Some examples of photorefractive oscillators

Size: px
Start display at page:

Download "Some examples of photorefractive oscillators"

Transcription

1 ELECTRONICS, VOL. 19, NO., DECEMBER Some examples of photorefractive oscillators Zoran Ljuboje bstract The photorefractive effect presents a perioical change of the refractive inex of an optical environment uner the influence of a coherent light. n interesting phenomenon which occurs at this effect is optical phase conjugation (PC). Photorefractive oscillators, that is photorefractive mirrors present important ecies in photorefractive optics an their function is base on photorefractive effect. In these oscillators, a phase-conjugate light beam occurs. The basic characteristics of photorefractive oscillators, such as reflectivity, the existance of the oscillation threshol an the threshol of the coupling strength are explaine by the so-calle grating-action metho. This is analyse on a ring oscillator, semilinear mirror an linear mirror. Inex terms fotorefractive oscillators, grating-action metho, ring oscillator, semilinear mirror, linear mirror. Original Research Paper DOI: /ELS L T I. INTRODUCTION HE paper will analyse photorefractive oscillators [1] whose operation is base on the photorefractive effect. The photorefractive effect is base on the four-wave mixing of laser light beams (4TM) in some crystals []. In this effect, a perioical change of refraction inex of an optic environment occurs uner the activity of light. During the illumination of some crystals by coherent light, carriers of free charge are create by the transfer of the onor atom electrons to the conuction zone. The number of electron transfers is proportional to the number of onor atoms an the light intensity. Carriers iffuse to the place with lower light intensity, an the opposite sign charges remain in their positions, so-calle holes. s the consequence of this rearrangement of charge, an internal electric fiel occurs, i.e. the phenomenon of change in local refraction inex occurs, that is, a iffraction grate is forme in the crystal at which aitional incient beams can be scattere (Figure 1). Manuscript receive 1 September 015. Receive in revise form 1 December 015. Zoran Ljuboje is with the Faculty of Electrical Engineering, University of East Sarajevo, Bosnia an Herzegovina zoran.ljuboje@etf.unssa.rs.ba). n interesting effect which causes light in a photorefractive environment is optical phase conjugation (PC). In this situation a simultaneous rotation of the phase an the irection of the light beam wave propagation. So, the crystal is illuminate with three laser beams: two oppositely irecte pumps whose amplitues are 1 an an an amplitue signal 4. s the result, the fourth wave occurs, with the amplitue 3 which presents a phase-conjugate copy of the beam 4. Unlike the known law of reflection of light in geometrical optics, the reflecte beam 3 returns by the same path of the incient beam 4. PC beam is interesting because of great opportunities for its practical application. Fig. 1. Four-wave mixing in photorefractive crystals. The basic equations which escribe the process are3 : 1 Q 4 1 x x, Q, 3 x 4 Q, (1) 3 x 1 4 Q. () 3 In the name equations, enotes the amplitues of waves, is the absorption coefficient, Q presents the so-calle amplitue of the transmission iffraction grating, an the asterisk enotes the conjugate-complex units. The amplitue of the transmission iffraction grating satisfies the following equation:

2 106 ELECTRONICS, VOL. 19, NO., DECEMBER 015 Q Q 1 4 3, (3) t I where is the relaxation time, I is the total intensity of waves I i, while an are the parameters which epen on the electric fiels forme in the crystal [4]. The solving of these equations is performe numerically ans may lea to numerical instabilities, but that is not going to be iscusse in this paper [5], [6]. where a is the constant calculate from bounary conitions, is the coupling strength of the crystal, is the thickness of the crystal, an I enotes the intensities of light beams. On the basis of this metho, it is possible to construct an aequate photorefractive circuit which, in a general case, correspons to the 4TM process (Figure ). II. PHOTOREFRCTIVE OSCILLTORS The most important evices in photorefractive optics are photorefractive oscillators, that is, mirrors. Their operation is base on the photorefractive effect. Photorefractive oscillators are forms when photorefractive crystals are illuminate with one or two laser beams. In that, a iffraction grating is forme in the crystal, on which the iffraction of laser beams occurs. The most interesting ones are the configurations of oscillators which create the phase-conjugate beams of incient signals. Photorefractive oscillators with one incient beam are: linear, semilinear, ring an cat oscillators. Cat oscillator has two internal interference region, an each of the other oscillators has one. In the others, external mirrors are use, an cat oscillators use internal total reflection. Photorefractive oscillators with two incient beams are: ouble PC mirror, mutually incoherent beam-coupler, an the so-calle bir an frog oscillators. In this paper, the oscillators with one incient beam will be analyze: ring, semilinear an linear photorefractive oscillator. n oscillator operation analysis can be explaine efficiently by the grating-action metho [7]. On the basis of this metho, the relations of laser beam connections at the entrance (0) an exit of a crystal () are given by the expressions: Fig.. Optical processor representation of the 4TM process. III. RING OSCILLTOR ring oscillator has the possibility of self-starting at the oscillation threshol. This oscillator has two orinary mirrors outsie the crystal an one interaction region in the crystal (Figure 3.) where the matrix 1 10 u 4 40 u : 30 3, u 0, (4) u cos u sin u sin u cosu (5) Fig. 3. Photorefractive ring mirror. where u is the total grating action an calculate from the expression: * * tan u ai coth( a / ) I I I I , (6) The analysis of operation of this oscillator can be efficiently explaine by the mentione grating-action metho. Figure 4 shows an aequate photorefractive circuit of this oscillator. By applying the expressions (4) an (5), for a ring oscillator is P 10 0 so it follows that the test signal 40 S others, generates the output signal 30, i.e., among the

