3. Kinetics of Particles

Size: px
Start display at page:

Download "3. Kinetics of Particles"

Transcription

1 3. Kinetics of Particles 3.1 Force, Mass and Acceleration 3.3 Impulse and Momentum 3.4 Impact Force, Mass and Acceleration We draw two important conclusions from the results of the experiments. First, the ratios of applied force to corresponding acceleration all equal the same number, provided the units used for measurement are not changed in the experiments. Thus, F 1 = F 2 = = F = C, a constant a 1 a 2 a We conclude that the constant C is a measure of some invariable property of the particle. This property is the inertia of the particle, which is its resistance to rate of change of velocity. 2 1

2 3.1 Force, Mass and Acceleration (contd.) When a particle of mass m is subjected to the action of forces F 1, F 2, F 3,... whose vector sum is F, and equation is, F = ma Rectilinear Motion If we choose the x-direction, for example, as the direction of the rectilinear motion of a particle of mass m, the acceleration in the y- and z-directions will be zero and the scalar components of equation become, F x = ma x F y = 0 F z = Force, Mass and Acceleration Sample Problem (1) A 75-kg man stands on a spring scale in an elevator. During the first 3 seconds of motion from rest, the tension T in the pulling cable is 8300 N. Find the reading R of the scale in newtons during this interval and the upward velocity v of the elevator at the end of the 3 seconds. The total mass of the elevator, man, and scale is 750 kg. 4 2

3 Solution Force, Mass and Acceleration Sample Problem (2) The 125-kg concrete block A is released from rest in the position shown and pulls the 200-kg log up the 30 ramp. If the coefficient of kinetic friction between the log and the ramp is 0.5, determine the velocity of the block as it hits the ground at B. 6 3

4 Solution Force, Mass and Acceleration Sample Problem (3) The sliders A and B are connected by a light rigid bar of length l = 0.5 m and move with negligible friction in the slots, both of which lie in a horizontal plane. For the position where x A = 0.4 m, the velocity of A is v A = 0.9 m/s to the right. Determine the acceleration of each slider and the force in the bar at this instant. 8 4

5 Solution Force, Mass and Acceleration Curvilinear Motion We now rewrite the equation in three ways, the choice of which depends on which coordinate system is most appropriate. F x = ma x F y = ma y a x = x and a y = y 10 5

6 3.1 Force, Mass and Acceleration Normal and Tangential Coordinates F n = ma n F t = ma t a n = ρβ 2 = v2 ρ = vβ a t = v v = ρβ Force, Mass and Acceleration Sample Problem (4) Determine the maximum speed v which the sliding block may have as it passes point A without losing contact with the surface. 12 6

7 Solution Force, Mass and Acceleration Sample Problem (5) Small objects are released from rest at A and slide down the smooth circular surface of radius R to a conveyor B. Determine the expression for the normal contact force N between the guide and each object in terms of θ and specify the correct angular velocity ω of the conveyor pulley of radius r to prevent any sliding on the belt as the objects transfer to the conveyor. 14 7

8 Solution Force, Mass and Acceleration Polar Coordinates F r = ma r F θ = ma θ a r = r rθ 2 a θ = rθ + 2r θ 16 8

9 3.1 Force, Mass and Acceleration Sample Problem (6) The small 180 g slider A moves without appreciable friction in the hollow tube, which rotates in a horizontal plane with a constant angular speed Ω = 7 rad/s. The slider is launched with an initial speed r 0 = 20 m/s relative to the tube at the inertial coordinates x = 150 mm and y = 0. Determine the magnitude P of the horizontal force exerted on the slider by the tube just before the slider exits the tube. 17 Solution 18 9

10 Definition of Work The work done by the force F during the displacement dr is defined as du = F. dr du = F ds cosα α: the angle between F and dr ds: the magnitude of the dr 19 Definition of Work (contd.) Work is positive if the working component F t is in the direction of the displacement and negative if it is in the opposite direction. The SI units of work are those of force (N) times displacement (m) or N.m. This unit is given the special name joule (J), which is defined as the work done by a force of 1 N acting through a distance of 1 m in the direction of the force

