Lie symmetry and Mei conservation law of continuum system

Size: px
Start display at page:

Download "Lie symmetry and Mei conservation law of continuum system"

Transcription

1 Chin. Phys. B Vol. 20, No Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive 7 July 200; revise manuscript receive 2 September 200 Lie symmetry an Mei conservation law of continuum Lagrange system are stuie in this paper. The equation of motion of continuum system is establishe by using variational principle of continuous coorinates. The invariance of the equation of motion uner an infinitesimal transformation group is etermine to be Lie-symmetric. The conition of obtaining Mei conservation theorem from Lie symmetry is also presente. An example is iscusse for applications of the results. Keywors: continuum mechanics, Lie symmetry, Mei symmetry, conservation law PACS:.30. j, 83.0.Ff DOI: 0.088/ /20/2/020. Introuction The symmetry plays an important role not only in unerstaning the behaviours of the mechanical systems, whether iscrete or continuous meium, but also in ientifying conserve quantities. Many important conclusions of theoretical mechanics can be state in the forms of conservation laws which inicate uner what conitions the mechanical quantities are constant with respect to the time. 4 There exist three symmetries we always use for searching invariant quantities. The Lie symmetry has been etermine to be an invariance of the ifferential equation of motion uner a continuous group now known as Lie group use to unify various methos of solving orinary ifferential equations as its original purpose. 5 0 The Noether symmetry is an invariance of the action integral uner Lie transformation group. The Noether theory has become a useful tool in many subfiels of mathematics, physics an mechanics, since Noether showe that there was a close relationship between the mathematical symmetries of a physical system an its conserve quantities. 5 These two types of symmetries an their applications have obtaine many results in iscrete meium constraine mechanical systems. 2 4 Recently, Mei an his collaborators have introuce a new type of symmetry theory referre to as Mei symmetry, relate to the form invariances of the ifferential equations of motion uner ynamical transformations in which the ynamical quantities such as Lagrangian, non-potential generalize forces, generalize constraine forces, etc. are replace by the switche ones which are transforme by the Lie transformation groups. Investigations on the Mei symmetry an its conserve quantities in iscrete meium constraine systems have evolve to being a vast fiel an obtaine many important evelopments. 2 4,6 20 The purpose of this paper is to exten the Lie symmetry an the Mei symmetry, an their relationships to the continuous meium systems. We construct the Euler Lagrange equations of motion for continuum system an etermine Lie symmetry an Mei symmetry. We also erive the criteria for obtaining Mei conservation laws from Lie symmetry. 2. Equation of motion of continuum system Let u α x i, α =, 2,..., p; i =, 2, 3, 4 be fiel quantities in a continuous meium system where x = t enotes time parameter an x 2 = x, x 3 = y, x 4 = z refer to position parameters. We consier the continuum system enote by its Lagrangian ensity L x i, u α, u α,i where u α,i = /, an the Lagrangian of the system to be L = L x j j = 2, 3, 4. Project supporte by the National Natural Science Founation of China Grant No an the Natural Science Founation of Zhejiang Province of China Grant No. Y Corresponing author. hzshishenyang@sina.com c 200 Chinese Physical Society an IOP Publishing Lt

2 Chin. Phys. B Vol. 20, No The action integral is efine as I = L x k k =, 2, 3, 4. 2 The calculation of the variation of action functional 2 yiels δi = δ = L x k L δu α + L δu α,i Using two relation equations: an x k. 3 δu α,i = δ δu α 4 L δu α,i L δu α equation 3 becomes δ L x k = + L δu α, 5 L L δu α L δu α x k. 6 The quantities x i, i =, 2, 3, 4 are inepenent of each other, therefore the partial ifferential are equivalent to the total ifferential. Aopting the fixe bounary conition in u space δu α = δu α 2 = 0, the last term on the right-han sie of Eq. 6 vanishes. In consequence of the variational principle of Hamilton of continuous coorinates, we obtain the Euler Lagrange equation for continuum system to be L L = 0, 7 where there are as many equations as the ifferent values of α. 3. Lie symmetry of the continuum Lagrange system Let the infinitesimal transformations of continuous coorinates an fiel quantities be x i = x i + εξ i x i, u α, u α = u α + εη α x i, u α, 8 where ε is a group parameter, an ξ i an η α are generators of the infinitesimal transformations. The vector fiel of generators is X 0 = ξ i + η α, 9 which can be extene to the l-th-orer form: X l = ξ i + η α + η α,i u + η 2 α,i α u i 2 α,i i η l α,i i 2...i l, 0 i 2...i l where u α,ii 2...i m m u α / 2... m, i m =, 2, 3, 4, for m =, 2,..., l, enote all the l-th orer partial erivatives of u α with respect to x i. In Eq. 0, there are the following recursions: η α,i = D i η α D i ξ n u α,n, 2 η 2 α,i i 2 = D i2 η α,i D i2 ξ n u α,in, 3 η l α,i i 2...i l where... = D il η l α,i i 2...i l D il ξ n u α,ii 2...i l n, n =, 2, 3, 4, D im = m + u α,im + u α,ni m u m α,n u α,nn 2...n l i m,nn 2...n l 5 enotes the total erivative operator. We now rewrite Eq. 7 as F α x i, u α, u α,i, u α,ii 2,..., u α,ii 2...i l = 0. 6 Applying prolongation 0 to Eq. 7, we obtain X l α F α x i, u α, u α,i, u α,ii 2,..., u α,ii 2...i l = 0. 7 Criterion If the infinitesimal generators ξ i an η α satisfy Eq. 7, then invariance of each equation of motion in expression 7 is the Lie symmetry of the continuum Lagrange system. Equations in expression 7 are thus the etermining equations of Lie symmetry

