5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

Size: px
Start display at page:

Download "5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above."

Transcription

1 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B) 10. N C) 20. N D) 80 N 5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 2. In the diagram below, a cart travels clockwise at constant speed in a horizontal circle. When the car is in the position shown, its acceleration is directed toward the A) north B) west C) south D) east At the position shown in the diagram, which arrow indicates the direction of the centripetal acceleration of the cart? A) A B) B C) C D) D 6. In the diagram below, a student compresses the spring in a pop-up toy meter. 3. A satellite weighs 200 newtons on the surface of Earth. What is its weight at a distance of one Earth radius above the surface of Earth? A) 50 N B) 100 N C) 400 N D) 800 N If the spring has a spring constant of 340 newtons per meter, how much energy is being stored in the spring? A) J B) 0.14 J C) 3.4 J D) 6.8 J 4. As the mass of a body increases, its gravitational force of attraction on the Earth A) decreases B) increases C) remains the same

2 7. Base your answer to the following question on the information and diagram below. A kilogram car is driven clockwise around a flat circular track of radius 25.0 meters. The speed of the car is a constant 5.00 meters per second. 10. A boy pushes his sister on a swing. What is the frequency of oscillation of his sister on the swing if the boy counts 90. complete swings in 300. seconds? A) 0.30 Hz B) 2.0 Hz C) 1.5 Hz D) 18 Hz 11. A 20.-newton weight is attached to a spring, causing it to stretch, as shown in the diagram below. If the circular track were to suddenly become frictionless at the instant shown in the diagram, the car s direction of travel would be A) toward E B) toward N C) toward W D) a clockwise spiral 8. The time required to produce one cycle of a wave is known as the wave's A) amplitude B) frequency C) period D) wavelength 9. What is the magnitude of the gravitational force between two 5.0-kilogram masses separated by a distance of 5.0 meters? A) N B) N C) N D) N What is the spring constant of this spring? A) N/m B) 0.25 N/m C) 20. N/m D) 40. N/m 12. A kilogram car travels at a constant speed of 20. meters per second around a horizontal circular track. Which diagram correctly represents the direction of the car s velocity (v) and the direction of the centripetal force (Fc) acting on the car at one particular moment? A) B) C) D)

3 13. When Earth and the Moon are separated by a distance of meters, the magnitude of the gravitational force of attraction between them is newtons. What would be the magnitude of this gravitational force of attraction if Earth and the Moon were separated by a distance of meters? A) N B) N C) N D) N Base your answers to questions 14 and 15 on the information below. A kilogram car travels at a constant speed of 12 meters per second around a circular curve of radius 30. meters. 14. As the car goes around the curve, the centripetal force is directed A) toward the center of the circular curve B) away from the center of the circular curve C) tangent to the curve in the direction of motion D) tangent to the curve opposite the direction of motion 17. A 0.50-kilogram object moves in a horizontal circular path with a radius of 0.25 meter at a constant speed of 4.0 meters per second. What is the magnitude of the object s acceleration? A) 8.0 m/s 2 B) 16 m/s 2 C) 32 m/s 2 D) 64 m/s The gravitational force of attraction between two objects would be increased by A) doubling the mass of both objects, only B) doubling the distance between the objects, only C) doubling the mass of both objects and doubling the distance between the objects D) doubling the mass of one object and doubling the distance between the objects 15. What is the magnitude of the centripetal acceleration of the car as it goes around the curve? A) 0.40 m/s 2 B) 4.8 m/s 2 C) 800 m/s 2 D) 9,600 m/s As the distance between two objects increases, the gravitational force of attraction between them will A) decrease B) increase C) remain the same

4 19. Base your answer to the following question on the information and diagram below. The diagram shows a student seated on a rotating circular platform, holding a 2.0-kilogram block with a spring scale. The block is 1.2 meters from the center of the platform. The block has a constant speed of 8.0 meters per second. [Frictional forces on the block are negligible.] Which statement best describes the block s movement as the platform rotates? A) Its velocity is directed tangent to the circular path, with an inward acceleration. B) Its velocity is directed tangent to the circular path, with an outward acceleration. C) Its velocity is directed perpendicular to the circular path, with an inward acceleration. D) Its velocity is directed perpendicular to the circular path, with an outward acceleration. 20. If the mass of one of two objects is increased, the force of attraction between them will A) decrease B) increase C) remain the same

