LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich

Size: px
Start display at page:

Download "LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich"

Transcription

1 LECTURE 9 FRICTION & SPRINGS Instructor: Kazumi Tolich

2 Lecture 9 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs

3 Static friction 3 Static friction is the frictional force that prevents surfaces in contact from sliding. F The direction of the static friction is anti-parallel to all the other forces trying to slide the object relative to the surface. While the object is not sliding on a surface, the magnitude of the static friction equals the magnitude of all the other forces trying to slide the object until it reaches the maximum value. N f $ 0 f $ f $,&'( = μ $ N f $ F μ $ is the coefficient of static friction (dimensionless). N is the magnitude of the normal force by one surface on the other. FBD of the block W

4 Quiz: 1 A box sits on the horizontal bed of a moving truck. As the truck accelerates to the left, the box does not slide on the truck bed. Does the truck bed exerts static friction on the box? If so, what is the direction of this static friction on the box? A. No. The truck bed does not exert any static friction on the box. B. Yes. The truck bed exerts static friction on the box to the right. C. Yes. The truck bed exerts static friction on the box to the left.

5 Quiz: 9-1 answer Yes. The truck bed exerts static friction on the box to the left. The box is accelerating to the left with the truck. So, there must be a net force on the box to the left. That leftward force must be the static friction by the truck bed.

6 Quiz: 2 A block is placed on a rough incline. A force F is applied up the incline just enough to prevent the block from sliding down. Draw a force vector representing the direction of the friction in the figure. F

7 Quiz: 9-2 answer up along the incline A force F is applied up the incline just enough to prevent the block from sliding down, so if F was slightly smaller, the block would be sliding down. The static friction is preventing the block from sliding down. f $

8 Quiz: 3 8 A box sits on a flat board. You lift one end of the board, making an angle with the floor. As you increase the angle, the box will eventually begin to slide down. Why? Choose all that apply. A. Component of the gravity force parallel to the plane increased. B. Coefficient of static friction decreased. C. Normal force exerted by the board decreased.

9 Quiz: 9-3 answer 9 A. Component of the gravity force parallel to the plane increased. B. Coefficient of static friction decreased. C. Normal force exerted by the board decreased. As the angle θ increases, the component of weight parallel to the plane (W sin θ) increases and the component perpendicular to the plane (W cos θ) decreases. When the box is not sliding, F = 0. So N = W cos θ and f $ = W sin θ. As θ increases, N decreases, and f $ increases. However, f $,&'( = μ $ N, we see that f $ reaches the maximum, while the force pulling the box down the plane gets bigger. N ;< f $ ;< θ θ W ;=

10 Example: 1 10 A crate with a mass of m = 45 kg is placed on an inclined ramp. When the angle the ramp makes with the horizontal is increased to θ = 23º, the crate begins to slide downward. What is the coefficient of static friction between the crate and the ramp?

11 Demo: 1 11 Four surface incline Demonstration of various materials with different coefficients of static friction Incline with Sliding Blocks (with Tacky Wax) Demonstration of various surfaces with different coefficients of static friction. Coefficient of static friction can be measured by the maximum angle without the block sliding. N ;< f $ ;< θ μ $ = tan θ θ W ;=

12 Kinetic friction 12 Kinetic friction is the frictional force that opposes sliding motion. The direction of the kinetic friction is anti-parallel to the velocity of the sliding object relative to the surface. The magnitude of the kinetic friction is given by f A = μ A N μ A is the coefficient of kinetic friction (dimensionless). N is the magnitude of the normal force by one surface on the other.

13 Quiz: 4 13 Four identical blocks labeled 1 through 4 as shown are moving on a surface for which the coefficient of kinetic friction between each block and the surface is µ k. The velocity of each block is indicated by the vector on the block. Rank the blocks according the magnitudes of the frictional force on the blocks, smallest first.

14 Quiz: 9-4 answer 14 1 = 2 = 3 = 4 Kinetic friction is independent of the relative speed of the surfaces or the area of contact between the surfaces.