11 Calculation of Work During a finite movement of the point of application of a force does an amount of work equal to U = F. dr = (F x dx + F y dy + F z dz) U = F t ds 21 Calculation of Work (contd.) We now consider the work done on a particle of mass m, moving along a curved path under the action of the force F, which stands for the resultant F of all forces acting on the particle. The position of m is specified by the position vector r, and its displacement along its path during the time dt is represented by the change dr in its position vector

12 Kinetic Energy (contd.) U 1 2 = F. dr = F t ds 1 2 s 1 s 2 U 1 2 = F. dr = ma. dr 1 2 But a. dr = a t ds, where a t is the tangential component of the acceleration of m, where a t ds = vdv. Thus, the espression for the work of F becomes 1 2 U 1 2 = F. dr = mv dv = 1 2 m(v 2 2 v 1 2 ) 1 2 v 2 v 1 23 Kinetic Energy The kinetic energy T of the particle is defined as T = 1 2 mv2 and is the total work which must be done on the particle to bring it from a state of rest to a velocity v

13 Power The capacity of a machine is measured by the time rate at which it can do work or deliver energy. The total work or energy output is not a measure of this capacity since a motor, no matter how small, can deliver a large amount of energy if given sufficient time. Accordingly, the power P developed by a force F which does an amount of work U is P = du/dt = F. dr/dt. Because dr/dt is the velocity v of the point of application of the force, we have P = F. v 25 Power (contd.) Power is clearly a scalar quantity, and in SI it has the units of N. m/s = J/s. The special unit for power is the watt (W), which equals one joule per second (J/s). In U.S. customary units, the unit for mechanical power is the horsepower (hp). These units and their numerical equivalences are 1 W = 1 J/s 1 hp = 500 ft_lb/sec = 33,000ft_lb/min 1 hp = 746 W = kw 26 13

14 Efficiency The ratio of the work done by a machine to the work done on the machine during the same time interval is called the mechanical efficiency e m of the machine. Efficiency is always less than unity since every device operates with some loss of energy and since energy cannot be created within the machine. e m = P output P input 27 Gravitational Potential Energy Potential Energy The gravitational potential energy V g of the particle is defined as the work mgh done against the gravitational field to elevate the particle a distance h above some arbitrary reference plane (called a datum), where V g is taken to be zero. Thus, we write the potential energy as V g = mgh 28 14

15 Potential Energy (contd.) Gravitational Potential Energy (contd.) This work is called potential energy because it may be converted into energy if the particle is allowed to do work on a supporting body while it returns to its lower original datum plane. In going from one level at h = h 1 to a higher level at h = h 2, the change in potential energy becomes V g = mg h 2 h 1 = mg h The corresponding work done by the gravitational force on the particle is mg h. Thus, the work done by the gravitational force is the negative of the change in potential energy. 29 Potential Energy (contd.) Elastic Potential Energy The work which is done on the spring to deform it is stored in the spring and is called its elastic potential energy V e. The force supported by the spring at any deformation x, tensile or compressive, from its undeformed position is F = kx. Thus, we define the elastic potential energy of the spring as the work done on it to deform it an amount x, and we have V e = x kx dx = 1 2 kx

16 Potential Energy (contd.) Elastic Potential Energy If the deformation, either tensile or compressive, of a spring increases from x 1 to x 2 during the motion, then the change in potential energy of the spring is its final value minus its initial value or V e = 1 2 k(x 2 2 x 1 2 ) 31 Work-Energy Equation U 1_2 = T + V g + V e Note that equation may be rewritten in the equivalent form T 1 + V g1 + V e1 + U 1 2 = T 2 + V g2 + V e2 We may rewrite the alternative work-energy relation, for a particle-and-spring system as U 1_2 = T + V g + V e = E Where E = T + V g + V e is the total mechanical energy of the particle and its attached linear spring