3 4. Mei conservation theorem Chin. Phys. B Vol. 20, No We perform the ynamical transformation of Lagrangian ensity L an give L = L x i, u α, u α,i = L x i, u α, u α,i + εx L + oε 2 +, 8 where oε 2 + are the secon an the higher orer infinitesimals of L. Substituting the transforme Lagrangian ensity L into Eq. 7 yiels L L = 0. 9 Omit the secon an the higher orer infinitesimals oε 2 +, use Eq. 7 an keep the form of Eq. 7 invariant, then we will have X L X L = X L ξ i + η α u α,n ξ n X L = X L ξ i + ξ i Criterion 2 If the infinitesimal generators ξ i an η α satisfy Eq. 20, then the form invariance of each equation of motion in expression 7 is the Mei symmetry of a continuum system. Equations in expression 20 are thus the etermining equations of Mei symmetry. If the infinitesimal group generators ξ i an η α satisfy Eq. 20, in aition, there exists gauge function G M x i, u α such that the ientity X L ξ i + X X L + G M = 0 2 hols, then the system has the Mei conserve law X L ξ i + η α u α,n ξ n X L + G M = const. 22 Proof Using the total erivative operator 5, equation 22 becomes + G M X L + u α,i X L + u α,ni X L + η α u α,n ξ n X L + X L,n η α u α,n ξ n ξ n u α,ni η α u α,n ξ n X L + η α u α,n ξ n X L + G M = There are two relevant equations since n = i =, 2, 3, 4, i.e., ξ i u α,i X L = ξ n u α,n X L, 24 ξ i u α,ni X L,n = ξ n u α,ni X L, 25 therefore equation 23 reuces to X L ξ i + η α u α,n ξ n X L + G M = X L ξ i X L X L X L + ξ i + η α + η α u α,n ξ n X L + η α u α,n ξ n X L + G M = X L ξ i + X X L + G M. 26 Combining Eq. 26 with Eq. 2, we have the result Eq. 22. Given Criterion, there is the conition for obtaining Mei conservative theorem from Lie symmtry of the continuum system: Criterion 3 If the Lie symmetry generators ξ i an η α satisfy Eq. 2, then the Lie symmetry of the system leas to Mei conserve law Eq