15 Demo: 2 15 Contact area and kinetic friction

16 Example: 2 16 A hockey puck with a mass m = 0.11 kg whose initial speed was v CD = 6.0 m/s slides on the ice for x = 15.0 m before it stops. a) What was the magnitude of the frictional force on the puck during the sliding? b) What was the coefficient of friction between the puck and the ice?

17 Reducing frictions in bodies 17 Joints Many parts of the body, especially the joints, have coefficients of friction that are three or four times less than those of ice. The joints are covered by cartilage, which provides a smooth, almost glassy surface. The joints also produce a lubricating fluid. A damaged joint can be replaced by an artificial joint made of metals (stainless steel or titanium) or plastic (polyethylene) with very small coefficients of friction. Swallowing knee joint replacement Saliva acts like a lubricant and helps you to swallow.

18 Spring force 18 Force exerted by a compressed or stretched spring obeys Hook s law. F D = kx : the direction of the force is opposite from the displacement of the end of the spring. This type of force is called restoring force. k: force constant for stiffness of the spring. x: the displacement of the end of the spring.

19 Demo: 3 19 Hook s Law

20 Example: 3 20 A backpack weighing W = 52.0 N rests on a table. A spring with a force constant of k = 150 N/m is attached to the backpack and pulled horizontally. If the spring is pulled until it stretches x = 2.00 cm and the pack remains at rest, what is the force of friction exerted on the backpack by the table?

LECTURE 12 FRICTION & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 12 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs Origin of friction 3 The origin of friction is electromagnetic

More information

LECTURE 11 FRICTION AND DRAG

LECTURE 11 FRICTION AND DRAG LECTURE 11 FRICTION AND DRAG 5.5 Friction Static friction Kinetic friction 5.6 Drag Terminal speed Penguins travel on ice for miles by sliding on ice, made possible by small frictional force between their

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion 1. A baseball player slides into home base with an initial speed of 7.90 m/s. If the coefficient of kinetic friction between the

More information

Consider the case of a 100 N. mass on a horizontal surface as shown below:

Consider the case of a 100 N. mass on a horizontal surface as shown below: 1.9.1 Introduction The study of friction is called: The force of friction is defined as: The force of friction acting between two surfaces has three properties: i) ii) iii) Consider the case of a 100 N.

More information

Work and Energy. Work and Energy

Work and Energy. Work and Energy 1. Work as Energy Transfer Work done by a constant force (scalar product) Work done by a varying force (scalar product & integrals). Kinetic Energy Work-Energy Theorem Work by a Baseball Pitcher A baseball

More information

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F

More information

Lecture 7. Forces. Important note: First Exam is next Tuesday, Feb. 6, 8:15-9:45 pm (see link on Canvas for locations)

Lecture 7. Forces. Important note: First Exam is next Tuesday, Feb. 6, 8:15-9:45 pm (see link on Canvas for locations) Lecture 7 Forces Important note: First Exam is next Tuesday, Feb. 6, 8:15-9:45 pm (see link on Canvas for locations) Today s Topics: Forces The gravitational force The normal force Frictional Forces Next

More information

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans Cause of Friction Friction is caused by the microscopic roughness between surfaces like two gears locking together. Factors Affecting Friction Factors affecting friction: 1) The condition of the surfaces

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

SPH3U1 - Dynamics Problems Set 3

SPH3U1 - Dynamics Problems Set 3 SPH3U1 - Dynamics Problems Set 3 Problems 1. A force of 1.2 N [ ] is applied to an object of mass 1.5 kg. It accelerates at 0.50 m/s 2 [ ] along a surface. Determine the force of friction that is acting

More information

Forces of Friction Contact between bodies with a relative velocity produces friction opposite

Forces of Friction Contact between bodies with a relative velocity produces friction opposite Forces of Friction Contact between bodies with a relative velocity produces friction Friction is proportional to the normal force The force of static friction is generally greater than the force of kinetic

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

4.2. The Normal Force, Apparent Weight and Hooke s Law

4.2. The Normal Force, Apparent Weight and Hooke s Law 4.2. The Normal Force, Apparent Weight and Hooke s Law Weight The weight of an object on the Earth s surface is the gravitational force exerted on it by the Earth. When you weigh yourself, the scale gives

More information

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact?