5 Base your answers to questions 21 and 22 on the information and diagram below. Spacecraft S is traveling from planet P1 toward planet P2 At the position shown, the magnitude of the gravitational force of planet P1 on the spacecraft is equal to the magnitude of the gravitational force of planet P2 on the spacecraft. 21. If distance X is greater than distance Y, then the mass of P1 must be A) less than the mass of P2 B) greater than the mass of P2 C) equal to the mass of P2 22. As the spacecraft moves from the position shown toward planet P2, the ratio of the gravitational force of P2 on the spacecraft to the gravitational force of P1 on the spacecraft will A) decrease B) increase C) remain the same

6 Base your answers to questions 23 and 24 on the diagram below which represents a mass of 10.0 kilograms traveling at constant speed of 4. meters per second in a horizontal circular path about point D. 25. Base your answer to the following question on the information and diagram below. An athlete in a hammer-throw event swings a 7.0-kilogram hammer in a horizontal circle at a constant speed of 12 meter per second. The radius of the hammer's path is 2.0 meters 23. Which quantity would increase if the radius increased? A) period B) tangential velocity C) mass D) centripetal acceleration 24. The centripetal acceleration of the satellite is directed toward point A) A B) B C) C D) D What is the magnitude of the centripetal acceleration of the hammer? A) 6.0 m/s 2 B) 24 m/s 2 C) 72 m/s 2 D) 500 m/s The diagram below represents a mass, m, being swung clockwise at constant speed in a horizontal circle. At the instant shown, the centripetal force acting on mass m is directed toward point A) A B) B C) C D) D

7 27. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 29. A ball attached to a string is moved at constant speed in a horizontal circular path. A target is located near the path of the ball as shown in the diagram. C) D) At which point along the ball's path should the string be released, if the ball is to hit the target? A) A B) B C) C D) D 30. Base your answer to the following question on the diagram below which represents a simple pendulum with a 2.0-kilogram bob and a length of 10. meters. The pendulum is released from rest at position 1 and swings without friction through position 4. At position 3, its lowest point, the speed of the bob is 6.0 meters per second. 28. As the pendulum swings from position A to position B as shown in the diagram above, what is the relationship of kinetic energy to potential energy? [Neglect friction.] A) The kinetic energy decrease is more than the potential energy increase. B) The kinetic energy increase is more than the potential energy decrease. C) The kinetic energy decrease is equal to the potential energy increase. D) The kinetic energy increase is equal to the potential energy decrease. At which position does the bob have its maximum kinetic energy? A) 1 B) 2 C) 3 D) 4

8 31. Base your answer to the following question on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal circle of radius meters, at a constant speed of meters per second. The floor is lowered and the student remains against the wall without falling to the floor. 33. Base your answer to the following question on the diagram below. The diagram shows a student spinning a 0.10-kilogram ball at the end of a 0.50-meter string in a horizontal circle at a constant speed of 10. meters per second. [Neglect air resistance.] The magnitude of the centripetal force acting on the student at point A is approximately A) B) C) D) Which is the best description of the force keeping the ball in the circular path? A) perpendicular to the circle and directed toward the center of the circle B) perpendicular to the circle and directed away from the center of the circle C) tangent to the circle and directed in the same direction that the ball is moving D) tangent to the circle and directed opposite to the direction that the ball is moving 32. The diagram below shows a 5.0-kilogram bucket of water being swung in a horizontal circle of-meter radius at a constant speed of 2.0 meters per second. 34. The centers of two 15.0-kilogram spheres are separated by 3.00 meters. The magnitude of the gravitational force between the two spheres is approximately A) N B) N C) N D) N The magnitude of the centripetal force on the bucket of water is approximately A) 5.7 N B) 14 N C) 29 N D) 200 N