4 5. Example Chin. Phys. B Vol. 20, No We take the transmission line equation as an example to apply this proceure. The Lagrangian ensity of the system is L = 2 Lu2 t 2 C u2 x, 27 where L represents the inuctance an C enotes the capacitance. The equation of motion of the system is Lu tt C u xx = F = 0, 28 Eqs. 0 5 lea to etermining equation of Lie symmetry Lη tt C η xx = Now we will solve Eq. 29 to obtain the Lie symmetry generators. Suppose that the generators are in the forms of ξ = ξ x, t, ξ 2 = ξ 2 x, t, 30 ηx, t, u = fx, tu + gx, t. 3 where we have use Euler Lagrange equation 7. Substituting Eq. 28 into Eq. 7 an using Substituting Eqs. 30 an 3 into Eq. 29 leas to the etermining equation = C 2 g L t 2 u x + t f t 2 u 2 ξ 2 g x f x 2 u 2 ξ 2 x 2 u t + 2 f t 2 ξ 2 t 2 2 f x 2 ξ x 2 u t 2 ξ t u xt + u x 2 ξ 2 x u xt + f 2 ξ 2 u tt t f 2 ξ x u xx, 32 an setting the coefficient of each term of Eq. 32 to be zero yiels ηx, t, u = CC x 2 + L C t 2 + C 2 xt + C 3 u + CC 4 x 2 + L C 4t 2 + C 5 xt + C 6 x + C 7 t + C 8, 33 ξ x, t = C 9 x + L C 0t + C, 34 ξ 2 x, t = CC 0 x + C 9 t + C 2, 35 where C C 2 are constants. As for the Mei conservative law, after substituting Eqs into Mei symmetry etermining equation 2 X L ξ i + X X L + G M = 0, 36 we obtain that ηx, t, u = C 8, 37 ξ x, t = 2 x + C, 38 ξ 2 x, t = 2 t + C 2, 39 then G M x, t, u = Use Eqs an Criteria 2 an 3, we can obtain the Mei conservative law I M = 2 Lu2 t 2 C u2 x 2 x 2 t + C + C 2 + C 6 x + C 7 t + C 8 2 x + C u x 2 t + C 2 u t Lu t C u x = const Conclusions We obtaine four main results in this paper: i the etermining equation 20 of Mei symmetry of the continuum system; ii the conitions of Mei conservative theorems 2 an 22; iii Criterion 3 for obtaining Mei conservative law from Lie symmetry; iv the Lie symmetry generators an the Mei conserve quantity 4 of the transmission line equation. References Marsen J E an Ratiu T S 994 Introuction to Mechanics an Symmetry New York: Springer-Verlag 2 Mei F X 999 Applications of Lie Groups an Lie Algebras to Constraine Mechanical Systems Beijing: Science Press in Chinese 020-4

5 Chin. Phys. B Vol. 20, No Mei F X 2004 Symmetries an Conserve Quantities of Constraine Mechanical Systems Beijing: Beijing Institute of Technology Press in Chinese 4 Lou S K an Zhang Y F 2008 Avances in the Stuy of Dynamics of Constraine Systems Beijing: Science Press in Chinese 5 Armstrong M A 997 Group an Symmetry New York: Springer-Verlag 6 Olver P J 999 Applications of Lie Groups to Differential Equations New York: Springer-Verlag 7 Bluman G W an Anco S C 2004 Symmetry an Integration Methos for Differential Equations New York: Springer-Verlag 8 Haas F an Goeert J 2000 J. Phys. A: Math. Gen Chavarriga J, García I A an Giné J 200 Nonlinearity Aleynikov D V an Tolkachev E A 2003 J. Phys. A: Math. Gen Baker T W an Tavel M A 974 Am. T. Phys Rosen J 972 Ann. Phys Djukić Dj 974 Archives of Mech Sarlet W an Cantrijn F 98 SIAM Rev Bahar L Y an Kanty H G 987 Int. J. Nonlinear Mech Ge W K 2007 Acta Phys. Sin. 56 in Chinese 7 Liu H J, Fu J L an Tang Y F 2007 Chin. Phys Fang J H, Ding N an Wang P 2007 Acta Phys. Sin in Chinese 9 Zheng S W an Jia L Q 2007 Acta Phys. Sin in Chinese 20 Fang J H, Ding N an Wang P 2007 Chin. Phys

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential Avances in Applie Mathematics an Mechanics Av. Appl. Math. Mech. Vol. 1 No. 4 pp. 573-580 DOI: 10.4208/aamm.09-m0946 August 2009 A Note on Exact Solutions to Linear Differential Equations by the Matrix

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

A new four-dimensional chaotic system

A new four-dimensional chaotic system Chin. Phys. B Vol. 19 No. 12 2010) 120510 A new four-imensional chaotic system Chen Yong ) a)b) an Yang Yun-Qing ) a) a) Shanghai Key Laboratory of Trustworthy Computing East China Normal University Shanghai

More information

Energy behaviour of the Boris method for charged-particle dynamics

Energy behaviour of the Boris method for charged-particle dynamics Version of 25 April 218 Energy behaviour of the Boris metho for charge-particle ynamics Ernst Hairer 1, Christian Lubich 2 Abstract The Boris algorithm is a wiely use numerical integrator for the motion

More information

Introduction to variational calculus: Lecture notes 1

Introduction to variational calculus: Lecture notes 1 October 10, 2006 Introuction to variational calculus: Lecture notes 1 Ewin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE-106 91 Stockholm, Sween Abstract I give an informal summary of variational

