Chapter 9 Method of Weighted Residuals

Size: px
Start display at page:

Download "Chapter 9 Method of Weighted Residuals"

Transcription

1 Chapter 9 Metho of Weighte Resiuals

2 9- Introuction Metho of Weighte Resiuals (MWR) is an approimate technique for solving bounary value problems. It utilizes a trial functions satisfying the prescribe bounary conitions, an integral formulation to minimize the error, over the problem omain. The general concept is escribe for a one-imensional case. But the concept can easily be etene to two-imensional an threeimensional cases.

3 9- General Concept Given a ifferential equation of the general form, [ ] D y ( ), = a< < b subect to homogeneous bounary conitions y ( a ) = y ( b ) = (i) (ii) The metho of weighte resiuals seeks an approimate solution in the form n ( ) = ( ) * y ci N i i= (iii) where y* is the approimate solution epresse as the prouct of c i unknown (i.e. constant parameters to be etermine), an N i ( ) are trial functions. Note: The solution represente in Eq.(iii) is not an eact one!

4 When the assume solution of eq.(iii) is substitute into the ifferential equation of eq.(i), a resiual error R( ) (resiual) will result, which is given by R D y * ( ) = ( ), Note: Resiual R( ) is also a function of the unknown parameters, c i. The metho of weighte resiuals (MWR) requires that the unknown parameters c i be evaluate such that, b w ( ) R i ( ) = i=, n a Where w i ( ) represents n arbitrary weighting functions. Note: On integration, Eq.(v) results in n algebraic equations, which can be solve for the n values of c i. (iv) (v)

5 b w ( ) R i ( ) = i =, n a (v) - R e p e a t Eq.(v) epresses that the sum (integral) of the weighte resiual error over the omain of the problem is zero. The solution is eact at the en points (the bounary conitions must be satisfie) but, in general, at any interior point the resiual error is nonzero. Note: Several variations of the MWR eist an the technique vary primarily on how the weighting factors are selecte. The most common techniques are point collocation, sub-omain collocation, least squares an the Galerkin s metho. We will only iscuss the Galerkin s metho as it is quite simple to use an reaily aaptable to the finite element metho.

6 9-3 Galerkin s Metho In Galerkin s weighte resiual metho, the weighting functions are chosen to be ientical to the trial functions, i.e. w ( ) = N ( ) i =, n i i Therefore, the unknown parameters are etermine via b a b w ( ) R ( ) = N ( ) R ( ) = i =, n i a Again, the above integration results in n algebraic equations for evaluation of the n unknown parameters. i

7 Eample 9- Use Galerkin s weighte resiuals to obtain an approimate solution for the ifferential equation, y with bounary conitions y( ) = y( ) = Solution = 5 Since the integral equation have quaratic terms, the suitable trial functions will be polynomial. For homogeneous bounary conitions at = a an = b, the general form is p N ( ) = ( ) ( ) a where p an q are positive integers, that satisfy the bounary conitions. Using a single trial function, the simplest form will be ( ) = ( ) N b q

8 Using this trial function, the approimate solution is * y c an the first an secon erivatives are * y y ( ) = ( ) * = c ( ) = c Note: The selecte trial function oes not satisfy the physics of the problem because the secon erivative is a constant, whereas accoring to the original ifferential equation, the secon erivative must be a quaratic. Nevertheless, we will continue with the eample to illustrate the proceure.

9 Substitution of the secon erivative of y*() into the ifferential equation yiels the resiual, ( ; c ) = c 5 which is clearly a nonzero value. R Substituting the resiual into the integral equation we get N ( ) R ( ; c ) = which, after integration yiels c = 4 c ( ) ( 5) = So the approimate solution is obtaine as ( ) = 4 ( ) y *

10 For this eample, the eact solution can be obtaine by integrating the ifferential equation twice, i.e. ( ) ( ) C C C y y C y y = + + = = + + = + = = Applying the bounary conitions i.e. y() = an y() =, we get 3 an = = C C Therefore the eact solution is ( ) y =

11 A graphical comparison between the two solutions is shown below. The approimate solution agrees reasonably well with the eact solution.

