Wave Propagation in Grounded Dielectric Slabs with Double Negative Metamaterials

Size: px
Start display at page:

Download "Wave Propagation in Grounded Dielectric Slabs with Double Negative Metamaterials"

Transcription

1 6 Progress In Electromagnetics Research Symposium 6, Cambrige, US, March 6-9 Wave Propagation in Groune Dielectric Slabs with Double Negative Metamaterials W. Shu an J. M. Song Iowa State University, US bstract In this paper, the wave propagation in a groune ielectric slab with ouble negative (DNG) metamaterials is stuie. Dramatically ifferent evanescent surface moes (electromagnetic fiels exponentially ecay both in air an insie the slab) are observe. They are highly epenent on meium parameters. n infinite number of complex surface moes are foun to be existing which have proper fiel istribution in the air region. The investigations on the Poynting vectors show that they o not carry away energy in both transverse an longituinal irections.. Introuction The guie ielectric slab with a DNG meium has been stuie by several groups. Various novel properties are observe: [] an [] foun that there are special regions for TM (transverse magnetic) moes where two ifferent propagation constants exist. [] theoretically consiere the properties of a planar two-layere waveguie, whose one layer is a ouble positive (DPS) meium an the other is a DNG meium. Super slowwaves with extremely short wavelengthes were foun whose fiels exponentially ecay from the interface of the two slabs insie both layers. These guie moes, terme as evanescent surface moes, were also foun by [] an [], respectively. P. Baccarelli an his colleague suggeste the concept of surface wave suppression that ensures the absence of both orinary an evanescent surface moes. This is very attractive in view of taking DNG meium as a potential substrate caniate to reuce ege iffraction effects an enhance raiation efficiency for microstrip antennas [6]. However, so far as the authors are aware no stuy on the complex moes an Poynting vectors has been reporte. This makes the moe spectra of DNG meia unpleasantly incomplete. In this paper, the authors focus on the properties of the evanescent surface moes an the complex moes, both of which belong to the proper moe spectra of the groune ielectric slab with a DNG meium. It is foun that the evanescent surface moes are highly epenent on the meium parameters an an infinite number of complex moes exists which have exponentially ecaying fiels in the air region. They are terme complex surface moes. The stuy on the Poynting vectors shows that they have zero power flows in both transverse an longituinal irections.. Eigen Equations an Graphical Solutions The structural setup of interest here is a groune ielectric slab of thickness (see Figure ). Region one is a DNG meium an region two is air. It is well known that to ensure a positive store energy in the ielectric layer, passive DNG meia must be ispersive [7]. However, for simplicity we assume that they are isotropic, losseless, an non-ispersive. This assumption is foun to be acceptable since a small ispersion of ɛ an µ can satisfy the constraints. y ε r µ r z x y = ε r µ r PEC y = Figure : Geometry structure of a groune ielectric slab with DNG meium (ɛ r <,µ r < ).

2 Progress In Electromagnetics Research Symposium 6, Cambrige, US, March α y α y α y k y α y k β y y (a) TE TE TE TE TE 7 - (b) TM TM TM TM TM 6 Figure : Graphical solutions for TE an TM moes. Soli lines in the first an fourth quarants represent () or (); soli lines in the secon quarant represent () or (); ashe line in the first an fourth quarants represents (); ashe line in the secon an thir quarants represents (6). The meium parameters are: ɛ r =.,µ r =.,ɛ r =,µ r =. Using the well-known transverse resonance metho [8], the eigen equations for orinary (γ y = jk y ) real moes are: µ r (k y )cot(k y ) = α y µ r for TE () ɛ r (k y )tan(k y ) = α y ɛ r for TM () The eigen equations for evanescent (γ y = α y ) real moes are: (k y ) + (α y ) = (k ) (ɛ r µ r ɛ r µ r ) () µ r (α y )coth(α y ) = α y µ r for TE () ɛ r (α y )tanh(α y ) = α y ɛ r for TM () (α y ) (α y ) = (k ) (ɛ r µ r ɛ r µ r ) (6) where k = ω µ ɛ. γ y, γ y are the y-irection wave constants of the two layers. Their relationship to the longituinal wave constant (z-irection) γ is written as: γ yi = k ɛ ri µ ri γ (i =,) (7) Graphical representations of the above equations are shown in Figure. The moe inex notation here follows [9]. Notice that in the first an secon quarants, α y is positive an the fiels exponentially ecay in the air region (proper); in the thir an fourth quarants, α y is negative an the fiels exponentially increase in the air region (improper). The x-axis is ivie into two segments. The right half is for k y an the fiels in the ielectric layer are sine/cosine staning waves (orinary), while the left half is for α y an the fiels in the ielectric layer are exponentially istribute (evanescent). Therefore, the intersection in the secon quarant represents the proper evanescent surface moe, which oes not exist for a DPS meium. nother important ifference for a DNG meium that can be rea from Figure is that the orinary surface moe solutions are no longer monotonic. It is clear from the subfigure in the left corner of Figure (a) that there are two intersections as the raius of the ashe circle ecreases, which correspons to a ecrease of frequency. Once the circle has only one tangential point with the soli line, further ecreasing frequency will cause this moe to be cutoff. The same thing happens to TM moes in Figure (b) in a more obvious way. These two possible moes have two ifferent power flow istributions. One has more power flowing in the air region than in the ielectric region, making the total power flow in the same irection as the phase velocity. The other is in the opposite way an isplays a backwar property. More etails on the Poynting vectors are aresse in Section.