17 Work-Energy Equation (contd.) For problems where the only forces are garvitational, elastic, and nonworking constraint forces, the U -termis zero, and the energy equation becomes merely E = 0 or E = constant Where E is constant, we see that transfers of energy between kinetic and potential may take place as long as the total mechnaical energy T + V g + V e does not change. E = 0 or E = constant equation express the law of conservation of dynamical energy. 33 Sample Problem (7) The 10-kg slider moves with negligible friction up the inclined guide. The attached spring has a stiffness of 60 N/m and is stretched 0.6 m in position A, where the slider is released from rest. The 250-N force is constant and the pulley offers negligible resistance to the motion of the cord. Calculate the velocity v of the slider as it passes point C

18 Solution 35 Sample Problem (8) The 3-kg slider is released from rest at position 1 and slides with negligible friction in a vertical plane along the circular rod. The attached spring has a stiffness of 350 N/m and has an unstretched length of 0.6 m. Determine the velocity of the slider as it passes position

19 Solution 37 Sample Problem (9) The mechanism is released from rest with θ = 180 where the uncompressed spring of stiffness k = 900 N/m is just touching the underside of the 4-kg collar. Determine the angle θ corresponding to the maximum compression of the spring. Motion is in the vertical plane, and the mass of the links may be neglected

20 Solution Impulse and Momentum Linear Impulse and Linear Momentum F = mv = d mv or F = G dt where the product of the mass and velocity is defined as the linear momentum G = mv of the particle. The above equation states that the resultant of all forces acting on a particle equals its time rate of change of linear momentum

21 3.3 Impulse and Momentum Linear Impulse and Linear Momentum (contd.) We now write three scalar components of the equation F = G as F x = G x F y = G y F z = G z These equations may be applied independently of one another Impulse and Momentum The Linear Impulse-Momentum Principle Multiplying the equation F = G by dt gives F dt = dg, which we integrate from time t 1 to time t 2 to obtain t 2 F dt = G 2 G 1 = G t 1 Here the linear momentum at time t 2 is G 2 = mv 2 and the linear momentum at time t 1 is G 1 = mv 1. The product of force and time is defined as the linear impulse of the force, and the above equation states that the total linear impulse on m equals the corresponding change in linear momentum of m

22 3.3 Impulse and Momentum The Linear Impulse-Momentum Principle (contd.) t The components of 2 F dt = G t 1 2 G 1 = G equation become the scalar equations t 2 F x dt = mv x 2 mv x 1 t 1 t 2 F y dt = t 1 mv y 2 mv y 1 t 2 F z dt = mv z 2 mv z 1 t Impulse and Momentum Conservation of Linear Momentum If the resultant force on a particle is zero during an interval of time, we see that equation F = G requires that its linear momentum G remain constant. In this case, the linear momentum of the particle is said to be conserved. If there are two or more particles that interact during an interval of time, the momentum of these particles due to interactive forces cancel out each other. Therefore the total linear momentum of the system of particles is also conserved if there is no external force acting on the system

23 3.3 Impulse and Momentum Sample Problem (10) The loaded 150-kg skip is rolling down the incline at 4 m/s when a force P is applied to the cable as shown at time t 0. The force P is increased uniformly with the time until it reaches 600 N at t 4 s, after which time it remains constant at this value. Calculate (a) the time at which the skip reverses its direction and (b) the velocity v of the skip at t 8 s. Treat the skip as a particle. 45 Solution 46 23

24 3.3 Impulse and Momentum Sample Problem (11) The 50-g bullet traveling at 600 m/s strikes the 4-kg block centrally and is embedded within it. If the block slides on a smooth horizontal plane with a velocity of 12 m/s in the direction shown prior to impact, determine the velocity v of the block and embedded bullet immediately after impact. 47 Solution 48 24

25 3.3 Impulse and Momentum Sample Problem (12) Car B weighing 1500 kg and traveling west at 48 km/h collides with car A weighing 1600 kg and traveling north at 32 km/h as shown. If the two cars become entangled and move together as a unit after the crash, compute the magnitude v of their common velocity immediately after the impact and the angle θ made by the velocity vector with the north direction. 49 Solution 50 25