3 ELECTRONICS, VOL. 19, NO., DECEMBER M sin u 30 40, (7) where M is the prouct of reflectivity of external orinary mirrors. Threshol of the coupling strength is calculate from (9) ( for u 0 ) an from that it follows: M 1 tanh( a th / ) 3M 1 th, (10) what is equivalent to the results in [8] but obtaine in a simpler way. It is obvious that the coupling threshol has the value 1, when M 1 (Figure 6). th Fig. 4. Photorefractive circuits relate to the ring mirror. The reflectivity of beam in this oscillator is given by the expression R I / I /, so, from (7) it follows: R Msin u, (8) while the action u is calculate from (6) an given by the expression: M 1 1 M acoth a / cos u 4M (9) Figure 5 presents the solutions which follow from (8) an (9), efining the epenence of the oscillator refection in the function of the coupling parameter, where M is given as a parameter, an 1. Fig. 6. Threshol of the coupling strength in the function of reflectivity M. t the oscillation threshol, it is a 1 M / 1 M an from that, on the basis of (10) it follows that the relation between the threshol of the coupling strength an the parameter a given by the expression; 1 th ln(1 a ), (11) a what is presente in Figure 7 (for 1). Fig. 5. Oscillator reflection in the function of coupling constant.

4 108 ELECTRONICS, VOL. 19, NO., DECEMBER 015 Fig. 7. Constant a in the function of the threshol of the coupling strength. Ring oscillators can have an interesting application. For example, two couples ring oscillators whose operation is base on 4TM present a combination which is analogous to an electronic flip-flop circuit [9], [10]. Such a flip-flop oscillator consists of two ring oscillators which are from the outsie pumpe by the light intensities which may be ifferent. In that, only one oscillator oscillates an the other shuts own an vice versa. IV. SEMILINER MIRROR Semilinear mirror is, also, an oscillator with one incient light beam an one interaction region. It has one external mirror an oes not have the possibility of self-restarting (Figure 8 an Figure 9). We will repeat the proceures as in the previous case [11]. The incient signal P 40 generates the beams an on the basis of (4) an (5) we get the beams at the exit: an, in that, u, cos 4 40 u sin 1 40, (1) The beam 1 via the external mirror with reflection coefficient M presents the entrance M 1, while 3 0. By applying the relations (4) an (5) it follows: M u, cos 0 M 1 u sin 30 1, (13) The constant a is calculate from the expression a T / I, where T I I I I I ( 1 4 ), I 1, I are I 4 light beam intensities for z an I is their sum. On the basis of the calculation for the constant a, an also from (1) an (13) for the reflection of this mirror R I / I it is obtaine: R M 1 a a M 1 1 M(1 a ) 4 1. (14) By the arranging from the expression (6) for this case, it follows: 1 1 a ln a 1 a. (15) On the basis of (14) an (15) in Figure 10 the epenence R f( ) is presente, where M is the parameter, an 1. Fig. 8. Photorefractive semilinear mirror. Fig. 10. Oscillator reflection in the function of the coupling constant. Minimal reflectivity value follows from the equation (14) for the value of the constant a: Figure 9. Photorefractive circuits relate to the semilinear mirror. a M 1. (16) 1