9 35. The diagram below represents a 0.40-kilogram stone attached to a string. The stone is moving at a constant speed of 4.0 meters per second in a horizontal circle having a radius of 0.80 meter. 39. The diagram below shows an object moving counterclockwise around a horizontal, circular track. The magnitude of the centripetal acceleration of the stone is A) 0.0 m/s 2 B) 2.0 m/s 2 C) 5.0 m/s 2 D) 20. m/s 2 Which diagram represents the direction of both the object's velocity and the centripetal force acting on the object when it is in the position shown? A) 36. The time required for a wave to complete one full cycle is called the wave s A) frequency B) period C) velocity D) wavelength 37. The magnitude of the centripetal force acting on an object traveling in a horizontal, circular path will decrease if the A) radius of the path is increased B) mass of the object is increased C) direction of motion of the object is reversed D) speed of the object is increased B) C) D) 38. An object weighs 100. Newtons on Earth s surface. When it is moved to a point one Earth radius above Earth s surface, it will weigh A) 25.0 N B) 50.0 N C) 100. N D) 400. N

10 40. The diagram below shows three positions, A, B, and C, in the swing of a pendulum, released from rest at point A. [Neglect friction.] 41. Base your answer to the following question on the diagram and information below. At an amusement park, a passenger whose mass is 50. kilograms rides in a cage. The cage has a constant speed of 10. meters per second in a vertical circular path of radius R, equal to 10. meters. Which statement is true about this swinging pendulum? A) The potential energy at A equals the kinetic energy at C. B) The speed of the pendulum at A equals the speed of the pendulum at B. C) The potential energy at B equals the potential energy at C. D) The potential energy at A equals the kinetic energy at B. What is the direction of the centripetal acceleration of the passenger at the instant the cage reaches the highest point in the circle? A) to the left B) to the right C) up D) down 42. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by ball A on ball B? A) N B) N C) N D) N

11 43. An unbalanced force of 40. newtons keeps a 5.0-kilogram object traveling in a circle of radius 2.0 meters. What is the speed of the object? A) 8.0 m/s B) 2.0 m/s C) 16 m/s D) 4.0 m/s Base your answers to questions 44 and 45 on the information below and on your knowledge of physics. Using a spring toy like the one shown in the diagram, a physics teacher pushes on the toy, compressing the spring, causing the suction cup to stick to the base of the toy. When the teacher removes her hand, the toy pops straight up and just brushes against the ceiling. She does this demonstration five times, always with the same result. When the teacher repeats the demonstration for the sixth time the toy crashes against the ceiling with considerable force. The students notice that in this trial, the spring and toy separated from the base at the moment the spring released. The teacher puts the toy back together, repeats the demonstration and the toy once again just brushes against the ceiling. 44. Describe the conversions that take place between pairs of the three forms of mechanical energy, beginning with the work done by the teacher on the toy and ending with the form(s) of energy possessed by the toy as it hits the ceiling. [Neglect friction.]

12 45. Explain, in terms of mass and energy, why the spring toy hits the ceiling in the sixth trial and not in the other trials. Base your answers to questions 46 and 47 on the information and diagram below. A block of mass m starts from rest at height h on a frictionless incline. The block slides down the incline across a frictionless level surface and comes to rest by compressing a spring through distance x, as shown in the diagram below. 46. Determine the spring constant, k, in terms of g, h, m, and x. [Show all work including formulas and an algebraic solution for k.] 47. Name the forms of mechanical energy possessed by the system when the block is in position A and in position B.

13 Base your answers to questions 48 through 50 on the information and diagram below. A mass, M, is hung from a spring and reaches equilibrium at position B. The mass is then raised to position A and released. The mass oscillates between positions A and C. [Neglect friction.] 48. At which position, A, B, or C, is mass M located when the gravitational potential energy of the system is at a maximum? Explain your choice. 49. At which position, A, B, or C, is mass M located when the kinetic energy of the system is at a maximum? Explain your choice. 50. At which position, A, B, or C, is mass M located when the elastic potential energy of the system is at a maximum? Explain your choice.

14 Base your answers to questions 51 through 54 on the information and diagram below. In an experiment, a rubber stopper is attached to one end of a string that is passed through a plastic tube before weights are attached to the other end. The stopper is whirled in a horizontal circular path at constant speed. 51. The rubber stopper is now whirled in a vertical circle at the same speed. On the diagram, draw and label vectors to indicate the direction of the weight (Fg) and the direction of the centripetal force (Fc) at the position shown. 52. Describe what would happen to the radius of the circle if the student whirls the stopper at a greater speed without changing the balancing weights. 53. List three measurements that must be taken to show that the magnitude of the centripetal force is equal to the balancing weights. [Neglect friction.]