26 3.3 Impulse and Momentum Angular Impulse and Angular Momentum The moment of the linear momentum vector mv about the origin O is defined as the angular momentum H O of P about O and is given by the cross-product relation for the moment of a vector H O = r mv The angular momentum then is a vector perpendicular to the plane A defined by r and v Impulse and Momentum Rate of Change of Angular Momentum The moment about origin O is the vector cross product M O = r F = r mv H O = r mv + r mv = v mv + r mv The term v mv is zero since the cross product of parallel vectors is identically zero. M O = H O This equation states that the moment about the fixed point O of all forces acting on m equals the time rate change of angular momentum of m about O

27 3.3 Impulse and Momentum Rate of Change of Angular Momentum (contd.) Equation M O = H O is a vector equation with scalar components M Ox = H O x M Oy = H O y M Oz = H O z Impulse and Momentum The Angular Impulse-Momentum Principle t 2 M O dt = H O2 H O1 = H O t 1 Where H O2 = r 2 mv 2 and H O1 = r 1 mv 1. The product of moment and time is defined as angular impulse, and the above equation states that the total angular impulse on m about the fixed point O equals the corresponding change in angular momentum of m about O

28 3.3 Impulse and Momentum Plane-Motion Applications For a particle of mass m moving along a curved path in the x y plane, the angular momenta about O at points 1 and 2 have the magnitudes H O 1 = r 1 mv 1 = mv 1 d 1 and H O 2 = r 2 mv 2 = mv 2 d 2, respectively. In the illustration both H O 1 and H O2 are represented in the counter clockwise sense in accord with the direction of the moment of the linear momentum Impulse and Momentum Conservation of Angular Momentum If the resultant moment about a fixed point O of all forces acting on a particle is zero during an interval of time, M O = H O requires that its angular momentum H O about that point remain constant. In this case, the angular momentum of the particle is said to be conserved. H O = 0 or H O1 = H O2 The above equations express the principle of conservation of angular momentum

29 3.3 Impulse and Momentum Conservation of Angular Momentum Consider now the motion of two particles a and b which interact during an interval of time. If the interactive forces F and F between them are the only unbalanced forces acting on the particles during the interval, it follows that the moments of the equal and opposite forces about any fixed point O not on their line of action are equal and opposite. Therefore the total angular momentum of the system of particles is also conserved if there is no external force acting on the system Impulse and Momentum Sample Problem (13) A small mass particle is given an initial velocity v 0 tangent to the horizontal rim of a smooth hemispherical bowl at a radius r 0 from the vertical centerline, as shown at point A. As the particle slides past point B, a distance h below A and a distance r from the vertical centerline, its velocity v makes an angle θ with the horizontal tangent to the bowl through B. Determine θ

30 Solution Impulse and Momentum Sample Problem (14) The two spheres of equal mass m are able to slide along the horizontal rotating rod. If they are initially latched in position a distance r from the rotating axis with the assembly rotating freely with an angular velocity ω 0, determine the new angular velocity ω after the spheres are released and finally assume positions at the ends of the rod at a radial distance of 2r. Also find the fraction n of the initial kinetic energy of the system which is lost. Neglect the small mass of the rod and shaft

31 Solution Impact Impact refers to the collision between two bodies and is characterized by the generation of relatively large contact forces which act over a very short interval of time. Direct Central Impact The collinear motion of two spheres of masses m 1 and m 2 traveling with velocities v 1 and v 2. If v 1 is greater than v 2, collision occurs with the contact forces directed along the line of centers

32 3.4 Impact Direct Central Impact (contd.) Because the contact forces are equal and opposite during impact, the linear momentum of the system remains unchanged. Thus, we apply the law of conservation of linear momentum and write m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v Impact Coefficient of Restitution e is the magnitude of the restoration impulse to the magnitude of the deformation impulse. This ratio is called the coefficient of restitution