5 ELECTRONICS, VOL. 19, NO., DECEMBER The threshol of the coupling strength follows from (15) an (16): 1M 1 th 1M ln 1M 1. (17) V. LINER MIRROR We will mention the linear mirror, too. This oscillator is, also, a mirror with one incient beam, one interaction region an has the possibility of self-starting at the threshol. This mirror also has two orinary external mirrors (Figure 13). This result is ientical to the result from the paper [8] where it has been obtaine in a completely ifferent, but a more complicate way. For the case of maximal reflectivity M 1,.49. (Figure 11) th lso, the solutions given in Figure 1 follow from the expression (15). Fig. 13. Photorefractive linear mirror. Fig. 11. Threshol of the coupling strength in the function of reflexivity M. Fig. 14. Photorefractive circuits in relation to the linear mirror. We will repeat the same proceures as for the previous examples. The incient signal P 40 an beam 10 generate the beams at the exit. The beam 1 via the external reflection coefficient M presents the entrance 1 M,while 3 0. From (4) an (5) among the other, it follows: 30 M sin, 1 u 0 M cos 1 u (18) Fig. 1. Constant a in the function of the threshol of the coupling strength. The beam 0 returns via the external mirror of reflection M 1, i.e. 10 M1 0 an thus the process is repeate. It follows from the calculation that the minimal value of the threshol of coupling is:

6 110 ELECTRONICS, VOL. 19, NO., DECEMBER 015 ln M M (19) th 1 It is obvious that the threshol of the coupling strength tens to zero 0, when MM 1 1. th For the case when the reflectivities M1 M it follows from (19) that ln M, (0) th an that is presente in Figure 15. VI. CONCLUSION The paper analyses the examples of photorefractive oscillators with one incient beam. The operation of this oscillators is base on the photorefractive effect, an in that a phase-conjugate light beam also appears, so they are also calle phase conjugate mirrors. So-calle grating-action metho has been applie, by means of which are efficiently explaine the reflectivity of oscillator, then the so-calle oscillation threshol an the threshol of coupling strength. This is analyse on a ring oscillator, semilenear an linear mirror. nalytical calculations have been performe an characteristic units, such as reflectivity an characteristic units at the oscillation threshol have been presente graphically. Fig.15. Threshol of coupling strength in the function of reflectivity M. REFERENCES [1] Z. Ljuboje Fotorefraktivni oscilatori sa jenim upanim zrakom, INFOTEH-JHORIN, Vol. 14, March 015. [] P. Gunter an J.P. Huignar (es), Photorefractive Materials an Their pplications, I an II (Springer, Berlin, 1988, 1989) [3] W. Krolikowski, K. D. Shaw, M.Cronin-Golomb an. Bleowski, J. Opt.Soc.m.B 6 (1989); W. Krolikowski, M.R. Belić, M.Cronin- Golomb an. Bleowski, J. Opt.Soc.m.B 7 (1990). [4] N. V. Kukhtarev, V. Markov an S. Oulov, Transient energy transfer uring hologram formation in LiNbO3 in external electric fiel, Opt. Commun (1977). [5] M. Belić an Z. Ljuboje, Chaos in phase conjugation: physical vs numerical instabilities, Opt. Quant. Electron (199) [6] Z. Ljuboje, O. Bjelica Numeričke nestabilnosti pri rješavanju nekih problema u fizici, INFOTEH-JHORIN, Vol. 13, March 014. [7] M. S. Petrović, M. R. Belić, an F. Kaiser, Photorefractive circuitry an optical transistors, Opt. Commun. 11 (1995). [8] M. C. Golomb, B. Fischer, J.O. White an. Yariv, Theori an aplication of four-wave mixing in photorefractive meia IEEE J. Qant. Electron. QE-0, 1 (1984). [9] M. Petrovic, M.R. Belic, M.V. Jaric an F. Kaiser, Optical photorefractive flip-flop oscilator, Opt. Commun. 138, 349 (1997) [10] Z. Ljuboje, M. Petrović, Optički fotorefraktivni flip-flop oscilator INFOTEH-JHORIN, Vol. 3, March 003. [11] Z. Ljuboje, Numerički haos u fotorefraktivnoj optici. neobjavljeno.

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum October 6, 4 ARDB Note Analytic Scaling Formulas for Crosse Laser Acceleration in Vacuum Robert J. Noble Stanfor Linear Accelerator Center, Stanfor University 575 San Hill Roa, Menlo Park, California 945

More information

u t v t v t c a u t b a v t u t v t b a

u t v t v t c a u t b a v t u t v t b a Nonlinear Dynamical Systems In orer to iscuss nonlinear ynamical systems, we must first consier linear ynamical systems. Linear ynamical systems are just systems of linear equations like we have been stuying

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

Modeling time-varying storage components in PSpice

Modeling time-varying storage components in PSpice Moeling time-varying storage components in PSpice Dalibor Biolek, Zenek Kolka, Viera Biolkova Dept. of EE, FMT, University of Defence Brno, Czech Republic Dept. of Microelectronics/Raioelectronics, FEEC,

More information

PHY 114 Summer 2009 Final Exam Solutions

PHY 114 Summer 2009 Final Exam Solutions PHY 4 Summer 009 Final Exam Solutions Conceptual Question : A spherical rubber balloon has a charge uniformly istribute over its surface As the balloon is inflate, how oes the electric fiel E vary (a)