12 Eample 9- Obtain two-term Galerkin s solution for y = 5 (i) with bounary conitions y( ) = y( ) = an using the following trial functions ( ) ( ) N = ; N ( ) = ( ) Solution Using these trial functions, the approimate solution is y ( ) = c ( ) + c ( ) * The secon erivatives of the above is y * = c + c (3 ) (ii) (iii)

13 Substitution of the secon erivative of y*() ifferential equation yiels the resiual into the ( ) R ; c ; c = c + c (3 ) 5 Substituting the resiual into the integral equation we get [ 5] ( ) c + c ( 3 ) [ 5] ( ) c + c ( 3 ) which, after integration an solving the equations yiels c 9 5 = ; c = 6 3 = =

14 So the two-term approimation solution is an the eact solution is 9 5 y * y *( ) = y ( ) = ( ) + ( ) Recall, the one-term approimation solution is ( ) = 4 ( ) y * ( ) = + 6

15 A graphical comparison between the three solutions is shown. We see that the two-term approimate solution matches quite closely to the eact solution.

16 9-4 The Galerkin s Finite Element Metho Element Formulation Consier a problem represente by a ifferential equation y + f ( ) = ; subecte to bounary conitions y ( ) = y ; y ( ) = y + + The problem omain is represente by + e +

17 The trial or interpolation functions are chosen such that N N ( ) = ( ) = (i) At the bounaries of the element omain, these trial functions have the values N ( ) = ; N ( + ) = (ii) N ( ) = ; N ( ) = + Using the above trial functions, the approimate solution will be ( e) y ( ) = y N ( ) + y N ( ) + (iii)

18 Substituting the approimate solution into the ifferential equation yiels the resiual, given by ( e ) ( e) y R = + f ( ) ( e) R = y N ( ) + y + N ( ) + f ( ) (iv) Applying the Galerkin s weighte resiual criterion results in + ( e ) i ( ) (, ) ( e ) y N i ( ) + N ( ) ( ) i f = + + N R = i= (v) Applying integration by part on the first integral term, we get N e t p a g e

19 ( e ) + ( e ) y + N i y N i ( ) + + N i f = i = ( ) ( ) (, ) (vi) Evaluate the non-integral terms at the bounaries an rearranging the equations we get N y y = N ( ) f ( ) + ( e ) ( e ) + + N y y = N ( ) f ( ) + ( e ) ( e ) + + Setting =, an substitute the approimate solution y ( e ) ( ) into the above eq.(vii), we get + (vii)

20 N N N y y y N ( ) f ( ) + = + N N N y y y N ( ) f ( ) + = + which can be written in the matri form as k k y f k k = y f ( e ) ( e ) (viii) (i) where, N N = (, =, ) i ki i () Note: The RHS of eq. (viii) represents the forces acting at the two ens of the elements omain.

21 Assembly of Elements Since the finite element solution is not eact, then if two elements are connecte at a noe, we have y ( ) = y ( ) ( 3 ) ( 4 ) 4 4 For eact solution, y y ( 3 ) ( 4 ) 4 4 y y = ( 3 ) ( 4 ) 4 4

22 9-5 Application of Galerkin s FE Metho. One-Dimensional Problem Consier a prismatic bar uner an aial loaing. The ifferential equation governing this problem is given by σ Eε u E ( ) = ( ) = = (i) The approimate solution for isplacement u( ) is u u N u N * ( ) = ( ) + ( ) (ii) e u u L Note: The omain of our solution is the volume of the element.