33 3.4 Impact Coefficient of Restitution (contd.) e = t F r dt t 0 t 0 F d dt 0 e = v 2 v 1 v 1 v 2 = relative velocity of seperation relative velocity of approach If the two initial velocities v 1 and v 2 and the coefficient of restitution e are known, then equations m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 and e = v 2 v 1 v 1 v 2 give us two equations in the two unknown final velocities v 1 and v Impact Energy Loss During Impact According to this classical theory of impact, the value e = 1 means that the capacity of the two particles to recover equals their tendency to deform. This condition is one of elastic impact with no energy loss. The value e = 0, on the other hand, describes inelastic or plastic impact where the particles cling together after collision and the loss of energy is a maximum. All impact conditions lie somewhere between these two extremes

34 3.4 Impact Sample Problem (15) The ram of a pile driver has a mass of 800 kg and is released from rest 2 m above the top of the 2400-kg pile. If the ram rebounds to a height of 0.1 m after impact with the pile, calculate (a) the velocity v p of the pile immediately after impact, (b) the coefficient of restitution e, and (c) the percentage loss of energy due to the impact. 67 Solution 68 34

35 3.4 Impact Oblique Central Impact (1) Momentum of the system is conserved in then-direction. This gives m 1 v 1 n + m 2 v 2 n = m 1 v 1 n + m 2 v 2 n Impact Oblique Central Impact (contd.) (2) and (3) The momentum for each particle is conserved in the t -direction since there is no impulse on either particle in the t - direction. Thus, m 1 v 1 t = m 1 v 1 t m 2 v 2 t = m 2 v 2 t (4) The coefficient of restitution, as in the case of direct central impact, is the positive ratio of the recovery impulse to the deformation impulse. e = v 2 v 1 applies, then, to the velocity v 1 v 2 components in the n -direction. e = v 2 n v 1 n v 1 n v 2 n 70 35

36 3.4 Impact Sample Problem (16) A ball is projected onto the heavy plate with a velocity of 16 m/s at the 30 angle shown. If the effective coefficient of restitution is 0.5, compute the rebound velocity v and its angle θ. 71 Solution 72 36

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1 Section 4: TJW Force-mass-acceleration: Example 1 The beam and attached hoisting mechanism have a combined mass of 1200 kg with center of mass at G. If the inertial acceleration a of a point P on the hoisting

More information

Kinetics of Particles: Work and Energy

Kinetics of Particles: Work and Energy Kinetics of Particles: Work and Energy Total work done is given by: Modifying this eqn to account for the potential energy terms: U 1-2 + (-ΔV g ) + (-ΔV e ) = ΔT T U 1-2 is work of all external forces

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

AE 688 Dynamics And Vibration Assignment No. 2. with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ

AE 688 Dynamics And Vibration Assignment No. 2. with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ AE 688 Dynamics And Vibration Assignment No. 1. A car is descending the hill of slope θ 1 with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ at point A.

More information

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m 91962_05_R1_p0479-0512 6/5/09 3:53 PM Page 479 R1 1. The ball is thrown horizontally with a speed of 8 m>s. Find the equation of the path, y = f(x), and then determine the ball s velocity and the normal

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

5. Plane Kinetics of Rigid Bodies

5. Plane Kinetics of Rigid Bodies 5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 8 Kinetics of a particle: Work and Energy (Chapter 14) - 14.1-14.3 W. Wang 2 Kinetics

More information

Engineering Mechanics: Statics. Chapter 7: Virtual Work

Engineering Mechanics: Statics. Chapter 7: Virtual Work Engineering Mechanics: Statics Chapter 7: Virtual Work Introduction Previous chapters-- FBD & zero-force and zero-moment equations -- Suitable when equilibrium position is known For bodies composed of

More information

Kinetics of Particles

Kinetics of Particles Kinetics of Particles A- Force, Mass, and Acceleration Newton s Second Law of Motion: Kinetics is a branch of dynamics that deals with the relationship between the change in motion of a body and the forces

More information

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 1. The 50-kg crate is projected along the floor with an initial

More information

WORK AND ENERGY PRINCIPLE

WORK AND ENERGY PRINCIPLE WORK AND ENERGY PRINCIPLE Work and Kinetic Energy In the previous article we applied Newton s second law F ma to various problems of particle motion to establish the instantaneous relationship between

More information

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration INTRODUCTION According to Newton s law, a particle will accelerate when it is subjected to unbalanced force. Kinetics is the study of the relations between unbalanced forces and resulting changes in motion.