More information

In the usual geometric derivation of Bragg s Law one assumes that crystalline

In the usual geometric derivation of Bragg s Law one assumes that crystalline Diffraction Principles In the usual geometric erivation of ragg s Law one assumes that crystalline arrays of atoms iffract X-rays just as the regularly etche lines of a grating iffract light. While this

More information

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0 Extinction, σ/area 1.5 1.0 t = t 0 t = 0.7 t 0 t = t 0 t = 1.3 t 0 t = 1.5 t 0 0.7 0.9 1.1 Energy (ev) = 20 nm t 1.3 Supplementary Figure 1: Plasmon epenence on isk thickness. We show classical calculations

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

Based on transitions between bands electrons delocalized rather than bound to particular atom

Based on transitions between bands electrons delocalized rather than bound to particular atom EE31 Lasers I 1/01/04 #6 slie 1 Review: Semiconuctor Lasers Base on transitions between bans electrons elocalize rather than boun to particular atom transitions between bans Direct electrical pumping high

More information

Dancing Light: Counterpropagating Beams in Photorefractive Crystals

Dancing Light: Counterpropagating Beams in Photorefractive Crystals Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Dancing Light: Counterpropagating

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Negative-Index Refraction in a Lamellar Composite with Alternating. Single Negative Layers

Negative-Index Refraction in a Lamellar Composite with Alternating. Single Negative Layers Negative-Inex Refraction in a Lamellar Composite with Alternating Single Negative Layers Z. G. Dong, S. N. Zhu, an H. Liu National Laboratory of Soli State Microstructures, Nanjing University, Nanjing

More information

Lecture 22. Lecturer: Michel X. Goemans Scribe: Alantha Newman (2004), Ankur Moitra (2009)

Lecture 22. Lecturer: Michel X. Goemans Scribe: Alantha Newman (2004), Ankur Moitra (2009) 8.438 Avance Combinatorial Optimization Lecture Lecturer: Michel X. Goemans Scribe: Alantha Newman (004), Ankur Moitra (009) MultiFlows an Disjoint Paths Here we will survey a number of variants of isjoint

More information

Optical wire-grid polarizers at oblique angles of incidence

Optical wire-grid polarizers at oblique angles of incidence JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 8 15 APRIL 003 Optical wire-gri polarizers at oblique angles of incience X. J. Yu an H. S. Kwok a) Center for Display Research, Department of Electrical an

More information

Thermal Modulation of Rayleigh-Benard Convection

Thermal Modulation of Rayleigh-Benard Convection Thermal Moulation of Rayleigh-Benar Convection B. S. Bhaauria Department of Mathematics an Statistics, Jai Narain Vyas University, Johpur, Inia-3400 Reprint requests to Dr. B. S.; E-mail: bsbhaauria@reiffmail.com

More information

Lie symmetry and Mei conservation law of continuum system

Lie symmetry and Mei conservation law of continuum system Chin. Phys. B Vol. 20, No. 2 20 020 Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Wave Propagation in Grounded Dielectric Slabs with Double Negative Metamaterials

Wave Propagation in Grounded Dielectric Slabs with Double Negative Metamaterials 6 Progress In Electromagnetics Research Symposium 6, Cambrige, US, March 6-9 Wave Propagation in Groune Dielectric Slabs with Double Negative Metamaterials W. Shu an J. M. Song Iowa State University, US

More information

ELECTRON DIFFRACTION

ELECTRON DIFFRACTION ELECTRON DIFFRACTION Electrons : wave or quanta? Measurement of wavelength an momentum of electrons. Introuction Electrons isplay both wave an particle properties. What is the relationship between the

More information

9/13/2013. Diffraction. Diffraction. Diffraction. Diffraction. Diffraction. Diffraction of Visible Light

9/13/2013. Diffraction. Diffraction. Diffraction. Diffraction. Diffraction. Diffraction of Visible Light scattering of raiation by an object observe an escribe over 300 years ago illustrate with a iffraction grating Joseph von Fraunhofer German 80 slits new wavefront constructive interference exact pattern

More information

Sensors & Transducers 2015 by IFSA Publishing, S. L.