3 8 Progress In Electromagnetics Research Symposium 6, Cambrige, US, March 6-9. Evanescent Moe Evanescent Moe β/k. Moe Improper Leaky Moe 6 k (a) ɛ r =., µ r =., ɛ r =, µ r =. β/k Moe Improper Leaky Moe.. k (b) ɛ r =., µ r =., ɛ r =, µ r =. Figure : Two possible ispersion curves for TE proper surface moes (soli lines) an TE improper leaky moes (otte lines). The ashe line, representing ɛ r µ r, is the watershe for evanescent surface moe an orinary surface moes.. Evanescent Moe s state in Section, the proper evanescent surface moe oes exist with a DNG meium. It is the intersection in the secon quarant. The normalize effective ielectric constant ɛ eff = (β/k ) for evanescent surface moe is larger than both ɛ r µ r an ɛ r µ r. Therefore the transverse propagation constant in the ielectric layer γ y = k ɛ rµ r γ = k ɛeff ɛ r µ r is a pure real number. The electromagnetic fiels are no longer sine/cosine staning waves, but have the form of e αyy + Be αyy. It is foun, however, that the ispersion curves for evanescent surface moes are very complicate, an they are highly epenent on the meium parameters. Figure shows two ispersion iagrams for TE moe with ifferent meium parameters. The ispersion curves represent the intersection points of the ashe line an the first soli branch in Figure (a), incluing the part in the secon quarant. The soli line in Figure is for proper moes, while the otte line is for improper moe, which is the set of intersections in the fourth quarant in Figure (a). The ashe lines in both figures epict the value of ɛ r µ r. They are the watershes by which one can tell the evanescent surface moe from orinary ones. In Figure (a), the evanescent surface moe has low cutoff frequency. s the frequency increases, the orinary surface moe becomes an evanescent surface moe an its effective ielectric constant, ɛ eff, keeps increasing. In Figure (b), however, the situation is reverse. The evanescent surface moe has a high cutoff frequency above which it becomes the orinary surface moe. t the low frequency range, the evanescent surface moe has an extremely large ɛ eff, which ecreases rapily as the frequency increases. One can refer to the subfigures of Figure to check the valiations. The reason for such ramatically ifferent ispersion curves is that with DNG metamaterials, one can not only make ɛ an µ simultaneously negative but also let their absolute values be less than one []. From () an Figure (a), it is easy to see that the crossing point of the first soli branch TE with the x-axis is fixe at (π/, ), while the crossing point with the y-axis note as in Figure (a) is (, µ r /µ r ). With a conventional DPS meium, µ r is always equal to unity, or slightly greater or smaller than unity as in the case of paramagnetic or iamagnetic materials. With metamaterials, however, µ r is not confine near unity any more an the intercept with the y-axis may change a lot. This change affects the possible intersections of the first soli line an the ashe line in Figure (a) an finally results in ramatically ifferent ispersion curves.. Complex Moes an Poynting Vectors It is well known that the complete proper moe spectra for a DPS ielectric slab inclue iscrete surface moes an continuous raiation moes, both of which are real moes [8]. With a DNG meium, however, it is prove by the authors that the complex roots of the eigen equations are exclusively on the top Riemann sheet []. These solutions, terme complex surface waves, form another set of proper moes since they have exponentially ecaying fiels in the air region an satisfy the bounary conitions at infinity. Unlike real surface moes, complex surface moes have high cutoff frequencies below which they exist.

4 Progress In Electromagnetics Research Symposium 6, Cambrige, US, March TM (α+jβ)/k. TE TE TE TE7 (α+jβ)/k. TM TM TM 6.. k (a) TE k (b) TM Figure : Dispersion iagrams for all moes. Soli line is for normalize β of the proper moes. Dashe line is for normalize α of the proper moes. Dotte line is for normalize β of the improper moes. The meium parameters are: ɛ r =.,µ r =.,ɛ r =,µ r =. Figure shows the ispersion iagrams for both TE an TM moes, incluing evanescent, orinary, an complex surface moes. lso inclue are improper leaky moes rawn as otte lines. When the frequency is much lower than the first cutoff frequency of the real moes, all complex moes exist with very high normalize α an β. s the frequency increases, β/k tens to ecrease rapily within a very narrow frequency range; after that it increases slowly till its cutoff frequency. Notice it is not monotonic an the value of β/k can be less than unity, which is a notable ifference compare with evanescent an orinary surface moes. The curve of α/k, however, monotonically ecreases very fast as the frequency increases. t the cutoff point, α reaches zero an β becomes the starting point of the real moe. The real surface moe bifurcates into two branches from this point. One branch has an increasing β/k as the frequency goes high, while the other has a ecreasing β/k, which will reach unity shortly. This property is expecte from Figure. Further increasing frequency makes β/k of the secon branch begin to rise. However, it is no longer a proper moe. It is foun that the complex surface moes have zero power flows []. To erive the Poynting vector for complex moes, γ y, γ y, an γ are assume to be: The Poynting vector is written as z = E xh y = γ y = a + jb γ y = u + jv γ = α + jβ (8) { S TE z, Sz TE, where is the electric fiel intensity an z an z are as follows: for < y < for y z (y,z) = β + jα ωµ r e αz [cosh(ay) cos(by)] () z (y,z) = β + jα ωµ r e u(y ) αz [cosh(a) cos(b)] () Figure shows the ispersion iagram an the integral results of Poynting vector for the TE moe. In Figure (a), only the complex moe exists (branch ) when the frequency is lower than the cutoff frequency of the real surface moe. The zero power flow in z-irection in Figure (b) shows that the complex surface moe oes not carry away any energy. s the frequency increases, the real surface moe begins. The top branch (branch B ) of the real moe carries a negative power flow an shows backwar properties. When a waveguie operates in this moe, its fiels are largely confine insie the ielectric layer. The bottom branch (branch C ) of the real moe carries a positive power flow an its fiels exten far away in the air region. Further increasing frequency causes the fiels in the air region to ecay more slowly, an eventually reach infinity. t that point, the raiation bounary conitions are violate an the moe becomes improper. (9)