More information

ME 141. Lecture 11: Kinetics of particles: Energy method

ME 141. Lecture 11: Kinetics of particles: Energy method ME 4 Engineering Mechanics Lecture : Kinetics of particles: Energy method Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUE E-mail: sshakil@me.buet.ac.bd, shakil679@gmail.com ebsite: teacher.buet.ac.bd/sshakil

More information

WORK, POWER AND ENERGY

WORK, POWER AND ENERGY WORK, POWER AND ENERGY Important Points:. Dot Product: a) Scalar product is defined as the product of the magnitudes of two vectors and the cosine of the angle between them. The dot product of two vectors

More information

Curvilinear Motion: Normal and Tangential Components

Curvilinear Motion: Normal and Tangential Components Curvilinear Motion: Normal and Tangential Components Coordinate System Provided the path of the particle is known, we can establish a set of n and t coordinates having a fixed origin, which is coincident

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

SOLUTION T 1 + U 1-2 = T C(31.5)(2.5)A10 6 B(0.2)D = 1 2 (7)(v 2) 2. v 2 = 2121 m>s = 2.12 km>s. Ans. (approx.

SOLUTION T 1 + U 1-2 = T C(31.5)(2.5)A10 6 B(0.2)D = 1 2 (7)(v 2) 2. v 2 = 2121 m>s = 2.12 km>s. Ans. (approx. 4 5. When a 7-kg projectile is fired from a cannon barrel that has a length of 2 m, the explosive force exerted on the projectile, while it is in the barrel, varies in the manner shown. Determine the approximate

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Tenth Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Tenth Edition CHAPTER Tenth E CHAPTER 7 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California State Polytechnic University Plane Motion

More information

5/2/2015 7:42 AM. Chapter 17. Plane Motion of Rigid Bodies: Energy and Momentum Methods. Mohammad Suliman Abuhaiba, Ph.D., PE

5/2/2015 7:42 AM. Chapter 17. Plane Motion of Rigid Bodies: Energy and Momentum Methods. Mohammad Suliman Abuhaiba, Ph.D., PE 5//05 7:4 AM Chapter 7 Plane Motion of Rigid Bodies: Energy and Momentum Methods 5//05 7:4 AM Chapter Outline Principle of Work and Energy for a Rigid Body Work of Forces Acting on a Rigid Body Kinetic

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

WORK ENERGY AND POWER

WORK ENERGY AND POWER WORK ENERGY AND POWER WORK PHYSICAL DEINITION When the point of application of force moves in the direction of the applied force under its effect then work is said to be done. MATHEMATICAL DEINITION O

More information

SECTION A. 8 kn/m. C 3 m 3m

SECTION A. 8 kn/m. C 3 m 3m SECTION Question 1 150 m 40 kn 5 kn 8 kn/m C 3 m 3m D 50 ll dimensions in mm 15 15 Figure Q1(a) Figure Q1(b) The horizontal beam CD shown in Figure Q1(a) has a uniform cross-section as shown in Figure

More information

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#: Faculty of Engineering and Department of Physics ENPH 131 Final Examination Saturday, April 20, 2013; 2:00 pm 4:30 pm Universiade Pavilion Section EB01 (BEAMISH): Rows 1, 3, 5(seats 1-45) Section EB02

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, October 16, 2012 2 / 38 PRINCIPLE

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

LAWS OF MOTION. (i) This law gives the value of force.