15 54. On the diagram of the top view, draw the path of the rubber stopper if the string breaks at the position shown. 55. Base your answer to the following question on the information and diagram below and on your knowledge of physics. A toy airplane flies clockwise at a constant speed in a horizontal circle of radius 8.0 meters. The magnitude of the acceleration of the airplane is 25 meters per second squared. The diagram shows the path of the airplane as it travels around the circle. Calculate the speed of the airplane. [Show all work, including the equation and substitution with units.]

16 56. A baby and stroller have a total mass of 20. kilograms. A force of 36 newtons keeps the stroller moving in a circular path with a radius of 5.0 meters. Calculate the speed at which the stroller moves around the curve. [Show all work, including the equation and substitution with units.] 58. Determine the speed of the whirling stopper. Base your answers to questions 57 and 58 on the information below. In an experiment, a kilogram rubber stopper is attached to one end of a string. A student whirls the stopper overhead in a horizontal circle with a radius of 1.0 meter. The stopper completes 10. revolutions in 10. seconds. 57. Calculate the magnitude of the centripetal force on the whirling stopper. [Show all work, including the equation and substitution with units.]

17 Base your answers to questions 59 and 60 on the information below. A student conducted a series of experiments to investigate the effect of mass, length, and amplitude (angle of release) on a simple pendulum. The table below shows the initial conditions for a series of trials. 59. Which three trials should the student use to test the effect of length on the period of the pendulum? 60. Which three trials should the student use to test the effect of mass on the period of the pendulum? 61. A 0.65-meter-long pendulum consists of a 1.0-kilogram mass at the end of a string. The pendulum is released from rest at position A, 0.25 meter above its lowest point. The pendulum is timed at five positions, A through E. Based on the information in the diagram and the data table, determine the period of the pendulum.

18 Answer Key Pendulum,Springs,Circular,G Review 1. D 2. A 3. A 4. B 5. D 6. A 7. B 8. C 9. C 10. A 11. D 12. A 13. D 14. A 15. B 16. A 17. D 18. A 19. A 20. B 21. A 22. B 23. A 24. D 25. C 26. C 27. C 28. D 29. B 30. C 31. B 32. C 33. A 34. C 35. D 36. B 37. A 38. A 39. B 40. D 41. D 42. C 43. D 44. examples: work of teacher into the P.E. (spring) into the K.E. of launch into P.E. (gravity) and sound energy. 45. examples: The toy has less mass without the base but the same energy. Therefore it can go higher. The work put into the toy is the same but the mass is less. With less mass the toy could go higher because it is moving faster. 46. PE = mg h PEs = kx 2 kx 2 = mg h k = 2mg h / x Credit for indicating kinetic energy when the block is in position A and credit for indicating potential energy when the block is in position B. Appropriate responses include, but are not limited to: Position A: kinetic or KE, or energy of motion Position B: elastic or potential, or energy of position 48. A, because it is the highest point of travel 49. B, because the mass has the greatest speed or B, because the total potential energy is least or B, the speed at A and C is zero 50. C, because the spring is stretched the maximum amount or C, because the KE and gravitational PE are a minimum R increases 53. mass of stopper, radius of path, velocity of stopper or frequency or period, weight of the balancing weights m/s 59. Credit for W, X, Z 60. Credit for R, U, Y seconds

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

3 UCM & Gravity Student Physics Regents Date

3 UCM & Gravity Student Physics Regents Date Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

3.The wrecking crane shown is moving toward a brick wall that is to be torn down.

3.The wrecking crane shown is moving toward a brick wall that is to be torn down. Test Name: Physics Practice Test Section 1 1.Which of the following best classifies a material that has extremely low conductivity? 1. A. semiconductor B. insulator C. metalloid D. conductor 2.Which of

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180.