23 The trial functions use in Eq.(ii) are chosen such that N ( ) = ; N = L L Hence, the approimate solution can be written as u u u L L * ( ) = + Substituting the approimate solution of Eq.(iv) into the ifferential equation of Eq.(i) results in a resiual given by * ( e ) u ( ) R = E = E u u + L L (iii) (iv) Applying the Galerkin s weighte resiual criterion results in (v) V * u ( ) N i ( ) E V = (vi)

24 Since V = A, where A is cross-sectional area of the bar, which is uniform, Eq.(iv) can then be epresse as L * u ( ) N i ( ) E A L = Integrating Eq.(vii) by part an rearranging the result, we get L N i u ( ) u ( ) AE = N i ( ) EA * * L (vii) (viii) Substituting the approimate solution of Eq.(iv) into Eq.(viii) an solving the RHS of the equation, we obtain N L A E ( u N+ u N ) = Aσ = N L A E ( u N+ u N ) = A σ = L (i)

25 Combining Eq.(i) an write in matri form, we get N N N N L u f A E = N N N N u f () Integrating iniviual term within the square bracket inepenently yiels, A E u f L = (i) u f which is the system of linear equations for a -D bar element. Note: The square matri represents the stiffness matri for the element.

26 . Beam in Bening Consier a portion of beam loae with uniformly istribute loa q( ) as shown. The ifferential equation for this problem is represente by Galerkin s finite element metho is applie by using an approimate solution for v( ) in the form

27 Substituting the approimate solution into the original ifferential equation yiels the resiuals, i.e. Integrating the erivative terms by parts an assuming a constant E I z, we obtain We observe that the first term of the above equation represents the shear force conitions at the element noes, i.e.

28 Integrating again by part an rearranging gives, This equation can be written in the matri form, ( ) [ k] e { δ } = { F} where the terms of the stiffness matri are efine by

29 The terms for the element force vector are efine by Where the integral term represents the equivalent noal forces an moments prouce by the istribute loa. If q( ) = q = constant (positive upwar), then substitution of the interpolation function into the above equation yiels the element noal force vector given by

30 3. One-Dimensional Heat Conuction Application of the Galerkin s finite element metho to the problem of one-imensional, steay-state heat conuction is evelope base on the conition epicte in figure below. Note: Surfaces of the boy normal to the -ais are assume to be perfectly insulate.

31 Performing an energy balance across a small cubic element, we obtain the ifferential equation governing the steay-state heat conuction through the boy, given by where Q is an internal heat generation rate in W/m 3. The approimate solution for the temperature istribution T * ( ) in the element is epresse as, where T an T are the temperatures a noes an. The linear interpolation functions N an N are given by N N + ( ) = ; ( ) = + +

32 Substituting the approimate solution into the original ifferential equation yiels the resiuals, i.e. Integrating the first terms by parts, we obtain Evaluating the first term of the above equation, substituting the approimate solution T * ( ) into the secon term, an rearranging the results, we obtain two equations which can be epresse as ( see net page )

33 These equations can be written in a conense matri form as ( ) [ k ] e T { T} { f Q} { f g} = + (i) where [ k T ] (e) is the element conuctivitiy matri. The elements of this matri are efine by (ii)

34 The first RHS term of eq.(i) is noal force vector arising from internal heat generation with values efine by (iii) an vector {f g } represents the graient bounary conition at the element noes. Performing the integrations inicate in eq.(ii) gives the element conuctivity matri as

35 For constant internal heat generation Q, eq.(iii) results in the noal vector, The element graient bounary conition {f g } is escribe by T q f k A A T q { } g = =

36 En of Chapter 9

THE ACCURATE ELEMENT METHOD: A NEW PARADIGM FOR NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

THE ACCURATE ELEMENT METHOD: A NEW PARADIGM FOR NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS THE PUBISHING HOUSE PROCEEDINGS O THE ROMANIAN ACADEMY, Series A, O THE ROMANIAN ACADEMY Volume, Number /, pp. 6 THE ACCURATE EEMENT METHOD: A NEW PARADIGM OR NUMERICA SOUTION O ORDINARY DIERENTIA EQUATIONS

More information

Shape functions in 1D

Shape functions in 1D MAE 44 & CIV 44 Introuction to Finite Elements Reaing assignment: ecture notes, ogan.,. Summary: Prof. Suvranu De Shape functions in D inear shape functions in D Quaratic an higher orer shape functions

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

1D Heat Transfer. Background. Local Equations. The temperature assumption. Balance law. Lecture 7

1D Heat Transfer. Background. Local Equations. The temperature assumption. Balance law. Lecture 7 1D Heat Transfer Backgroun Consier a true 3D boy, where it is reasonable to assume that the heat transfer occurs only in one single irection. The heat conuctivity λ [J/sC m] an the internal heat generation

More information

Lecture 3: Development of the Truss Equations.