More information

Conformal invariance and conserved quantity of Mei symmetry for Appell equations in a nonholonomic system of Chetaev s type

Conformal invariance and conserved quantity of Mei symmetry for Appell equations in a nonholonomic system of Chetaev s type Nonlinear Dyn (2014) 77:521 527 DOI 10.1007/s11071-014-1314-4 ORIGINAL PAPER Conformal invariance and conserved quantity of Mei symmetry for Appell equations in a nonholonomic system of Chetaev s type

More information

Switching Time Optimization in Discretized Hybrid Dynamical Systems

Switching Time Optimization in Discretized Hybrid Dynamical Systems Switching Time Optimization in Discretize Hybri Dynamical Systems Kathrin Flaßkamp, To Murphey, an Sina Ober-Blöbaum Abstract Switching time optimization (STO) arises in systems that have a finite set

More information

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate Freun Publishing House Lt., International Journal of Nonlinear Sciences & Numerical Simulation, (9), -, 9 Application of the homotopy perturbation metho to a magneto-elastico-viscous flui along a semi-infinite

More information

Lagrangian and Hamiltonian Dynamics

Lagrangian and Hamiltonian Dynamics Lagrangian an Hamiltonian Dynamics Volker Perlick (Lancaster University) Lecture 1 The Passage from Newtonian to Lagrangian Dynamics (Cockcroft Institute, 22 February 2010) Subjects covere Lecture 2: Discussion

More information

arxiv: v1 [physics.flu-dyn] 8 May 2014

arxiv: v1 [physics.flu-dyn] 8 May 2014 Energetics of a flui uner the Boussinesq approximation arxiv:1405.1921v1 [physics.flu-yn] 8 May 2014 Kiyoshi Maruyama Department of Earth an Ocean Sciences, National Defense Acaemy, Yokosuka, Kanagawa

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION

EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION THERMAL SCIENCE, Year 017, Vol. 1, No. 4, pp. 1833-1838 1833 EXACT TRAVELING WAVE SOLUTIONS FOR A NEW NON-LINEAR HEAT TRANSFER EQUATION by Feng GAO a,b, Xiao-Jun YANG a,b,* c, an Yu-Feng ZHANG a School

More information

Discrete Hamilton Jacobi Theory and Discrete Optimal Control

Discrete Hamilton Jacobi Theory and Discrete Optimal Control 49th IEEE Conference on Decision an Control December 15-17, 2010 Hilton Atlanta Hotel, Atlanta, GA, USA Discrete Hamilton Jacobi Theory an Discrete Optimal Control Tomoi Ohsawa, Anthony M. Bloch, an Melvin

More information

Exact Invariants and Adiabatic Invariants of Raitzin s Canonical Equations of Motion for Nonholonomic System of Non-Chetaev s Type

Exact Invariants and Adiabatic Invariants of Raitzin s Canonical Equations of Motion for Nonholonomic System of Non-Chetaev s Type Commun. Theor. Phys. Beiing, China 43 2005 pp. 987 992 c International Academic Publishers Vol. 43, No. 6, June 15, 2005 Exact Invariants and Adiabatic Invariants of Raitzin s Canonical Equations of Motion

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

Optimized Schwarz Methods with the Yin-Yang Grid for Shallow Water Equations

Optimized Schwarz Methods with the Yin-Yang Grid for Shallow Water Equations Optimize Schwarz Methos with the Yin-Yang Gri for Shallow Water Equations Abessama Qaouri Recherche en prévision numérique, Atmospheric Science an Technology Directorate, Environment Canaa, Dorval, Québec,

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

How the potentials in different gauges yield the same retarded electric and magnetic fields

How the potentials in different gauges yield the same retarded electric and magnetic fields How the potentials in ifferent gauges yiel the same retare electric an magnetic fiels José A. Heras a Departamento e Física, E. S. F. M., Instituto Politécnico Nacional, México D. F. México an Department

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

arxiv:hep-th/ v1 3 Feb 1993

arxiv:hep-th/ v1 3 Feb 1993 NBI-HE-9-89 PAR LPTHE 9-49 FTUAM 9-44 November 99 Matrix moel calculations beyon the spherical limit arxiv:hep-th/93004v 3 Feb 993 J. Ambjørn The Niels Bohr Institute Blegamsvej 7, DK-00 Copenhagen Ø,

More information

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods Hyperbolic Moment Equations Using Quarature-Base Projection Methos J. Koellermeier an M. Torrilhon Department of Mathematics, RWTH Aachen University, Aachen, Germany Abstract. Kinetic equations like the