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180. Name: ate: 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude?. 0 B. 45 C. 90.. 180. 5. rock is thrown straight

More information

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes 1. Use Law of Universal Gravitation to solve problems involving different masses. 2. Determine changes in gravitational and kinetic

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

Conservation of Energy Review

Conservation of Energy Review onservation of Energy Review Name: ate: 1. An electrostatic force exists between two +3.20 10 19 -coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D) A 1500 kg car travels at a constant speed of 22 m/s around a circular track which has a radius of 80 m. Which statement is true concerning this car? A) The velocity of the car is changing. B) The car is

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

2014 Physics Exam Review

2014 Physics Exam Review Name: ate: 1. The diagrams below show a model airplane. Which energy transformation occurs in a rubber band powered model airplane when it is flown?. Thermal energy stored in the rubber band is transformed

More information

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart.

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart. 1. The diagram below shows a worker using a rope to pull a cart. 6. The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. The worker s

More information

Centripetal force keeps an Rotation and Revolution

Centripetal force keeps an Rotation and Revolution Centripetal force keeps an object in circular motion. Which moves faster on a merry-go-round, a horse near the outside rail or one near the inside rail? While a hamster rotates its cage about an axis,

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40.

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40. 1. As a pendulum swings from position A to position B as shown in the diagram, its total mechanical energy (neglecting friction) A) decreases B) increases C) remains the same 2. Base your answer to the

More information

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name: Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Circular Motion PreTest

Circular Motion PreTest Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Physics Semester 2 Final Exam Review Answers

Physics Semester 2 Final Exam Review Answers Physics Semester 2 Final Exam Review Answers A student attaches a string to a 3 kg block resting on a frictionless surface, and then pulls steadily (with a constant force) on the block as shown below.

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25 1. 3. A ball attached to a string is whirled around a horizontal circle of radius r with a tangential velocity v. If the radius is changed to 2r and the magnitude of the centripetal force is doubled the

More information

Name Period Date A) B) C) D)

Name Period Date A) B) C) D) Example Problems 9.2 E1. A car rounds a curve of constant radius at a constant speed. Which diagram best represents the directions of both the car s velocity and acceleration? Explain: A) B) C) D) E2.

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Centripetal Force Exploring Uniform Circular Motion

Centripetal Force Exploring Uniform Circular Motion 1 Exploring Uniform Circular Motion An object that moves in a circle at constant speed, v, is said to experience uniform circular motion (UCM). The magnitude of the velocity remains constant, but the direction

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Circular Motion. Unit 7

Circular Motion. Unit 7 Circular Motion Unit 7 Do Now You drive a car that follows a circular path with the radius r = 100 m. Find the distance travelled if you made one complete circle. C 2 R 2(3.14)(100) 6.28(100) 628m Uniform

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

Circular Motion Class:

Circular Motion Class: Circular Motion Class: Name: Date: 1. What is the magnitude of the centripetal acceleration of a 4-kilogram mass orbiting at 10 meters per second with a radius of 2 meters? (1) 5 m/sec 2 (2) 50 m/sec 2

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Circular Motion Concept Questions

Circular Motion Concept Questions Circular Motion Concept Questions Question 1 A bead is given a small push at the top of a hoop (position A) and is constrained to slide around a frictionless circular wire (in a vertical plane). Circle

More information

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B)

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B) 1. The data table below lists the mass and speed of four different objects. 6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? Which

More information

AP Physics C - Problem Drill 18: Gravitation and Circular Motion

AP Physics C - Problem Drill 18: Gravitation and Circular Motion AP Physics C - Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some

More information

Contents. Concept Map

Contents. Concept Map Contents 1. General Notes on Forces 2. Effects of Forces on Motion 3. Effects of Forces on Shape 4. The Turning Effect of Forces 5. The Centre of Gravity and Stability Concept Map April 2000 Forces - 1

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

More information

Circular Motion 8.01 W04D1

Circular Motion 8.01 W04D1 Circular Motion 8.01 W04D1 Next Reading Assignment: W04D2 Young and Freedman: 3.4; 5.4-5.5 Experiment 2: Circular Motion 2 Concept Question: Coastal Highway A sports car drives along the coastal highway

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Chapter 6 Motion in Two Dimensions

Chapter 6 Motion in Two Dimensions Conceptual Physics/ PEP Name: Date: Chapter 6 Motion in Two Dimensions Section Review 6.1 1. What is the word for the horizontal distance a projectile travels? 2. What does it mean to say a projectile

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

More information

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem! PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information