5 Progress In Electromagnetics Research Symposium 6, Cambrige, US, March 6-9 (α+jβ)/k... B C 6 k (a) Dispersion iagram P z. -. C - 6 k (b) Power flow in z-irection Figure : Dispersion iagram an the power flow in z-irection for TE moes. is for complex surface moe; B is for top branch of the real surface moe; C is for bottom branch of the real surface moe. The meium parameters are: ɛ r =.,µ r =.,ɛ r =,µ r =. B. Conclusion In this paper, an investigation on the moe properties of a groune ielectric slab with a DNG meium has been ealt with. The graphical metho is use to fin the possible real roots. Dramatically ifferent ispersion curves of evanescent surface moes are observe, showing that they are very sensitive to the material parameters. It is foun that there is an infinite number of complex surface moes with a DNG meium an they o not carry away energy. lthough the consiere meium here is iealize an currently cannot be realize, the results of this paper still unveil some exotic properties as well as potential applications of the metamaterials. REFERENCES. Cory, H. an. Barger, -wave propagation along a metamaterial slab, Microwave Opt. Technol. Lett., Vol. 8, 9 9, Sept... Dong, H. an T. X. Wu, nalysis of iscontinuities in ouble-negative (DNG) slab waveguies, Microwave Opt. Technol. Lett., Vol. 9, 8 88, Dec... Nefeov, I. S. an S.. TretyaKov, Waveguie containing a backwar-wave slab, Raio Sci., Vol. 8, 9,.. Wu, B.-I., T. M. Grzegorczyk, Y. Zhang, an J.. Kong, Guie moes with imaginary transverse wave number in a slab waveguie with negative permittivity an permeability, J. ppl. Phys., Vol. 9, , Jun... Sharivov, I. W.,.. Sukhorukov, an Y. S. Kivshar, Guie moes in negative-refractive-inex waveguies, Phys. Rev. E, Stat. Phys. Plasmas Fluis Relat. Interiscip. Top., Vol. 67, 76 76, May. 6. Baccarelli, P., P. Burghignoli, F. Frezza,. Galli, P. Lampariello, G. Lovat, an S. Paulotto, Funamental moal properties of surface waves on metamaterial groune slabs, IEEE Trans. Microwave Theory Tech., Vol.,, pr.. 7. Smith, D. R. an N. Kroll, Negative refractive inex in left-hane materials, Phys. Rev. Lett., Vol. 8, 9 96, Oct.. 8. Collin, R. E., Fiel Theory of Guie Waves, n, E. Piscataway, IEEE Press, NJ, Balanis, C.., vance Engineering Electromagnetics, John Wiley & Sons, NJ, Shu, W. an J. M. Song, On the properties of a groune ielectric slab with ouble negative metamaterials, IEEE Trans. Microwave Theory Tech., to be submitte.

ARTICLE IN PRESS. Available online at Metamaterials xxx (2008) xxx xxx

ARTICLE IN PRESS. Available online at  Metamaterials xxx (2008) xxx xxx Available online at www.sciencedirect.com Metamaterials xxx (2008) xxx xxx Modal interactions in resonant metamaterial slabs with losses G. Lovat a,, P. Burghignoli b,1, A.B. Yakovlev c,2, G.W. Hanson

More information

Research Article Numerical Analysis of Inhomogeneous Dielectric Waveguide Using Periodic Fourier Transform

Research Article Numerical Analysis of Inhomogeneous Dielectric Waveguide Using Periodic Fourier Transform Microwave Science an Technology Volume 2007, Article ID 85181, 5 pages oi:10.1155/2007/85181 Research Article Numerical Analysis of Inhomogeneous Dielectric Waveguie Using Perioic Fourier Transform M.

More information

Modal Interactions in Lossy Dielectric Metamaterial Slabs

Modal Interactions in Lossy Dielectric Metamaterial Slabs Modal Interactions in Lossy Dielectric Metamaterial Slabs A. B. Yakovlev (), G. Lovat (), P. Burghignoli (), and G. W. Hanson () () University of Mississippi () La Sapienza University of Rome () University

More information

Negative-Index Refraction in a Lamellar Composite with Alternating. Single Negative Layers

Negative-Index Refraction in a Lamellar Composite with Alternating. Single Negative Layers Negative-Inex Refraction in a Lamellar Composite with Alternating Single Negative Layers Z. G. Dong, S. N. Zhu, an H. Liu National Laboratory of Soli State Microstructures, Nanjing University, Nanjing

More information

J. Dong and C. Xu Institute of Optical Fiber Communication and Network Technology Ningbo University Ningbo , China

J. Dong and C. Xu Institute of Optical Fiber Communication and Network Technology Ningbo University Ningbo , China Progress In Electromagnetics Research B, Vol. 14, 107 126, 2009 CHARACTERISTICS OF GUIDED MODES IN PLANAR CHIRAL NIHILITY META-MATERIAL WAVEGUIDES J. Dong and C. Xu Institute of Optical Fiber Communication