Lecture 3: Development of the Truss Equations. 3.1 Derivation of the Stiffness Matrix for a Bar in Local Coorinates. In 3.1 we will perform Steps 1-4 of Logan s FEM. Derive the truss element equations. 1. Set the element type. 2. Select a isplacement

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter 2 Governing Equations In the present an the subsequent chapters, we shall, either irectly or inirectly, be concerne with the bounary-layer flow of an incompressible viscous flui without any involvement

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Nonlinear Dielectric Response of Periodic Composite Materials

Nonlinear Dielectric Response of Periodic Composite Materials onlinear Dielectric Response of Perioic Composite aterials A.G. KOLPAKOV 3, Bl.95, 9 th ovember str., ovosibirsk, 639 Russia the corresponing author e-mail: agk@neic.nsk.su, algk@ngs.ru A. K.TAGATSEV Ceramics

More information

Polynomial Inclusion Functions

Polynomial Inclusion Functions Polynomial Inclusion Functions E. e Weert, E. van Kampen, Q. P. Chu, an J. A. Muler Delft University of Technology, Faculty of Aerospace Engineering, Control an Simulation Division E.eWeert@TUDelft.nl

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

m (ft-lb/ft). Using the point-slope

m (ft-lb/ft). Using the point-slope ENGR 1990 Engineering athematics pplications of Derivatives E 560, E 570 Eample #1 Consier a long slener beam of length with a concentrate loa acting at istance a from the left en. Due to this loa, the

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION Mathematics Revision Guies Implicit Differentiation Page 1 of Author: Mark Kulowski MK HOME TUITION Mathematics Revision Guies Level: AS / A Level AQA : C4 Eecel: C4 OCR: C4 OCR MEI: C3 IMPLICIT DIFFERENTIATION

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Planar sheath and presheath

Planar sheath and presheath 5/11/1 Flui-Poisson System Planar sheath an presheath 1 Planar sheath an presheath A plasma between plane parallel walls evelops a positive potential which equalizes the rate of loss of electrons an ions.

More information

WJEC Core 2 Integration. Section 1: Introduction to integration

WJEC Core 2 Integration. Section 1: Introduction to integration WJEC Core Integration Section : Introuction to integration Notes an Eamples These notes contain subsections on: Reversing ifferentiation The rule for integrating n Fining the arbitrary constant Reversing

More information

Lectures HD#14 Dynamic response of continuous systems. Date: April

Lectures HD#14 Dynamic response of continuous systems. Date: April ectures -3 Date: April 4 7 Toay: Vibrations of continuous systems HD#4 Dynamic response of continuous systems Free vibrations of elastic bars an beams. Properties of normal moe functions. Force response

More information

One Dimensional Convection: Interpolation Models for CFD

One Dimensional Convection: Interpolation Models for CFD One Dimensional Convection: Interpolation Moels for CFD ME 448/548 Notes Geral Recktenwal Portlan State University Department of Mechanical Engineering gerry@p.eu ME 448/548: D Convection-Di usion Equation

More information

Formulation of the Equilibrium Equations of Transversely Loaded Elements Taking Beam-Column Effect into Consideration

Formulation of the Equilibrium Equations of Transversely Loaded Elements Taking Beam-Column Effect into Consideration Journal of Emerging Trens in Engineering an Applie Sciences (JETEAS) 3 (): 0-07 Scholarlink Research Institute Journals, 0 (ISSN: 4-70) jeteas.scholarlinkresearch.org Journal of Emerging Trens in Engineering