Sensors & Transducers 2015 by IFSA Publishing, S. L. Sensors & Transucers, Vol. 184, Issue 1, January 15, pp. 53-59 Sensors & Transucers 15 by IFSA Publishing, S. L. http://www.sensorsportal.com Non-invasive an Locally Resolve Measurement of Soun Velocity

More information

Get Solution of These Packages & Learn by Video Tutorials on WAVE OPTICS

Get Solution of These Packages & Learn by Video Tutorials on   WAVE OPTICS FREE Downloa Stuy Package from website: wwwtekoclassescom & wwwmathsbysuhagcom Get Solution of These Packages & Learn by Vieo Tutorials on wwwmathsbysuhagcom PRINCIPLE OF SUPERPOSITION When two or more

More information

The effect of a photovoltaic field on the Bragg condition for volume holograms in LiNbO 3

The effect of a photovoltaic field on the Bragg condition for volume holograms in LiNbO 3 Appl. Phys. B 72, 701 705 (2001) / Digital Object Identifier (DOI) 10.1007/s003400100577 Applied Physics B Lasers and Optics The effect of a photovoltaic field on the Bragg condition for volume holograms

More information

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010 NTNU Page of 6 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk This solution consists of 6 pages. Solution to the exam in TFY423 STATISTICAL PHYSICS Wenesay ecember, 2 Problem. Particles

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices Journal of Physics: Conference Series PAPER OPEN ACCESS Two Dimensional Numerical Simulator for Moeling NDC Region in SNDC Devices To cite this article: Dheeraj Kumar Sinha et al 2016 J. Phys.: Conf. Ser.

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

The Energy Flow Approach for Oscillation Source Location and Damping Evaluation

The Energy Flow Approach for Oscillation Source Location and Damping Evaluation 1 The Energy Flow Approach for Oscillation Source Location an Damping Evaluation Lei CHEN PhD, Associate Professor Department of Electrical Engineering Tsinghua University chenlei08@tsinghua.eu.cn Backgroun

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

Chapter 10 Spatial Coherence Part 2

Chapter 10 Spatial Coherence Part 2 EE90F Chapte0 Spatial Coherence Part Geometry of the fringe pattern: η ( ξ, η ) ξ y Qxy (, ) x ρ ρ r ( ξ, η ) P z pinhole plane viewing plane Define: z + ( x) +( η y) ξ r z + ( x) +( η y) ξ (0.) (0.) ρ

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

Transactions on Engineering Sciences vol 5, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 5, 1994 WIT Press,   ISSN Generalize heat conuction transfer functions in two imensional linear systems of assigne geometry F. Marcotullio & A. Ponticiello Dipartimento i Energetica- Universit i L 'Aquila Monteluco i Roio - 67100

More information

Chapter 9 Method of Weighted Residuals

Chapter 9 Method of Weighted Residuals Chapter 9 Metho of Weighte Resiuals 9- Introuction Metho of Weighte Resiuals (MWR) is an approimate technique for solving bounary value problems. It utilizes a trial functions satisfying the prescribe

More information

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS]

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS] SOLUTION & ANSWER FOR KCET-009 VERSION A [PHYSICS]. The number of significant figures in the numbers.8000 ---- 5 an 7.8000 5 significant igits 8000.50 7 significant igits. β-ecay means emission of electron

More information

This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS This PDF is the Sample PDF taken from our Comprehensive Stuy Material for NEET & AIIMS To purchase the books, go through the link belowhttp://www.etoosinia.com/smartmall/booklist.o ETOOS Comprehensive

More information

Solution Set #7

Solution Set #7 05-455-0073 Solution Set #7. Consier monochromatic light of wavelength λ 0 incient on a single slit of with along the -ais an infinite length along y. The light is oserve in the Fraunhofer iffraction region

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES

OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 3, Number /, pp. 46 54 OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES Li CHEN, Rujiang LI, Na

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

B.Tech. First Semester Examination Physics-1 (PHY-101F)

B.Tech. First Semester Examination Physics-1 (PHY-101F) B.Tech. First Semester Examination Physics-1 (PHY-101F) Note : Attempt FIVE questions in all taking least two questions from each Part. All questions carry equal marks Part-A Q. 1. (a) What are Newton's

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Self-focusing and soliton formation in media with anisotropic nonlocal material response

Self-focusing and soliton formation in media with anisotropic nonlocal material response EUROPHYSICS LETTERS 20 November 1996 Europhys. Lett., 36 (6), pp. 419-424 (1996) Self-focusing an soliton formation in meia with anisotropic nonlocal material response A. A. Zoulya 1, D. Z. Anerson 1,

More information

Collective optical effect in complement left-handed material

Collective optical effect in complement left-handed material Collective optical effect in complement left-hane material S.-C. Wu, C.-F. Chen, W. C. Chao, W.-J. Huang an H. L. Chen, National Nano Device Laboratories, 1001-1 Ta-Hsueh Roa, Hsinchu, Taiwan R.O.C A.-C.