More information

WAVEGUIDES FILLED WITH BILAYERS OF DOUBLE- NEGATIVE (DNG) AND DOUBLE-POSITIVE (DPS) METAMATERIALS

WAVEGUIDES FILLED WITH BILAYERS OF DOUBLE- NEGATIVE (DNG) AND DOUBLE-POSITIVE (DPS) METAMATERIALS Progress In Electromagnetics Research B, Vol., 75 9, WAVEGUIDES FILLED WITH BILAYERS OF DOUBLE- NEGATIVE (DNG) AND DOUBLE-POSITIVE (DPS) METAMATERIALS E. Cojocaru * Department of Theoretical Physics, Horia

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

A Quantitative Analysis of Coupling for a WPT System Including Dielectric/Magnetic Materials

A Quantitative Analysis of Coupling for a WPT System Including Dielectric/Magnetic Materials Progress In Electromagnetics Research Letters, Vol. 72, 127 134, 2018 A Quantitative Analysis of Coupling for a WPT System Incluing Dielectric/Magnetic Materials Yangjun Zhang *, Tatsuya Yoshiawa, an Taahiro

More information

Microwave Reflection from the Region of Electron Cyclotron Resonance Heating in the L-2M Stellarator )

Microwave Reflection from the Region of Electron Cyclotron Resonance Heating in the L-2M Stellarator ) Microwave Reflection from the Region of Electron Cyclotron Resonance Heating in the L-2M Stellarator German M. BATANOV, Valentin D. BORZOSEKOV, Nikolay K. KHARCHEV, Leoni V. KOLIK, Eugeny M. KONCHEKOV,

More information

region 0 μ 0, ε 0 d/2 μ 1, ε 1 region 1 d/2 region 2 μ 2, ε 2

region 0 μ 0, ε 0 d/2 μ 1, ε 1 region 1 d/2 region 2 μ 2, ε 2 W.C.Chew ECE 35 Lecture Note 4. Dielectric Waveguie (Slab). When a wave i incient from a meium with higher ielectric contant at an interface of two ielectric meia, total internal reection occur when the

More information

Lect. 4 Waveguides (1)

Lect. 4 Waveguides (1) Lect. 4 Waveguies (1) - Waveguie: Confines an guies EM waves Metallic, Dielectric, Plasmonic - We are intereste in ielectric waveguie Total internal reflection b refractive inex ifferences n A B C D n

More information

Based on transitions between bands electrons delocalized rather than bound to particular atom

Based on transitions between bands electrons delocalized rather than bound to particular atom EE31 Lasers I 1/01/04 #6 slie 1 Review: Semiconuctor Lasers Base on transitions between bans electrons elocalize rather than boun to particular atom transitions between bans Direct electrical pumping high

More information

APPLICATION OF BILAYER ANISOTROPIC STRUC- TURES FOR DESIGNING LOW-PASS FILTERS AND PO- LARIZERS

APPLICATION OF BILAYER ANISOTROPIC STRUC- TURES FOR DESIGNING LOW-PASS FILTERS AND PO- LARIZERS Progress In Electromagnetics Research M, Vol. 29, 95 108, 2013 APPLICATION OF BILAYER ANISOTROPIC STRUC- TURES FOR DESIGNING LOW-PASS FILTERS AND PO- LARIZERS Amir Raeesi *, Ali Abdolali, and Hossein Mirzaei

More information

P. A. Martin b) Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom

P. A. Martin b) Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom Time-harmonic torsional waves in a composite cyliner with an imperfect interface J. R. Berger a) Division of Engineering, Colorao School of Mines, Golen, Colorao 80401 P. A. Martin b) Department of Mathematics,

More information

Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/ Asymmetric Planar Slab Waveguide Structure

Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/ Asymmetric Planar Slab Waveguide Structure ISSN 0974-9373 Vol. 15 No.1 (011) Journal of International Academy of Physical Sciences pp. 113-1 Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/

More information

Physics 504, Lecture 7 Feb 14, Energy Flow, Density and Attenuation. 1.1 Energy flow and density. Last Latexed: February 11, 2011 at 10:54 1

Physics 504, Lecture 7 Feb 14, Energy Flow, Density and Attenuation. 1.1 Energy flow and density. Last Latexed: February 11, 2011 at 10:54 1 Last Latexe: February, at :54 Physics 54, Lecture 7 Feb 4, Energy Flow, Density an ttenuation We have seen that there are iscrete moes for electromagnetic waves with E, B e ikz it corresponing, for real

More information

On the use of leaky modes in open waveguides for the sound propagation modeling in street canyons

On the use of leaky modes in open waveguides for the sound propagation modeling in street canyons On the use of leaky moes in open waveguies for the soun propagation moeling in street canyons Arien Pelat, a Simon Félix, an Vincent Pagneux LAUM, CNRS, Université u Maine, avenue Olivier Messiaen, 7285

More information

Revisiting Fresnel & refractive index. What is the refractive index of a dielectric. Metals and plasmons

Revisiting Fresnel & refractive index. What is the refractive index of a dielectric. Metals and plasmons Revisiting Fresnel & refractive ine What is the refractive ine of a ielectric Metals an plasmons Squeezing plasmons in a nanowire Moe with 150 nm SPP l < 1 mm At l 1.550 mm Snell s law Generic solution

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

SURFACE WAVE CHARACTER ON A SLAB OF METAMATERIAL WITH NEGATIVE PERMITTIVITY AND PERMEABILITY

SURFACE WAVE CHARACTER ON A SLAB OF METAMATERIAL WITH NEGATIVE PERMITTIVITY AND PERMEABILITY Progress In Electromagnetics Research, PIER 51, 127 137, 2005 SURFACE WAVE CHARACTER ON A SLAB OF METAMATERIAL WITH NEGATIVE PERMITTIVITY AND PERMEABILITY S. F. Mahmoud Electronic Engineering Department