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

FE Modeling and Analysis of Isotropic and Orthotropic Beams Using First Order Shear Deformation Theory

FE Modeling and Analysis of Isotropic and Orthotropic Beams Using First Order Shear Deformation Theory Materials Sciences an Applications,, 4, 77- http://.oi.org/.46/msa..4 Publishe Online January (http://www.scirp.org/journal/msa) 77 FE Moeling an Analysis of Isotropic an Orthotropic Beams Using First

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

water adding dye partial mixing homogenization time

water adding dye partial mixing homogenization time iffusion iffusion is a process of mass transport that involves the movement of one atomic species into another. It occurs by ranom atomic jumps from one position to another an takes place in the gaseous,

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

OPG S. LIST OF FORMULAE [ For Class XII ] OP GUPTA. Electronics & Communications Engineering. Indira Award Winner

OPG S. LIST OF FORMULAE [ For Class XII ] OP GUPTA. Electronics & Communications Engineering. Indira Award Winner OPG S MAHEMAICS LIS OF FORMULAE [ For Class XII ] Covering all the topics of NCER Mathematics et Book Part I For the session 0-4 By OP GUPA Electronics & Communications Engineering Inira Awar Winner Visit

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate Freun Publishing House Lt., International Journal of Nonlinear Sciences & Numerical Simulation, (9), -, 9 Application of the homotopy perturbation metho to a magneto-elastico-viscous flui along a semi-infinite

More information

Dissipative numerical methods for the Hunter-Saxton equation

Dissipative numerical methods for the Hunter-Saxton equation Dissipative numerical methos for the Hunter-Saton equation Yan Xu an Chi-Wang Shu Abstract In this paper, we present further evelopment of the local iscontinuous Galerkin (LDG) metho esigne in [] an a

More information

Using Quasi-Newton Methods to Find Optimal Solutions to Problematic Kriging Systems

Using Quasi-Newton Methods to Find Optimal Solutions to Problematic Kriging Systems Usin Quasi-Newton Methos to Fin Optimal Solutions to Problematic Kriin Systems Steven Lyster Centre for Computational Geostatistics Department of Civil & Environmental Enineerin University of Alberta Solvin

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

CHAPTER 1 INTRODUCTION TO THE FINITE ELEMENT METHOD AND BAR ELEMENTS...

CHAPTER 1 INTRODUCTION TO THE FINITE ELEMENT METHOD AND BAR ELEMENTS... able of Contents CHPER INRODUCION O HE FINIE EEMEN MEHOD ND BR EEMENS.... Simple springs.... Bar elements....3 System analysis... 4.3. Eample ially loae bars with varying cross-sections... 5.4 Properties

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum October 6, 4 ARDB Note Analytic Scaling Formulas for Crosse Laser Acceleration in Vacuum Robert J. Noble Stanfor Linear Accelerator Center, Stanfor University 575 San Hill Roa, Menlo Park, California 945

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices Journal of Physics: Conference Series PAPER OPEN ACCESS Two Dimensional Numerical Simulator for Moeling NDC Region in SNDC Devices To cite this article: Dheeraj Kumar Sinha et al 2016 J. Phys.: Conf. Ser.

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis The Kepler Problem For the Newtonian 1/r force law, a miracle occurs all of the solutions are perioic instea of just quasiperioic. To put it another way, the two-imensional tori are further ecompose into

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Summary of the Class before Exam1

Summary of the Class before Exam1 uar o the lass beore Ea Builing a FEA Moel Ingreients o a FEA sotware pacage teps in builing a FEA oel Moeling consierations D pring/truss Eleents ingle D spring/truss eleent Global stiness atri; properties

More information

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation A Novel ecouple Iterative Metho for eep-submicron MOSFET RF Circuit Simulation CHUAN-SHENG WANG an YIMING LI epartment of Mathematics, National Tsing Hua University, National Nano evice Laboratories, an

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Applications of the Wronskian to ordinary linear differential equations

Applications of the Wronskian to ordinary linear differential equations Physics 116C Fall 2011 Applications of the Wronskian to orinary linear ifferential equations Consier a of n continuous functions y i (x) [i = 1,2,3,...,n], each of which is ifferentiable at least n times.