More information

BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS. Mauro Boccadoro Magnus Egerstedt Paolo Valigi Yorai Wardi

BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS. Mauro Boccadoro Magnus Egerstedt Paolo Valigi Yorai Wardi BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS Mauro Boccaoro Magnus Egerstet Paolo Valigi Yorai Wari {boccaoro,valigi}@iei.unipg.it Dipartimento i Ingegneria Elettronica

More information

Approximate reduction of dynamic systems

Approximate reduction of dynamic systems Systems & Control Letters 57 2008 538 545 www.elsevier.com/locate/sysconle Approximate reuction of ynamic systems Paulo Tabuaa a,, Aaron D. Ames b, Agung Julius c, George J. Pappas c a Department of Electrical

More information

Multi-component bi-hamiltonian Dirac integrable equations

Multi-component bi-hamiltonian Dirac integrable equations Chaos, Solitons an Fractals 9 (009) 8 8 www.elsevier.com/locate/chaos Multi-component bi-hamiltonian Dirac integrable equations Wen-Xiu Ma * Department of Mathematics an Statistics, University of South

More information

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy, NOTES ON EULER-BOOLE SUMMATION JONATHAN M BORWEIN, NEIL J CALKIN, AND DANTE MANNA Abstract We stuy a connection between Euler-MacLaurin Summation an Boole Summation suggeste in an AMM note from 196, which

More information

The effect of nonvertical shear on turbulence in a stably stratified medium

The effect of nonvertical shear on turbulence in a stably stratified medium The effect of nonvertical shear on turbulence in a stably stratifie meium Frank G. Jacobitz an Sutanu Sarkar Citation: Physics of Fluis (1994-present) 10, 1158 (1998); oi: 10.1063/1.869640 View online:

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

ELEC3114 Control Systems 1

ELEC3114 Control Systems 1 ELEC34 Control Systems Linear Systems - Moelling - Some Issues Session 2, 2007 Introuction Linear systems may be represente in a number of ifferent ways. Figure shows the relationship between various representations.

More information

A Modification of the Jarque-Bera Test. for Normality

A Modification of the Jarque-Bera Test. for Normality Int. J. Contemp. Math. Sciences, Vol. 8, 01, no. 17, 84-85 HIKARI Lt, www.m-hikari.com http://x.oi.org/10.1988/ijcms.01.9106 A Moification of the Jarque-Bera Test for Normality Moawa El-Fallah Ab El-Salam

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS MARK SCHACHNER Abstract. When consiere as an algebraic space, the set of arithmetic functions equippe with the operations of pointwise aition an

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS VI International Conference on Computational Methos for Couple Problems in Science an Engineering COUPLED PROBLEMS 15 B. Schrefler, E. Oñate an M. Paparakakis(Es) COUPLING REQUIREMENTS FOR WELL POSED AND

More information

Calculus of variations - Lecture 11

Calculus of variations - Lecture 11 Calculus of variations - Lecture 11 1 Introuction It is easiest to formulate the problem with a specific example. The classical problem of the brachistochrone (1696 Johann Bernoulli) is the search to fin

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

Relation between the propagator matrix of geodesic deviation and the second-order derivatives of the characteristic function

Relation between the propagator matrix of geodesic deviation and the second-order derivatives of the characteristic function Journal of Electromagnetic Waves an Applications 203 Vol. 27 No. 3 589 60 http://x.oi.org/0.080/0920507.203.808595 Relation between the propagator matrix of geoesic eviation an the secon-orer erivatives

More information

Variational principle for limit cycles of the Rayleigh van der Pol equation

Variational principle for limit cycles of the Rayleigh van der Pol equation PHYICAL REVIEW E VOLUME 59, NUMBER 5 MAY 999 Variational principle for limit cycles of the Rayleigh van er Pol equation R. D. Benguria an M. C. Depassier Faculta e Física, Pontificia Universia Católica

More information

Least-Squares Regression on Sparse Spaces

Least-Squares Regression on Sparse Spaces Least-Squares Regression on Sparse Spaces Yuri Grinberg, Mahi Milani Far, Joelle Pineau School of Computer Science McGill University Montreal, Canaa {ygrinb,mmilan1,jpineau}@cs.mcgill.ca 1 Introuction

More information

Approximate Reduction of Dynamical Systems

Approximate Reduction of Dynamical Systems Proceeings of the 4th IEEE Conference on Decision & Control Manchester Gran Hyatt Hotel San Diego, CA, USA, December 3-, 6 FrIP.7 Approximate Reuction of Dynamical Systems Paulo Tabuaa, Aaron D. Ames,