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Does the moon attract the Earth with the same force that the Earth attracts the

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of Chap. 5: More Examples with Newton s Law Chap.5: Applying Newton s Laws To study conditions that establish equilibrium. To study applications of Newton s Laws as they apply when the net force is not zero.

More information

Friction Can Be Rough

Friction Can Be Rough 8.1 Observe and Find a Pattern Friction Can Be Rough Perform the following experiment: Rest a brick on a rough surface. Tie a string around the brick and attach a large spring scale to it. Pull the scale

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

Get Solution of These Packages & Learn by Video Tutorials on FRICTION

Get Solution of These Packages & Learn by Video Tutorials on  FRICTION 1. FRICTION : When two bodies are kept in contact, electromagnetic forces act between the charged particles (molecules) at the surfaces of the bodies. Thus, each body exerts a contact force of the other.

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY.

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. SI (Supplemental Instructor): Thomas Leyden (thomasleyden@tamu.edu) 7:00-8:00pm, Sunday/Tuesday/Thursday, MPHY 333 Chapter

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words.

I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words. I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words. 1. For the remaining situations, discuss with your neighbor

More information

Physics 111: Mechanics Lecture 5

Physics 111: Mechanics Lecture 5 Physics 111: Mechanics Lecture 5 Bin Chen NJIT Physics Department Forces of Friction: f q When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion.

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

Physics Lecture 13. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma

Physics Lecture 13. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 23, 2011 1 / 14 Goal Goals for today s lecture:

More information

Lecture 3. Newton s laws. Forces. Friction

Lecture 3. Newton s laws. Forces. Friction Lecture 3 Newton s laws Forces Friction NEWTON S THIRD LAW If one object exerts a force on a second object, the second object exerts a force back on the first that is equal in magnitude and opposite in

More information

Introduction to Mechanics Friction Examples Friction Springs

Introduction to Mechanics Friction Examples Friction Springs Introduction to Mechanics Friction Examples Friction Springs Lana Sheridan De Anza College Mar 7, 2018 Last time kinetic and static friction friction examples Overview one more friction example springs

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

Lecture 3. Newton s laws. Forces. Friction

Lecture 3. Newton s laws. Forces. Friction Lecture 3 Newton s laws Forces Friction NEWTON S THIRD LAW If one object exerts a force on a second object, the second object exerts a force back on the first that is equal in magnitude and opposite in

More information

Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction. ENGR 1205 Appendix B

Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction. ENGR 1205 Appendix B Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction ENGR 1205 Appendix B 1 Contacting surfaces typically support normal and tangential forces Friction is a tangential

More information

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C.

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C. Name: Date: 1. When a 12-newton horizontal force is applied to a box on a horizontal tabletop, the box remains at rest. The force of static friction acting on the box is 3. The graph given shows the weight

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always Section 5.1 Friction Static and Kinetic Friction Friction is an electromagnetic phenomenon: molecular attraction between surfaces Extreme example: Gecko foot Two kinds of friction: Static Friction: a force

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied.