More information

Characterization of lead zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy

Characterization of lead zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 1 15 JUNE 1999 Characterization of lea zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy Haifeng Wang, Wenhua Jiang, a) an Wenwu

More information

Evaporating droplets tracking by holographic high speed video in turbulent flow

Evaporating droplets tracking by holographic high speed video in turbulent flow Evaporating roplets tracking by holographic high spee vieo in turbulent flow Loïc Méès 1*, Thibaut Tronchin 1, Nathalie Grosjean 1, Jean-Louis Marié 1 an Corinne Fournier 1: Laboratoire e Mécanique es

More information

Generalization of the persistent random walk to dimensions greater than 1

Generalization of the persistent random walk to dimensions greater than 1 PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Generalization of the persistent ranom walk to imensions greater than 1 Marián Boguñá, Josep M. Porrà, an Jaume Masoliver Departament e Física Fonamental,

More information

Optical beam steering based on electromagnetically induced transparency

Optical beam steering based on electromagnetically induced transparency Optical beam steering base on electromagnetically inuce transparency Qingqing Sun, Yuri V. Rostovtsev, an M. Suhail Zubairy Department of Physics an Institute of Quantum Stuies, Texas A&M University, College

More information

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences.

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences. S 63 Lecture 8 2/2/26 Lecturer Lillian Lee Scribes Peter Babinski, Davi Lin Basic Language Moeling Approach I. Special ase of LM-base Approach a. Recap of Formulas an Terms b. Fixing θ? c. About that Multinomial

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

IERCU. Institute of Economic Research, Chuo University 50th Anniversary Special Issues. Discussion Paper No.210

IERCU. Institute of Economic Research, Chuo University 50th Anniversary Special Issues. Discussion Paper No.210 IERCU Institute of Economic Research, Chuo University 50th Anniversary Special Issues Discussion Paper No.210 Discrete an Continuous Dynamics in Nonlinear Monopolies Akio Matsumoto Chuo University Ferenc

More information

Synchronization of Diffusively Coupled Oscillators: Theory and Experiment

Synchronization of Diffusively Coupled Oscillators: Theory and Experiment American Journal of Electrical an Electronic Engineering 2015 Vol 3 No 2 37-3 Available online at http://pubssciepubcom/ajeee/3/2/3 Science an Eucation Publishing DOI:12691/ajeee-3-2-3 Synchronization

More information

CHAPTER 39 PHOTOREFRACTIVE MATERIALS AND DEVICES

CHAPTER 39 PHOTOREFRACTIVE MATERIALS AND DEVICES CHAPTER 39 PHOTOREFRACTIVE MATERIALS AND DEVICES Mark Cronin-Golomb Electro - Optics Technology Center Tufts, Uni ersity Medford, Massachusetts Marvin Klein Hughes Research Laboratories Malibu, California

More information

Applications of First Order Equations

Applications of First Order Equations Applications of First Orer Equations Viscous Friction Consier a small mass that has been roppe into a thin vertical tube of viscous flui lie oil. The mass falls, ue to the force of gravity, but falls more

More information

Alpha Particle scattering

Alpha Particle scattering Introuction Alpha Particle scattering Revise Jan. 11, 014 In this lab you will stuy the interaction of α-particles ( 4 He) with matter, in particular energy loss an elastic scattering from a gol target

More information

05 The Continuum Limit and the Wave Equation

05 The Continuum Limit and the Wave Equation Utah State University DigitalCommons@USU Founations of Wave Phenomena Physics, Department of 1-1-2004 05 The Continuum Limit an the Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION

EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION THERMAL SCIENCE, Year 017, Vol. 1, No. 4, pp. 1833-1838 1833 EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION by Feng GAO a,b, Xiao-Jun YANG a,b,* c, an Yu-Feng ZHANG a School

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

Statics, Quasistatics, and Transmission Lines

Statics, Quasistatics, and Transmission Lines CHAPTER 6 Statics, Quasistatics, an Transmission Lines In the preceing chapters, we learne that the phenomenon of wave propagation is base upon the interaction between the time-varying or ynamic electric

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

of a molecule possessing a vibrational energy hν is

of a molecule possessing a vibrational energy hν is Question 1 (a) A pulse N:YAG laser is to be employe in a Rayleigh scattering experiment to etermine gas temperature. The laser can be use at 532 nm (secon harmonic), 355 nm (thir harmonic), or 266 nm (fourth

More information

Research Article Numerical Analysis of Inhomogeneous Dielectric Waveguide Using Periodic Fourier Transform

Research Article Numerical Analysis of Inhomogeneous Dielectric Waveguide Using Periodic Fourier Transform Microwave Science an Technology Volume 2007, Article ID 85181, 5 pages oi:10.1155/2007/85181 Research Article Numerical Analysis of Inhomogeneous Dielectric Waveguie Using Perioic Fourier Transform M.