More information

No. 5 Discrete variational principle the first integrals of the In view of the face that only the momentum integrals can be obtained by the abo

No. 5 Discrete variational principle the first integrals of the In view of the face that only the momentum integrals can be obtained by the abo Vol 14 No 5, May 005 cfl 005 Chin. Phys. Soc. 1009-1963/005/14(05)/888-05 Chinese Physics IOP Publishing Ltd Discrete variational principle the first integrals of the conservative holonomic systems in

More information

A note on the Mooney-Rivlin material model

A note on the Mooney-Rivlin material model A note on the Mooney-Rivlin material moel I-Shih Liu Instituto e Matemática Universiae Feeral o Rio e Janeiro 2945-97, Rio e Janeiro, Brasil Abstract In finite elasticity, the Mooney-Rivlin material moel

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

TRAJECTORY TRACKING FOR FULLY ACTUATED MECHANICAL SYSTEMS

TRAJECTORY TRACKING FOR FULLY ACTUATED MECHANICAL SYSTEMS TRAJECTORY TRACKING FOR FULLY ACTUATED MECHANICAL SYSTEMS Francesco Bullo Richar M. Murray Control an Dynamical Systems California Institute of Technology Pasaena, CA 91125 Fax : + 1-818-796-8914 email

More information

Agmon Kolmogorov Inequalities on l 2 (Z d )

Agmon Kolmogorov Inequalities on l 2 (Z d ) Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Publishe by Canaian Center of Science an Eucation Agmon Kolmogorov Inequalities on l (Z ) Arman Sahovic Mathematics Department,

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

Generalization of the persistent random walk to dimensions greater than 1

Generalization of the persistent random walk to dimensions greater than 1 PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Generalization of the persistent ranom walk to imensions greater than 1 Marián Boguñá, Josep M. Porrà, an Jaume Masoliver Departament e Física Fonamental,

More information

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold CHAPTER 1 : DIFFERENTIABLE MANIFOLDS 1.1 The efinition of a ifferentiable manifol Let M be a topological space. This means that we have a family Ω of open sets efine on M. These satisfy (1), M Ω (2) the

More information

Partial Differential Equations

Partial Differential Equations Chapter Partial Differential Equations. Introuction Have solve orinary ifferential equations, i.e. ones where there is one inepenent an one epenent variable. Only orinary ifferentiation is therefore involve.

More information

A nonlinear inverse problem of the Korteweg-de Vries equation

A nonlinear inverse problem of the Korteweg-de Vries equation Bull. Math. Sci. https://oi.org/0.007/s3373-08-025- A nonlinear inverse problem of the Korteweg-e Vries equation Shengqi Lu Miaochao Chen 2 Qilin Liu 3 Receive: 0 March 207 / Revise: 30 April 208 / Accepte:

More information

IERCU. Institute of Economic Research, Chuo University 50th Anniversary Special Issues. Discussion Paper No.210

IERCU. Institute of Economic Research, Chuo University 50th Anniversary Special Issues. Discussion Paper No.210 IERCU Institute of Economic Research, Chuo University 50th Anniversary Special Issues Discussion Paper No.210 Discrete an Continuous Dynamics in Nonlinear Monopolies Akio Matsumoto Chuo University Ferenc

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

The effect of dissipation on solutions of the complex KdV equation

The effect of dissipation on solutions of the complex KdV equation Mathematics an Computers in Simulation 69 (25) 589 599 The effect of issipation on solutions of the complex KV equation Jiahong Wu a,, Juan-Ming Yuan a,b a Department of Mathematics, Oklahoma State University,

More information

Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations

Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations Characterizing Real-Value Multivariate Complex Polynomials an Their Symmetric Tensor Representations Bo JIANG Zhening LI Shuzhong ZHANG December 31, 2014 Abstract In this paper we stuy multivariate polynomial

More information

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges Plasma Science an Technology, Vol.16, No.1, Oct. 214 A Simple Moel for the Calculation of Plasma Impeance in Atmospheric Raio Frequency Discharges GE Lei ( ) an ZHANG Yuantao ( ) Shanong Provincial Key

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Exponential asymptotic property of a parallel repairable system with warm standby under common-cause failure

Exponential asymptotic property of a parallel repairable system with warm standby under common-cause failure J. Math. Anal. Appl. 341 (28) 457 466 www.elsevier.com/locate/jmaa Exponential asymptotic property of a parallel repairable system with warm stanby uner common-cause failure Zifei Shen, Xiaoxiao Hu, Weifeng