More information

Design of Metamaterials in HFSS and Extraction of Permittivity and Permeability using NRW Method

Design of Metamaterials in HFSS and Extraction of Permittivity and Permeability using NRW Method Design of Metamaterials in HFSS and Extraction of Permittivity and Permeability using NRW Method Monika Dhillon, Master of Technology student of Electronics and Communication Engineering of YMCA University

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

CREOL, The College of Optics & Photonics, UCF. Anomalous Surface Plasmon Dispersion in Metallodielectric Multilayers

CREOL, The College of Optics & Photonics, UCF. Anomalous Surface Plasmon Dispersion in Metallodielectric Multilayers Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers Gray Webb-Woo an Pieter G. Kik CREOL, University of Central Floria, Orlano, FL SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu

More information

ABDELSHAFY, OTHMAN, OSHMARIN, AL-MUTAWA, CAPOLINO: EPD IN CTLS UC IRVINE, SEP 2018

ABDELSHAFY, OTHMAN, OSHMARIN, AL-MUTAWA, CAPOLINO: EPD IN CTLS UC IRVINE, SEP 2018 arxiv: [physics.app-ph] 13 SEP 2018 ABDELSHAFY, OTHMAN, OSHMARIN, AL-MUTAWA, CAPOLINO: EPD IN CTLS UC IRVINE, SEP 2018 Exceptional Points of Degeneracy in Perioically- Couple Waveguies an the Interplay

More information

Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom PHYSICAL REVIEW A 69, 063409 (2004) Semiclassical analysis of long-wavelength multiphoton processes: The Ryberg atom Luz V. Vela-Arevalo* an Ronal F. Fox Center for Nonlinear Sciences an School of Physics,

More information

Evanescent modes stored in cavity resonators with backward-wave slabs

Evanescent modes stored in cavity resonators with backward-wave slabs arxiv:cond-mat/0212392v1 17 Dec 2002 Evanescent modes stored in cavity resonators with backward-wave slabs S.A. Tretyakov, S.I. Maslovski, I.S. Nefedov, M.K. Kärkkäinen Radio Laboratory, Helsinki University

More information

Modal Characteristics of Quadruple-Clad Planar Waveguides with Double Negative Metamaterials

Modal Characteristics of Quadruple-Clad Planar Waveguides with Double Negative Metamaterials 35 VOL., NO., JANUARY 007 Modal Characteristics of Quadruple-Clad Planar Waveguides with Double Negative Metamaterials Jeffrey R. Clark* and Ahmad Safaai-Jazi Bradley Department of Electrical and Computer

More information

Generalization of the persistent random walk to dimensions greater than 1

Generalization of the persistent random walk to dimensions greater than 1 PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Generalization of the persistent ranom walk to imensions greater than 1 Marián Boguñá, Josep M. Porrà, an Jaume Masoliver Departament e Física Fonamental,

More information

Soliton dynamics in an extended nonlinear Schrödinger equation with a spatial counterpart of the stimulated Raman scattering

Soliton dynamics in an extended nonlinear Schrödinger equation with a spatial counterpart of the stimulated Raman scattering Soliton ynamics in an extene nonlinear Schröinger equation with a spatial counterpart of the stimulate Raman scattering E.M. Gromov 1a an B.A. Malome b a National Research University Higher School of Economics,

More information

AIEEE Physics Model Question Paper

AIEEE Physics Model Question Paper IEEE Physics Moel Question Paper ote: Question o. 11 to 1 an 1 to consist of Eight (8) marks each for each correct response an remaining questions consist of Four (4) marks. ¼ marks will be eucte for inicating

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 6 1 Leaky Modes v TM 1 Mode SW 1 v= utan u ε R 2 R kh 0 n1 r = ( ) 1 u Splitting point ISW f = f s f > f s We will examine the solutions as the

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS

THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS Progress In Electromagnetics Research M, Vol. 9, 35 40, 2009 THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS D. Zhang

More information

Bifurcations and stability of gap solitons in periodic potentials

Bifurcations and stability of gap solitons in periodic potentials PHYSICAL REVIEW E 70, 036618 (2004) Bifurcations an stability of gap solitons in perioic potentials Dmitry E. Pelinovsky, 1 Anrey A. Sukhorukov, 2 an Yuri S. Kivshar 2 1 Department of Mathematics, McMaster

More information

ELECTROMAGNETIC SCATTERING FROM A CHIRAL- COATED NIHILITY CYLINDER

ELECTROMAGNETIC SCATTERING FROM A CHIRAL- COATED NIHILITY CYLINDER Progress In Electromagnetics Research Letters, Vol. 18, 41 5, 21 ELECTROMAGNETIC SCATTERING FROM A CHIRAL- COATED NIHILITY CYLINDER S. Ahmed and Q. A. Naqvi Department of Electronics Quaid-i-Azam University

More information

Progress In Electromagnetics Research B, Vol. 19, , 2010

Progress In Electromagnetics Research B, Vol. 19, , 2010 Progress In Electromagnetics Research B, ol. 19, 177 23, 21 ELECTROMAGNETIC FIELDS IN A CAITY FILLED WITH SOME NONSTATIONARY MEDIA M. S. Antyufeyeva Department of Theoretical Raiophysics Karazin Kharkiv

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons

Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons Enhance transmission with coaxial nanoapertures: Role of cylinrical surface plasmons Michael I. Haftel, Carl Schlockermann, an G. Blumberg 3 Center for Computational Materials Science, Naval Research Laboratory,

More information

Lecture 9: Introduction to Metal Optics. 5 nm

Lecture 9: Introduction to Metal Optics. 5 nm Lecture 9: Introuction to Metal Optics 5 nm What happene at the previous lectures? Light interaction with small objects ( < λ) Insulators (Rayleigh Scattering, blue sky..) Semiconuctors (Size epenent absorption,

More information

Characterization of Left-Handed Materials

Characterization of Left-Handed Materials Characterization of Left-Handed Materials Massachusetts Institute of Technology 6.635 lecture notes 1 Introduction 1. How are they realized? 2. Why the denomination Left-Handed? 3. What are their properties?

