g. The general relation between mass m and weight F W is F W ˆ mg. In this relation,

More information

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS RICTIONAL ORCES CHAPTER 5 APPLICATIONS O NEWTON S LAWS rictional forces Static friction Kinetic friction Centripetal force Centripetal acceleration Loop-the-loop Drag force Terminal velocity Direction

More information

UNIT-07. Newton s Three Laws of Motion

UNIT-07. Newton s Three Laws of Motion 1. Learning Objectives: UNIT-07 Newton s Three Laws of Motion 1. Understand the three laws of motion, their proper areas of applicability and especially the difference between the statements of the first

More information

Curvilinear Motion: Normal and Tangential Components

Curvilinear Motion: Normal and Tangential Components Curvilinear Motion: Normal and Tangential Components Coordinate System Provided the path of the particle is known, we can establish a set of n and t coordinates having a fixed origin, which is coincident

More information

Chapter 8: Dynamics in a plane

Chapter 8: Dynamics in a plane 8.1 Dynamics in 2 Dimensions p. 210-212 Chapter 8: Dynamics in a plane 8.2 Velocity and Acceleration in uniform circular motion (a review of sec. 4.6) p. 212-214 8.3 Dynamics of Uniform Circular Motion

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

PLANAR RIGID BODY MOTION: TRANSLATION &

PLANAR RIGID BODY MOTION: TRANSLATION & PLANAR RIGID BODY MOTION: TRANSLATION & Today s Objectives : ROTATION Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

3. Kinetics of Particles

3. Kinetics of Particles 3. Kinetics of Particles 3.1 Force, Mass and Acceleration 3.3 Impulse and Momentum 3.4 Impact 1 3.1 Force, Mass and Acceleration We draw two important conclusions from the results of the experiments. First,

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

Extension of Circular Motion & Newton s Laws. Chapter 6 Mrs. Warren Kings High School

Extension of Circular Motion & Newton s Laws. Chapter 6 Mrs. Warren Kings High School Extension of Circular Motion & Newton s Laws Chapter 6 Mrs. Warren Kings High chool Review from Chapter 4 Uniform Circular Motion Centripetal Acceleration Uniform Circular Motion, Force F r A force is

More information

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration INTRODUCTION According to Newton s law, a particle will accelerate when it is subjected to unbalanced force. Kinetics is the study of the relations between unbalanced forces and resulting changes in motion.

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017 Prof. Dr. I. Nasser T171 Chapter5_I 1/10/017 Chapter 5 Force and Motion I 5-1 NEWTON S FIRST AND SECOND LAWS Newton s Three Laws Newton s 3 laws define some of the most fundamental things in physics including:

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm PHYSICS 221 SPRING 2014 EXAM 1: February 20, 2014; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

More information

Dynamics II Motion in a Plane. Review Problems

Dynamics II Motion in a Plane. Review Problems Dynamics II Motion in a Plane Review Problems Problem 1 A 500 g model rocket is on a cart that is rolling to the right at a speed of 3.0 m/s. The rocket engine, when it is fired, exerts an 8.0 N thrust

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01 Fall Problem Set 2: Applications of Newton s Second Law Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01 Fall Problem Set 2: Applications of Newton s Second Law Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall 2012 Problem 1 Problem Set 2: Applications of Newton s Second Law Solutions (a) The static friction force f s can have a magnitude

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

BIT1002 Newton's Laws. By the end of this you should understand

BIT1002 Newton's Laws. By the end of this you should understand BIT1002 Newton's Laws By the end of this you should understand Galileo's Law of inertia/newton's First Law What is an Inertial Frame The Connection between force and Acceleration: F=ma 4. The Third Law

More information

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name:

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name: Dynamics 4600:03 Homework 09 Due: April 04, 008 Name: Please denote your answers clearly, i.e., box in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318 Introduction to Mechanics, Heat, and Sound /FIC 318 Lecture III Motion in two dimensions projectile motion The Laws of Motion Forces, Newton s first law Inertia, Newton s second law Newton s third law

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB 1. A car traveling at 20 m/s rounds a curve so that its centripetal acceleration

More information

AP/Honors Physics Take-Home Exam 1

AP/Honors Physics Take-Home Exam 1 AP/Honors Physics Take-Home Exam 1 Section 1: Multiple Choice (Both Honors & AP) Instructions: Read each question carefully and select the best answer from the choices given. Show all work on separate

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

SECOND MIDTERM -- REVIEW PROBLEMS

SECOND MIDTERM -- REVIEW PROBLEMS Physics 10 Spring 009 George A. WIllaims SECOND MIDTERM -- REVIEW PROBLEMS A solution set is available on the course web page in pdf format. A data sheet is provided. No solutions for the following problems:

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information