More information

Distribution Theory for Discontinuous Test Functions and Differential Operators with Generalized Coefficients

Distribution Theory for Discontinuous Test Functions and Differential Operators with Generalized Coefficients JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 1, 9733 1996 ARTICLE NO 56 Distribution Theory for Discontinuous Test Functions an Differential Operators with Generalize Coefficients P Kurasov* Department

More information

arxiv: v1 [math-ph] 5 May 2014

arxiv: v1 [math-ph] 5 May 2014 DIFFERENTIAL-ALGEBRAIC SOLUTIONS OF THE HEAT EQUATION VICTOR M. BUCHSTABER, ELENA YU. NETAY arxiv:1405.0926v1 [math-ph] 5 May 2014 Abstract. In this work we introuce the notion of ifferential-algebraic

More information

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION The Annals of Statistics 1997, Vol. 25, No. 6, 2313 2327 LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION By Eva Riccomagno, 1 Rainer Schwabe 2 an Henry P. Wynn 1 University of Warwick, Technische

More information

GEODESIC BOUNDARY VALUE PROBLEMS WITH SYMMETRY. Colin J. Cotter. Darryl D. Holm. (Communicated by the associate editor name)

GEODESIC BOUNDARY VALUE PROBLEMS WITH SYMMETRY. Colin J. Cotter. Darryl D. Holm. (Communicated by the associate editor name) Manuscript submitte to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX GEODESIC BOUNDARY VALUE PROBLEMS WITH SYMMETRY Colin J. Cotter Department of Aeronautics Imperial

More information

Dissipative numerical methods for the Hunter-Saxton equation

Dissipative numerical methods for the Hunter-Saxton equation Dissipative numerical methos for the Hunter-Saton equation Yan Xu an Chi-Wang Shu Abstract In this paper, we present further evelopment of the local iscontinuous Galerkin (LDG) metho esigne in [] an a

More information

On classical orthogonal polynomials and differential operators

On classical orthogonal polynomials and differential operators INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 2005) 6379 6383 oi:10.1088/0305-4470/38/28/010 On classical orthogonal polynomials an ifferential

More information

Geometric dynamics of optimization

Geometric dynamics of optimization Geometric ynamics of optimization François Gay-Balmaz 1, Darryl D. Holm 2, an Tuor S. Ratiu 3 Abstract arxiv:912.2989v3 [nlin.cd] 19 Jun 211 This paper investigates a family of ynamical systems arising

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Qubit channels that achieve capacity with two states

Qubit channels that achieve capacity with two states Qubit channels that achieve capacity with two states Dominic W. Berry Department of Physics, The University of Queenslan, Brisbane, Queenslan 4072, Australia Receive 22 December 2004; publishe 22 March

More information

INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN INTEGRAL OVERDETERMINATION CONDITION

INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN INTEGRAL OVERDETERMINATION CONDITION Electronic Journal of Differential Equations, Vol. 216 (216), No. 138, pp. 1 7. ISSN: 172-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN

More information

Robustness and Perturbations of Minimal Bases

Robustness and Perturbations of Minimal Bases Robustness an Perturbations of Minimal Bases Paul Van Dooren an Froilán M Dopico December 9, 2016 Abstract Polynomial minimal bases of rational vector subspaces are a classical concept that plays an important

More information

1.4.3 Elementary solutions to Laplace s equation in the spherical coordinates (Axially symmetric cases) (Griffiths 3.3.2)

1.4.3 Elementary solutions to Laplace s equation in the spherical coordinates (Axially symmetric cases) (Griffiths 3.3.2) 1.4.3 Elementary solutions to Laplace s equation in the spherical coorinates (Axially symmetric cases) (Griffiths 3.3.) In the spherical coorinates (r, θ, φ), the Laplace s equation takes the following

More information

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES Communications on Stochastic Analysis Vol. 2, No. 2 (28) 289-36 Serials Publications www.serialspublications.com SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

More information

Adjoint Transient Sensitivity Analysis in Circuit Simulation

Adjoint Transient Sensitivity Analysis in Circuit Simulation Ajoint Transient Sensitivity Analysis in Circuit Simulation Z. Ilievski 1, H. Xu 1, A. Verhoeven 1, E.J.W. ter Maten 1,2, W.H.A. Schilers 1,2 an R.M.M. Mattheij 1 1 Technische Universiteit Einhoven; e-mail:

More information

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM ON THE OPTIMALITY SYSTEM FOR A D EULER FLOW PROBLEM Eugene M. Cliff Matthias Heinkenschloss y Ajit R. Shenoy z Interisciplinary Center for Applie Mathematics Virginia Tech Blacksburg, Virginia 46 Abstract

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

On the Inclined Curves in Galilean 4-Space

On the Inclined Curves in Galilean 4-Space Applie Mathematical Sciences Vol. 7 2013 no. 44 2193-2199 HIKARI Lt www.m-hikari.com On the Incline Curves in Galilean 4-Space Dae Won Yoon Department of Mathematics Eucation an RINS Gyeongsang National

More information

TOWARDS THERMOELASTICITY OF FRACTAL MEDIA

TOWARDS THERMOELASTICITY OF FRACTAL MEDIA ownloae By: [University of Illinois] At: 21:04 17 August 2007 Journal of Thermal Stresses, 30: 889 896, 2007 Copyright Taylor & Francis Group, LLC ISSN: 0149-5739 print/1521-074x online OI: 10.1080/01495730701495618

More information

The maximum sustainable yield of Allee dynamic system

The maximum sustainable yield of Allee dynamic system Ecological Moelling 154 (2002) 1 7 www.elsevier.com/locate/ecolmoel The maximum sustainable yiel of Allee ynamic system Zhen-Shan Lin a, *, Bai-Lian Li b a Department of Geography, Nanjing Normal Uni ersity,

More information

05 The Continuum Limit and the Wave Equation

05 The Continuum Limit and the Wave Equation Utah State University DigitalCommons@USU Founations of Wave Phenomena Physics, Department of 1-1-2004 05 The Continuum Limit an the Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains Hyperbolic Systems of Equations Pose on Erroneous Curve Domains Jan Norström a, Samira Nikkar b a Department of Mathematics, Computational Mathematics, Linköping University, SE-58 83 Linköping, Sween (

More information

Analytical accuracy of the one dimensional heat transfer in geometry with logarithmic various surfaces

Analytical accuracy of the one dimensional heat transfer in geometry with logarithmic various surfaces Cent. Eur. J. Eng. 4(4) 014 341-351 DOI: 10.478/s13531-013-0176-8 Central European Journal of Engineering Analytical accuracy of the one imensional heat transfer in geometry with logarithmic various surfaces

More information

Chapter 6: Energy-Momentum Tensors

Chapter 6: Energy-Momentum Tensors 49 Chapter 6: Energy-Momentum Tensors This chapter outlines the general theory of energy an momentum conservation in terms of energy-momentum tensors, then applies these ieas to the case of Bohm's moel.

More information

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena Chaos, Solitons an Fractals (7 64 73 Contents lists available at ScienceDirect Chaos, Solitons an Fractals onlinear Science, an onequilibrium an Complex Phenomena journal homepage: www.elsevier.com/locate/chaos

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Abstract A nonlinear partial differential equation of the following form is considered:

Abstract A nonlinear partial differential equation of the following form is considered: M P E J Mathematical Physics Electronic Journal ISSN 86-6655 Volume 2, 26 Paper 5 Receive: May 3, 25, Revise: Sep, 26, Accepte: Oct 6, 26 Eitor: C.E. Wayne A Nonlinear Heat Equation with Temperature-Depenent

More information

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions Math 3 Winter 2 Avance Bounary Value Problems I Bessel s Equation an Bessel Functions Department of Mathematical an Statistical Sciences University of Alberta Bessel s Equation an Bessel Functions We use

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Examining Geometric Integration for Propagating Orbit Trajectories with Non-Conservative Forcing

Examining Geometric Integration for Propagating Orbit Trajectories with Non-Conservative Forcing Examining Geometric Integration for Propagating Orbit Trajectories with Non-Conservative Forcing Course Project for CDS 05 - Geometric Mechanics John M. Carson III California Institute of Technology June

More information

A Spectral Method for the Biharmonic Equation

A Spectral Method for the Biharmonic Equation A Spectral Metho for the Biharmonic Equation Kenall Atkinson, Davi Chien, an Olaf Hansen Abstract Let Ω be an open, simply connecte, an boune region in Ê,, with a smooth bounary Ω that is homeomorphic

More information

Noether symmetry and non-noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations

Noether symmetry and non-noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations Vol 16 No 11, November 2007 c 2007 Chin. Phy. Soc. 1009-1963/2007/1611/3182-05 Chinee Phyic and IOP Publihing Ltd Noether ymmetry and non-noether conerved quantity of the relativitic holonomic nonconervative

More information