More information

The effect of nonvertical shear on turbulence in a stably stratified medium

The effect of nonvertical shear on turbulence in a stably stratified medium The effect of nonvertical shear on turbulence in a stably stratifie meium Frank G. Jacobitz an Sutanu Sarkar Citation: Physics of Fluis (1994-present) 10, 1158 (1998); oi: 10.1063/1.869640 View online:

More information

Progress In Electromagnetics Research, PIER 35, , 2002

Progress In Electromagnetics Research, PIER 35, , 2002 Progress In Electromagnetics Research, PIER 35, 315 334, 2002 NUMERICAL STUDIES OF LEFT HANDED METAMATERIALS C. D. Moss, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong Research Laboratory of Electronics Massachusetts

More information

Effects of 20-H Rule and Shielding Vias on Electromagnetic Radiation From Printed Circuit Boards

Effects of 20-H Rule and Shielding Vias on Electromagnetic Radiation From Printed Circuit Boards Effects of 20-H Rule an Shieling Vias on Electromagnetic Raiation From Printe Circuit Boars Huabo Chen, Stuent Member, IEEE, an Jiayuan Fang, Senior Member, IEEE Dept. of Electrical Engineering, University

More information

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7.

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7. Lectures Nine an Ten The WKB Approximation The WKB metho is a powerful tool to obtain solutions for many physical problems It is generally applicable to problems of wave propagation in which the frequency

More information

QUANTUMMECHANICAL BEHAVIOUR IN A DETERMINISTIC MODEL. G. t Hooft

QUANTUMMECHANICAL BEHAVIOUR IN A DETERMINISTIC MODEL. G. t Hooft QUANTUMMECHANICAL BEHAVIOUR IN A DETERMINISTIC MODEL G. t Hooft Institute for Theoretical Physics University of Utrecht, P.O.Box 80 006 3508 TA Utrecht, the Netherlans e-mail: g.thooft@fys.ruu.nl THU-96/39

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES

OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 3, Number /, pp. 46 54 OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES Li CHEN, Rujiang LI, Na

More information

Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview

Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview Appl Phys A (2011) 103: 789 793 DOI 10.1007/s00339-010-6219-6 Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview A. Dirksen S. Arslanagic O. Breinbjerg Received:

More information

COMPACT BANDPASS FILTERS UTILIZING DIELECTRIC FILLED WAVEGUIDES

COMPACT BANDPASS FILTERS UTILIZING DIELECTRIC FILLED WAVEGUIDES Progress In Electromagnetics Research B, Vol. 7, 105 115, 008 COMPACT BADPASS FILTERS UTILIZIG DIELECTRIC FILLED WAVEGUIDES H. Ghorbanineja an M. Khalaj-Amirhosseini College of Electrical Engineering Iran

More information

Directive Emission Obtained by Coordinate Transformation

Directive Emission Obtained by Coordinate Transformation Directive Emission Obtained by Coordinate Transformation Jingjing Zhang 1, Yu Luo 1, Hongsheng Chen 1 2*, Lixin Ran 1, Bae-Ian Wu 2, and Jin Au Kong 1 2 1 The Electromagnetics Academy at Zhejiang University,

More information

T he phased array antenna (PAA) plays an important role in radar, broadcast, communication, etc.1,2. In

T he phased array antenna (PAA) plays an important role in radar, broadcast, communication, etc.1,2. In OPEN SUBJECT AREAS: APPLIED PHYSICS MATERIALS FOR DEVICES Receive 7 August 014 Accepte 9 October 014 Publishe 30 October 014 Corresponence an requests for materials shoul be aresse to S.H. (sailing@kth.se)

More information

05 The Continuum Limit and the Wave Equation

05 The Continuum Limit and the Wave Equation Utah State University DigitalCommons@USU Founations of Wave Phenomena Physics, Department of 1-1-2004 05 The Continuum Limit an the Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

Collective optical effect in complement left-handed material

Collective optical effect in complement left-handed material Collective optical effect in complement left-hane material S.-C. Wu, C.-F. Chen, W. C. Chao, W.-J. Huang an H. L. Chen, National Nano Device Laboratories, 1001-1 Ta-Hsueh Roa, Hsinchu, Taiwan R.O.C A.-C.

More information

Whispering-gallery-mode cavity for terahertz pulses

Whispering-gallery-mode cavity for terahertz pulses 1894 J. Opt. Soc. Am. B/ Vol. 20, No. 9/ September 2003 J. Zhang an D. Grischkowsky Whispering-gallery-moe cavity for terahertz pulses Jiangquan Zhang an D. Grischkowsky School of Electrical an Computer

More information

10. Magnetism. ) it is. S G appropriate to call the magnetic pole

10. Magnetism. ) it is. S G appropriate to call the magnetic pole 10 agnetism The wor magnetism is erive from iron ore magnetite (Fe 3 O 4, which was foun in the islan of magnesia in Greece It is believe that the Chinese ha known the property of the magnet even in 000

More information

Sensors & Transducers 2015 by IFSA Publishing, S. L.