LAWS OF MOTION. (i) This law gives the value of force. LAWS OF MOTION The law of inertia given by Galileo was represented by Newton as the first law of motion :" If no external force acts on a body, the body at rest remains at rest and a body in motion continues

More information

Rigid Body Kinetics :: Force/Mass/Acc

Rigid Body Kinetics :: Force/Mass/Acc Rigid Body Kinetics :: Force/Mass/Acc General Equations of Motion G is the mass center of the body Action Dynamic Response 1 Rigid Body Kinetics :: Force/Mass/Acc Fixed Axis Rotation All points in body

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-007 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon 1 Your Name: PHYSICS 101 MIDTERM October 26, 2006 2 hours Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon Problem Score 1 /13 2 /20 3 /20 4

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Exam 2 Solutions. PHY2048 Spring 2017

Exam 2 Solutions. PHY2048 Spring 2017 Exam Solutions. The figure shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but that now moves across a frictionless floor. The force magnitudes

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

TOPIC B: MOMENTUM EXAMPLES SPRING 2019

TOPIC B: MOMENTUM EXAMPLES SPRING 2019 TOPIC B: MOMENTUM EXAMPLES SPRING 2019 (Take g = 9.81 m s 2 ). Force-Momentum Q1. (Meriam and Kraige) Calculate the vertical acceleration of the 50 cylinder for each of the two cases illustrated. Neglect

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

if the initial displacement and velocities are zero each. [ ] PART-B

if the initial displacement and velocities are zero each. [ ] PART-B Set No - 1 I. Tech II Semester Regular Examinations ugust - 2014 ENGINEERING MECHNICS (Common to ECE, EEE, EIE, io-tech, E Com.E, gri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part- and

More information

1 Motion of a single particle - Linear momentum, work and energy principle

1 Motion of a single particle - Linear momentum, work and energy principle 1 Motion of a single particle - Linear momentum, work and energy principle 1.1 In-class problem A block of mass m slides down a frictionless incline (see Fig.). The block is released at height h above

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

Suggested Problems. Chapter 1

Suggested Problems. Chapter 1 Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Seventh Edition CHAPTER CHAPTER 7 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Plane Motion of Rigid Bodies: Energy and Momentum Methods

More information

E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep. Engineering Mechanics E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

More information

Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring (taken from Giancoli, 4 th edition) Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Phys 2210 S18 Practice Exam 3: Ch 8 10

Phys 2210 S18 Practice Exam 3: Ch 8 10 1. As a 1.0-kg object moves from point A to point B, it is acted upon by a single conservative force which does 40 J of work during this motion. At point A the speed of the particle is 6.0 m/s and the

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force PHY 101 DR M. A. ELERUJA KINETIC ENERGY AND WORK POTENTIAL ENERGY AND CONSERVATION OF ENERGY CENTRE OF MASS AND LINEAR MOMENTUM Work is done by a force acting on an object when the point of application

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name:

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name: Dynamics 4600:03 Homework 09 Due: April 04, 008 Name: Please denote your answers clearly, i.e., box in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ APPLICATIONS CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: The quality of a tennis ball

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

More information

AP Physics 1: Rotational Motion & Dynamics: Problem Set

AP Physics 1: Rotational Motion & Dynamics: Problem Set AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is

More information

Mechanics Topic B (Momentum) - 1 David Apsley

Mechanics Topic B (Momentum) - 1 David Apsley TOPIC B: MOMENTUM SPRING 2019 1. Newton s laws of motion 2. Equivalent forms of the equation of motion 2.1 orce, impulse and energy 2.2 Derivation of the equations of motion for particles 2.3 Examples

More information

Pre-AP Physics Review Problems

Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES

NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES NEWTON S LAWS OF MOTION, EQUATIONS OF MOTION, & EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES Objectives: Students will be able to: 1. Write the equation of motion for an accelerating body. 2. Draw the

More information

Rigid Body Kinetics :: Virtual Work

Rigid Body Kinetics :: Virtual Work Rigid Body Kinetics :: Virtual Work Work-energy relation for an infinitesimal displacement: du = dt + dv (du :: total work done by all active forces) For interconnected systems, differential change in

More information

Physics I (Navitas) FINAL EXAM Fall 2015

Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

More information

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

Chapter 13. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy

Chapter 13. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy Chapter 3. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy pplications of the Principle of Work & Energy Power and

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m Name VECTORS 1) An airplane undergoes the following displacements: First, it flies 59 km in a direction 30 east of north. Next, it flies 58 km due south. Finally, it flies 100 km 30 north of west. Using

More information