More information

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences.

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences. S 63 Lecture 8 2/2/26 Lecturer Lillian Lee Scribes Peter Babinski, Davi Lin Basic Language Moeling Approach I. Special ase of LM-base Approach a. Recap of Formulas an Terms b. Fixing θ? c. About that Multinomial

More information

Heat Transfer from Arbitrary Nonisothermal Surfaces in a Laminar Flow

Heat Transfer from Arbitrary Nonisothermal Surfaces in a Laminar Flow 3 Heat Transfer from Arbitrary Nonisothermal Surfaces in a Laminar Flo In essence, the conjugate heat transfer problem consiers the thermal interaction beteen a boy an a flui floing over or insie it. As

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

there is no special reason why the value of y should be fixed at y = 0.3. Any y such that

there is no special reason why the value of y should be fixed at y = 0.3. Any y such that 25. More on bivariate functions: partial erivatives integrals Although we sai that the graph of photosynthesis versus temperature in Lecture 16 is like a hill, in the real worl hills are three-imensional

More information

Static analysis of beams on elastic foundation by the method of discrete singular convolution

Static analysis of beams on elastic foundation by the method of discrete singular convolution International Journal of Engineering & Applie Sciences (IJEAS) Beir Agöz, Kair Mercan, Çiğem Demir, Ömer Civale Vol.8, Issue 3(016) 67-73 Static analysis of beams on elastic founation by the metho of iscrete

More information

inflow outflow Part I. Regular tasks for MAE598/494 Task 1

inflow outflow Part I. Regular tasks for MAE598/494 Task 1 MAE 494/598, Fall 2016 Project #1 (Regular tasks = 20 points) Har copy of report is ue at the start of class on the ue ate. The rules on collaboration will be release separately. Please always follow the

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

The Sokhotski-Plemelj Formula

The Sokhotski-Plemelj Formula hysics 25 Winter 208 The Sokhotski-lemelj Formula. The Sokhotski-lemelj formula The Sokhotski-lemelj formula is a relation between the following generalize functions (also calle istributions), ±iǫ = iπ(),

More information

7.1 Support Vector Machine

7.1 Support Vector Machine 67577 Intro. to Machine Learning Fall semester, 006/7 Lecture 7: Support Vector Machines an Kernel Functions II Lecturer: Amnon Shashua Scribe: Amnon Shashua 7. Support Vector Machine We return now to

More information

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the

More information

Non-Conservative Stability Analysis of Hauger Types of Columns with Different Boundary Conditions

Non-Conservative Stability Analysis of Hauger Types of Columns with Different Boundary Conditions Proceeings of the Worl Congress on Engineering 08 Vol II WCE 08, July 4-6, 08, onon, U.K. on-conservative Stability nalysis of Hauger Types of Columns with Different Bounary Conitions S.. Fazelzaeh,. Tashakorian,

More information

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0.

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0. CHAPTER 4. INTEGRATION 68 Previously, we chose an antierivative which is correct for the given integran /. However, recall 6 if 0. That is F 0 () f() oesn t hol for apple apple. We have to be sure the

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

C6-1 Differentiation 2

C6-1 Differentiation 2 C6-1 Differentiation 2 the erivatives of sin, cos, a, e an ln Pre-requisites: M5-4 (Raians), C5-7 (General Calculus) Estimate time: 2 hours Summary Lea-In Learn Solve Revise Answers Summary The erivative

More information

Modeling time-varying storage components in PSpice

Modeling time-varying storage components in PSpice Moeling time-varying storage components in PSpice Dalibor Biolek, Zenek Kolka, Viera Biolkova Dept. of EE, FMT, University of Defence Brno, Czech Republic Dept. of Microelectronics/Raioelectronics, FEEC,

More information

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A AN INTRODUCTION TO AIRCRAFT WIN FLUTTER Revision A By Tom Irvine Email: tomirvine@aol.com January 8, 000 Introuction Certain aircraft wings have experience violent oscillations uring high spee flight.