Sensors & Transducers 2015 by IFSA Publishing, S. L. Sensors & Transucers, Vol. 184, Issue 1, January 15, pp. 53-59 Sensors & Transucers 15 by IFSA Publishing, S. L. http://www.sensorsportal.com Non-invasive an Locally Resolve Measurement of Soun Velocity

More information

SPHERICAL RESONATOR WITH DB-BOUNDARY CON- DITIONS

SPHERICAL RESONATOR WITH DB-BOUNDARY CON- DITIONS Progress In Electromagnetics Research Letters, Vol. 6, 3 37, 2009 SPHERICAL RESONATOR WITH DB-BOUNDARY CON- DITIONS I. V. Lindell and A. H. Sihvola Electromagnetics Group Department of Radio Science and

More information

A Model of Electron-Positron Pair Formation

A Model of Electron-Positron Pair Formation Volume PROGRESS IN PHYSICS January, 8 A Moel of Electron-Positron Pair Formation Bo Lehnert Alfvén Laboratory, Royal Institute of Technology, S-44 Stockholm, Sween E-mail: Bo.Lehnert@ee.kth.se The elementary

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

Research Article Relativistic Propagation of Linearly/Circularly Polarized Laser Radiation in Plasmas

Research Article Relativistic Propagation of Linearly/Circularly Polarized Laser Radiation in Plasmas ISRN Optics Volume 213, Article ID 642617, 8 pages http://x.oi.org/1.1155/213/642617 Research Article Relativistic Propagation of Linearly/Circularly Polarize Laser Raiation in Plasmas Sonu Sen, 1 Meenu

More information

Chapter-2. Steady Stokes flow around deformed sphere. class of oblate axi-symmetric bodies

Chapter-2. Steady Stokes flow around deformed sphere. class of oblate axi-symmetric bodies hapter- Steay Stoes flow aroun eforme sphere. class of oblate axi-symmetric boies. General In physical an biological sciences, an in engineering, there is a wie range of problems of interest lie seimentation

More information

Stability of Stratified Couple-Stress Dusty Fluid in the Presence of Magnetic Field through Porous Medium

Stability of Stratified Couple-Stress Dusty Fluid in the Presence of Magnetic Field through Porous Medium vailable at http://pvamu.eu/aam ppl. ppl. Math. ISSN: 93-9466 Vol. 6, Issue (December ), pp. 5 5 pplications pplie Mathematics: n International Journal (M) Stability of Stratifie Couple-Stress Dusty Flui

More information

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China Progress In Electromagnetics Research C, Vol. 33, 259 267, 2012 A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS B. Li 1, *, L. X. He 2, Y. Z. Yin 1, W. Y. Guo 2, 3, and

More information

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2?

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2? Secon Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of.77 µf. What is C? C 4.0 µf.0 µf A) 7 µf B) µf C) 4 µf D) 3 µf E) 6 µf Q. When the potential ifference across

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Analytical approach of Brillouin amplification over threshold

Analytical approach of Brillouin amplification over threshold Research Article Vol. 57, No. 4 / February 208 / Applie Optics 607 Analytical approach of Brillouin amplification over threshol FİKRİ SERDAR GÖKHAN,, *HASAN GÖKTAŞ, 2,3 AND VOLKER J. SORGER 2 Department

More information

Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors

Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors J. Woodley and M. Mojahedi Vol. 23, No. 11/November 2006/ J. Opt. Soc. Am. B 2377 Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors Jonathan Woodley and

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

Subwavelength resolution with three-dimensional isotropic transmission-line lenses

Subwavelength resolution with three-dimensional isotropic transmission-line lenses 1 Subwavelength resolution with three-dimensional isotropic transmission-line lenses Pekka Alitalo and Sergei A. Tretyakov, Senior Member, IEEE arxiv:physics/0703107v1 [physics.optics] 9 Mar 2007 Abstract

More information

Characterization of lead zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy

Characterization of lead zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 1 15 JUNE 1999 Characterization of lea zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy Haifeng Wang, Wenhua Jiang, a) an Wenwu

More information

PHY 114 Summer 2009 Final Exam Solutions

PHY 114 Summer 2009 Final Exam Solutions PHY 4 Summer 009 Final Exam Solutions Conceptual Question : A spherical rubber balloon has a charge uniformly istribute over its surface As the balloon is inflate, how oes the electric fiel E vary (a)

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010 NTNU Page of 6 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk This solution consists of 6 pages. Solution to the exam in TFY423 STATISTICAL PHYSICS Wenesay ecember, 2 Problem. Particles

More information

STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB

STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB Progress In Electromagnetics Research M, Vol. 11, 13 13, 1 STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB H. Y. Chen, P. H. Zhou, L. Chen,

More information

Simulation of Angle Beam Ultrasonic Testing with a Personal Computer

Simulation of Angle Beam Ultrasonic Testing with a Personal Computer Key Engineering Materials Online: 4-8-5 I: 66-9795, Vols. 7-73, pp 38-33 oi:.48/www.scientific.net/kem.7-73.38 4 rans ech ublications, witzerlan Citation & Copyright (to be inserte by the publisher imulation

More information

Effects of Loss Factor on Plane Wave Propagation through a Left-Handed Material Slab

Effects of Loss Factor on Plane Wave Propagation through a Left-Handed Material Slab Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 6 Effects of Loss Factor on Plane Wave Propagation through a Left-Handed Material Slab C. Sabah Electrical and Electronics Engineering Department, University

More information

Exam #2, Electrostatics

Exam #2, Electrostatics Exam #2, Electrostatics Prof. Maurik Holtrop Department of Physics PHYS 408 University of New Hampshire March 27 th, 2003 Name: Stuent # NOTE: There are 5 questions. You have until 9 pm to finish. You