More information

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric fiel During this isplacement: i f E A the work one by the fiel is positive an the potential

More information

Lecture contents. Metal-semiconductor contact

Lecture contents. Metal-semiconductor contact 1 Lecture contents Metal-semiconuctor contact Electrostatics: Full epletion approimation Electrostatics: Eact electrostatic solution Current Methos for barrier measurement Junctions: general approaches,

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 483 Semiconuctor Device an Material Characterization Dr. Alan Doolittle School of Electrical an Computer Engineering Georgia Institute of Technology As with all of these lecture slies, I am inebte

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Situation awareness of power system based on static voltage security region

Situation awareness of power system based on static voltage security region The 6th International Conference on Renewable Power Generation (RPG) 19 20 October 2017 Situation awareness of power system base on static voltage security region Fei Xiao, Zi-Qing Jiang, Qian Ai, Ran

More information

Physics 115C Homework 4

Physics 115C Homework 4 Physics 115C Homework 4 Problem 1 a In the Heisenberg picture, the ynamical equation is the Heisenberg equation of motion: for any operator Q H, we have Q H = 1 t i [Q H,H]+ Q H t where the partial erivative

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I Name :. Roll No. :..... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/2011-12 2011 PHYSICS-I Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

State Space Analysis of Power System Stability Enhancement with Used the STATCOM

State Space Analysis of Power System Stability Enhancement with Used the STATCOM tate pace Analysis of Power ystem tability Enhancement with Use the ACOM M. Mahavian () - G. hahgholian () () Department of Electrical Engineering, Islamic Aza University, Naein Branch, Esfahan, Iran ()

More information

STUDENT S COMPANIONS IN BASIC MATH: THE FOURTH. Trigonometric Functions

STUDENT S COMPANIONS IN BASIC MATH: THE FOURTH. Trigonometric Functions STUDENT S COMPANIONS IN BASIC MATH: THE FOURTH Trigonometric Functions Let me quote a few sentences at the beginning of the preface to a book by Davi Kammler entitle A First Course in Fourier Analysis

More information

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation A Novel ecouple Iterative Metho for eep-submicron MOSFET RF Circuit Simulation CHUAN-SHENG WANG an YIMING LI epartment of Mathematics, National Tsing Hua University, National Nano evice Laboratories, an

More information

Copyright 2012 Nelson Education Ltd. Unit 4: The Wave Nature of Light U4-10

Copyright 2012 Nelson Education Ltd. Unit 4: The Wave Nature of Light U4-10 Unit 4 Review, pages 560 567 Knowlege. (b). (a) 3. () 4. (c) 5. () 6. (b) 7. (c) 8. (a) 9. (a) 0. (a). (a). (c) 3. (b) 4. () 5. (a) 6. (b) 7. (c) 8. (a) 9. False. Raio waves go through fewer cycles per

More information

6. Friction and viscosity in gasses

6. Friction and viscosity in gasses IR2 6. Friction an viscosity in gasses 6.1 Introuction Similar to fluis, also for laminar flowing gases Newtons s friction law hols true (see experiment IR1). Using Newton s law the viscosity of air uner

More information

Microwave Reflection from the Region of Electron Cyclotron Resonance Heating in the L-2M Stellarator )

Microwave Reflection from the Region of Electron Cyclotron Resonance Heating in the L-2M Stellarator ) Microwave Reflection from the Region of Electron Cyclotron Resonance Heating in the L-2M Stellarator German M. BATANOV, Valentin D. BORZOSEKOV, Nikolay K. KHARCHEV, Leoni V. KOLIK, Eugeny M. KONCHEKOV,

More information

6 Wave equation in spherical polar coordinates

6 Wave equation in spherical polar coordinates 6 Wave equation in spherical polar coorinates We now look at solving problems involving the Laplacian in spherical polar coorinates. The angular epenence of the solutions will be escribe by spherical harmonics.

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Qubit channels that achieve capacity with two states

Qubit channels that achieve capacity with two states Qubit channels that achieve capacity with two states Dominic W. Berry Department of Physics, The University of Queenslan, Brisbane, Queenslan 4072, Australia Receive 22 December 2004; publishe 22 March

More information

THE ACCURATE ELEMENT METHOD: A NEW PARADIGM FOR NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

THE ACCURATE ELEMENT METHOD: A NEW PARADIGM FOR NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS THE PUBISHING HOUSE PROCEEDINGS O THE ROMANIAN ACADEMY, Series A, O THE ROMANIAN ACADEMY Volume, Number /, pp. 6 THE ACCURATE EEMENT METHOD: A NEW PARADIGM OR NUMERICA SOUTION O ORDINARY DIERENTIA EQUATIONS

More information

Switching Time Optimization in Discretized Hybrid Dynamical Systems

Switching Time Optimization in Discretized Hybrid Dynamical Systems Switching Time Optimization in Discretize Hybri Dynamical Systems Kathrin Flaßkamp, To Murphey, an Sina Ober-Blöbaum Abstract Switching time optimization (STO) arises in systems that have a finite set