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied. FRICTION 1 Introduction In preceding chapters, it was assumed that surfaces in contact were either frictionless (surfaces could move freely with respect to each other) or rough (tangential forces prevent

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

Concept of Force and Newton s Laws of Motion

Concept of Force and Newton s Laws of Motion Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.1-7.4 Chapter 8 Applications of Newton s Second Law, Sections 8.1-8.4.1 Announcements W02D3 Reading

More information

Part A Atwood Machines Please try this link:

Part A Atwood Machines Please try this link: LAST NAME FIRST NAME DATE Assignment 2 Inclined Planes, Pulleys and Accelerating Fluids Problems 83, 108 & 109 (and some handouts) Part A Atwood Machines Please try this link: http://www.wiley.com/college/halliday/0470469080/simulations/sim20/sim20.html

More information

LECTURE 3 ENERGY AND PENDULUM MOTION. Instructor: Kazumi Tolich

LECTURE 3 ENERGY AND PENDULUM MOTION. Instructor: Kazumi Tolich LECTURE 3 ENERGY AND PENDULUM MOTION Instructor: Kazumi Tolich Lecture 3 2 14.4: Energy in simple harmonic motion Finding the frequency for simple harmonic motion 14.5: Pendulum motion Physical pendulum

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Dry Friction Static vs. Kinetic Angles

Dry Friction Static vs. Kinetic Angles Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction 1 Contacting surfaces typically support normal and tangential forces Friction is a tangential force Friction occurs

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Applying Newton s Laws

Applying Newton s Laws Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck?

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A. Something more than its weight B. Equal to its weight C. Something less than its weight but more than zero

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#: Faculty of Engineering and Department of Physics ENPH 131 Final Examination Saturday, April 20, 2013; 2:00 pm 4:30 pm Universiade Pavilion Section EB01 (BEAMISH): Rows 1, 3, 5(seats 1-45) Section EB02

More information

Worksheet #05 Kinetic Energy-Work Theorem

Worksheet #05 Kinetic Energy-Work Theorem Physics Summer 08 Worksheet #05 June. 8, 08. A 0-kg crate is pulled 5 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.0 m/s. (a) Draw

More information

Physics 2210 Fall Review for Midterm Exam 2 10/07/2015

Physics 2210 Fall Review for Midterm Exam 2 10/07/2015 Physics 2210 Fall 2015 Review for Midterm Exam 2 10/07/2015 Problem 1 (1/3) A spring of force constant k = 800 N/m and a relaxed length L 0 = 1.10 m has its upper end fixed/attached to a pivot in the ceiling.

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil.

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. Name: ID #: Section #: PART I: MULTIPLE CHOICE QUESTIONS Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. 1. A 55.0-kg box rests on a horizontal

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Study Questions/Problems Week 4

Study Questions/Problems Week 4 Study Questions/Problems Week 4 Chapter 6 treats many topics. I have selected on average less than three problems from each topic. I suggest you do them all. Likewise for the Conceptual Questions and exercises,

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Dynamics Review Outline

Dynamics Review Outline Dynamics Review Outline 2.1.1-C Newton s Laws of Motion 2.1 Contact Forces First Law (Inertia) objects tend to remain in their current state of motion (at rest of moving at a constant velocity) until acted

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

Chapter 7 Work and Energy

Chapter 7 Work and Energy 8/04/0 Lecture PowerPoints 009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Physics 2514 Lecture 13

Physics 2514 Lecture 13 Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/18 Goals We will discuss some examples that involve equilibrium. We then move on to a discussion

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

There are two main types of friction:

There are two main types of friction: Section 4.15: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Dynamics Notes 1 Newton s Laws

Dynamics Notes 1 Newton s Laws Dynamics Notes 1 Newton s Laws In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe. Newton s 1 st Law:

More information

Newton s Laws Pre-Test

Newton s Laws Pre-Test Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

More information

General Physics I Forces

General Physics I Forces General Physics I Forces Dynamics Isaac Newton (1643-1727) published Principia Mathematica in 1687. In this work, he proposed three laws of motion based on the concept of FORCE. A force is a push or a

More information

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli Lecture PowerPoints Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Announcements 24 Sep 2013

Announcements 24 Sep 2013 Announcements 24 Sep 2013 1. If you have questions on exam 1 2. Newton s 2 nd Law Problems: F m a. Inclined planes b. Pulleys c. Ropes d. Friction e. Etc Remember N2 is a blueprint for obtaining a useful

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information