More information

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency Progress In Electromagnetics Research Letters, Vol. 71, 91 96, 2017 Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency Tuanhui Feng *,HongpeiHan,LiminWang,andFeiYang Abstract A

More information

ECE 6310 Spring 2012 Exam 1 Solutions. Balanis The electric fields are given by. E r = ˆxe jβ 0 z

ECE 6310 Spring 2012 Exam 1 Solutions. Balanis The electric fields are given by. E r = ˆxe jβ 0 z ECE 6310 Spring 2012 Exam 1 Solutions Balanis 1.30 The electric fiels are given by E i ˆxe jβ 0 z E r ˆxe jβ 0 z The curl of the electric fiels are the usual cross prouct E i jβ 0 ẑ ˆxe jβ 0 z jβ 0 ŷe

More information

The effect of dissipation on solutions of the complex KdV equation

The effect of dissipation on solutions of the complex KdV equation Mathematics an Computers in Simulation 69 (25) 589 599 The effect of issipation on solutions of the complex KV equation Jiahong Wu a,, Juan-Ming Yuan a,b a Department of Mathematics, Oklahoma State University,

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

Constitutive parameter extraction and experimental validation of single and double negative metamaterials Y. Hollander 1 R.

Constitutive parameter extraction and experimental validation of single and double negative metamaterials Y. Hollander 1 R. Published in IET Microwaves, Antennas & Propagation Received on 20th January 2010 Revised on 27th May 2010 ISSN 1751-8725 Constitutive parameter extraction and experimental validation of single and double

More information

Self-focusing and soliton formation in media with anisotropic nonlocal material response

Self-focusing and soliton formation in media with anisotropic nonlocal material response EUROPHYSICS LETTERS 20 November 1996 Europhys. Lett., 36 (6), pp. 419-424 (1996) Self-focusing an soliton formation in meia with anisotropic nonlocal material response A. A. Zoulya 1, D. Z. Anerson 1,

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

In-plane modal analysis of a metalayer formed by arrayed pairs of dogbone-shaped conductors

In-plane modal analysis of a metalayer formed by arrayed pairs of dogbone-shaped conductors Available online at www.sciencedirect.com Metamaterials 5 (2011) 26 35 Invited Paper In-plane modal analysis of a metalayer formed by arrayed pairs of dogbone-shaped conductors P. Baccarelli a,, F. Capolino

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

ECE Microwave Engineering

ECE Microwave Engineering ECE 5317-6351 Mirowave Engineering Aapte from notes by Prof. Jeffery T. Williams Fall 18 Prof. Davi R. Jakson Dept. of ECE Notes 7 Waveguiing Strutures Part : Attenuation ε, µσ, 1 Attenuation on Waveguiing

More information

MULTI-SCALE METHODS FOR THE SOLUTION OF THE RADIATIVE TRANSFER EQUATION

MULTI-SCALE METHODS FOR THE SOLUTION OF THE RADIATIVE TRANSFER EQUATION MULTI-SCALE METHODS FOR THE SOLUTION OF THE RADIATIVE TRANSFER EQUATION Pero J. Coelho *,, Nicolas Crouseilles **, Pero Pereira * an Maxime Roger *** * LAETA, IDMEC, Dept. of Mechanical Engineering, Instituto

More information

2013 Feb 13 Exam 1 Physics 106. Physical Constants:

2013 Feb 13 Exam 1 Physics 106. Physical Constants: 203 Feb 3 xam Physics 06 Physical onstants: proton charge = e =.60 0 9 proton mass = m p =.67 0 27 kg electron mass = m e = 9. 0 3 kg oulomb constant = k = 9 0 9 N m 2 / 2 permittivity = ǫ 0 = 8.85 0 2

More information

Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines

Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 115 Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines L. Zhang and J. M. Song Iowa

More information

25. Optical properties of materials-metal

25. Optical properties of materials-metal 5. Otical roerties of materials-metal Drue Moel Conuction Current in Metals EM Wave Proagation in Metals Sin Deth Plasma Frequency Drue moel Drue moel : Lorenz moel (Harmonic oscillator moel) without restoration

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges Plasma Science an Technology, Vol.16, No.1, Oct. 214 A Simple Moel for the Calculation of Plasma Impeance in Atmospheric Raio Frequency Discharges GE Lei ( ) an ZHANG Yuantao ( ) Shanong Provincial Key

More information

ANALYSIS OF PLANAR MULTILAYER STRUCTURES AT OBLIQUE INCIDENCE USING AN EQUIVALENT BCITL MODEL

ANALYSIS OF PLANAR MULTILAYER STRUCTURES AT OBLIQUE INCIDENCE USING AN EQUIVALENT BCITL MODEL Progress In Electromagnetics Research C, Vol. 4, 13 24, 2008 ANALYSIS OF PLANAR MULTILAYER STRUCTURES AT OBLIQUE INCIDENCE USING AN EQUIVALENT BCITL MODEL D. Torrungrueng and S. Lamultree Department of

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Electromagnetic surface and line sources under coordinate transformations

Electromagnetic surface and line sources under coordinate transformations PHYSICAL REVIEW A 8, 3382 29 Electromagnetic surface an line sources uner coorinate transformations Steven A. Cummer,* Nathan Kuntz, an Bogan-Ioan Popa Department of Electrical an Computer Engineering

More information

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics Lecture 1 Energy, Force, an ork in Electro an MagnetoQuasistatics n this lecture you will learn: Relationship between energy, force, an work in electroquasistatic an magnetoquasistatic systems ECE 303

More information