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

T he phased array antenna (PAA) plays an important role in radar, broadcast, communication, etc.1,2. In

T he phased array antenna (PAA) plays an important role in radar, broadcast, communication, etc.1,2. In OPEN SUBJECT AREAS: APPLIED PHYSICS MATERIALS FOR DEVICES Receive 7 August 014 Accepte 9 October 014 Publishe 30 October 014 Corresponence an requests for materials shoul be aresse to S.H. (sailing@kth.se)

More information

Quantum optics of a Bose-Einstein condensate coupled to a quantized light field

Quantum optics of a Bose-Einstein condensate coupled to a quantized light field PHYSICAL REVIEW A VOLUME 60, NUMBER 2 AUGUST 1999 Quantum optics of a Bose-Einstein conensate couple to a quantize light fiel M. G. Moore, O. Zobay, an P. Meystre Optical Sciences Center an Department

More information

Degenerate Four-Wave Mixing Experiments In Rose Bengal Dye Doped Gelatin Film.

Degenerate Four-Wave Mixing Experiments In Rose Bengal Dye Doped Gelatin Film. The 1 st Regional Conference of Eng. Sci. NUCEJ Spatial ISSUE vol.11,no.1, 2008 pp 107-111 Degenerate Four-Wave Mixing Experiments In Rose Bengal Dye Doped Gelatin Film. Abstract Ahmad Y.Nooraldeen Centre

More information

PES 1120 Spring 2014, Spendier Lecture 36/Page 1

PES 1120 Spring 2014, Spendier Lecture 36/Page 1 PES 0 Spring 04, Spenier ecture 36/Page Toay: chapter 3 - R circuits: Dampe Oscillation - Driven series R circuit - HW 9 ue Wenesay - FQs Wenesay ast time you stuie the circuit (no resistance) The total

More information

Introduction to. Crystallography

Introduction to. Crystallography M. MORALES Introuction to Crystallography magali.morales@ensicaen.fr Classification of the matter in 3 states : Crystallise soli liqui or amorphous gaz soli Crystallise soli : unique arrangement of atoms

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

arxiv: v1 [cond-mat.stat-mech] 9 Jan 2012

arxiv: v1 [cond-mat.stat-mech] 9 Jan 2012 arxiv:1201.1836v1 [con-mat.stat-mech] 9 Jan 2012 Externally riven one-imensional Ising moel Amir Aghamohammai a 1, Cina Aghamohammai b 2, & Mohamma Khorrami a 3 a Department of Physics, Alzahra University,

More information

An inductance lookup table application for analysis of reluctance stepper motor model

An inductance lookup table application for analysis of reluctance stepper motor model ARCHIVES OF ELECTRICAL ENGINEERING VOL. 60(), pp. 5- (0) DOI 0.478/ v07-0-000-y An inuctance lookup table application for analysis of reluctance stepper motor moel JAKUB BERNAT, JAKUB KOŁOTA, SŁAWOMIR

More information

Physics 504, Lecture 10 Feb. 24, Geometrical Fiber Optics. Last Latexed: February 21, 2011 at 15:11 1

Physics 504, Lecture 10 Feb. 24, Geometrical Fiber Optics. Last Latexed: February 21, 2011 at 15:11 1 Last Latexe: Feruary 1 11 at 15:11 1 Physics 54 Lecture 1 Fe. 4 11 1 Geometrical Fier Optics The wave guies consiere so far containe their fiels within conucting walls ut we know from stuying total internal

More information

Lect. 4 Waveguides (1)

Lect. 4 Waveguides (1) Lect. 4 Waveguies (1) - Waveguie: Confines an guies EM waves Metallic, Dielectric, Plasmonic - We are intereste in ielectric waveguie Total internal reflection b refractive inex ifferences n A B C D n

More information

Announcements: Review quiz and Exam 2

Announcements: Review quiz and Exam 2 Announcements: Review quiz an Exam Review Quiz on Friay, Oct. 31st, 014, in class Turn in the Quiz at the en o class or extra creit (up to 50 points). Open book quiz. Bring ormula sheet, scientiic calculator,

More information

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes EE 330 Lecture 12 evices in Semiconuctor Processes ioes Review from Last Lecture http://www.ayah.com/perioic/mages/perioic%20table.png Review from Last Lecture Review from Last Lecture Silicon opants in

More information

Electromagnetic surface and line sources under coordinate transformations

Electromagnetic surface and line sources under coordinate transformations PHYSICAL REVIEW A 8, 3382 29 Electromagnetic surface an line sources uner coorinate transformations Steven A. Cummer,* Nathan Kuntz, an Bogan-Ioan Popa Department of Electrical an Computer Engineering

More information