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

A Short Note on Self-Similar Solution to Unconfined Flow in an Aquifer with Accretion

A Short Note on Self-Similar Solution to Unconfined Flow in an Aquifer with Accretion Open Journal o Flui Dynamics, 5, 5, 5-57 Publishe Online March 5 in SciRes. http://www.scirp.org/journal/oj http://x.oi.org/.46/oj.5.57 A Short Note on Sel-Similar Solution to Unconine Flow in an Aquier

More information

Optimal Control of Spatially Distributed Systems

Optimal Control of Spatially Distributed Systems Optimal Control of Spatially Distribute Systems Naer Motee an Ali Jababaie Abstract In this paper, we stuy the structural properties of optimal control of spatially istribute systems. Such systems consist

More information

1. Filling an initially porous tube under a constant head imposed at x =0

1. Filling an initially porous tube under a constant head imposed at x =0 Notes on Moving Bounary problems, Voller U o M, volle00@umn.eu. Filling an initially porous tube uner a constant hea impose at x =0 Governing equation is base on calculating the water volume lux by the

More information

FUNDAMENTALS OF STOCHASTIC NETWORKS

FUNDAMENTALS OF STOCHASTIC NETWORKS FUNDAMENTALS OF STOCHASTIC NETWORKS FUNDAMENTALS OF STOCHASTIC NETWORKS OLIVER C. IBE University of Massachusetts Lowell Massachusetts A JOHN WILEY & SONS INC. PUBLICATION Copyright 11 by John Wiley &

More information

Damage identification based on incomplete modal data and constrained nonlinear multivariable function

Damage identification based on incomplete modal data and constrained nonlinear multivariable function Journal of Physics: Conference Series PAPER OPEN ACCESS Damage ientification base on incomplete moal ata an constraine nonlinear multivariable function To cite this article: S S Kourehli 215 J. Phys.:

More information

RETROGRADE WAVES IN THE COCHLEA

RETROGRADE WAVES IN THE COCHLEA August 7, 28 18:2 WSPC - Proceeings Trim Size: 9.75in x 6.5in retro wave 1 RETROGRADE WAVES IN THE COCHLEA S. T. NEELY Boys Town National Research Hospital, Omaha, Nebraska 68131, USA E-mail: neely@boystown.org

More information

Mathematical Review Problems

Mathematical Review Problems Fall 6 Louis Scuiero Mathematical Review Problems I. Polynomial Equations an Graphs (Barrante--Chap. ). First egree equation an graph y f() x mx b where m is the slope of the line an b is the line's intercept

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS MARK SCHACHNER Abstract. When consiere as an algebraic space, the set of arithmetic functions equippe with the operations of pointwise aition an

More information

The Sokhotski-Plemelj Formula

The Sokhotski-Plemelj Formula hysics 24 Winter 207 The Sokhotski-lemelj Formula. The Sokhotski-lemelj formula The Sokhotski-lemelj formula is a relation between the following generalize functions (also calle istributions), ±iǫ = iπ(),

More information

Problems Governed by PDE. Shlomo Ta'asan. Carnegie Mellon University. and. Abstract

Problems Governed by PDE. Shlomo Ta'asan. Carnegie Mellon University. and. Abstract Pseuo-Time Methos for Constraine Optimization Problems Governe by PDE Shlomo Ta'asan Carnegie Mellon University an Institute for Computer Applications in Science an Engineering Abstract In this paper we

More information

REDUCING the cost of launching a space vehicle into space is

REDUCING the cost of launching a space vehicle into space is AIAA JOURNAL Vol. 45, No., September Micromechanical Analysis of Composite Corrugate-Core Sanwich Panels for Integral Thermal Protection Systems Oscar A. Martinez, Bhavani V. Sankar, Raphael T. Haftka,

More information

Consider for simplicity a 3rd-order IIR filter with a transfer function. where

Consider for simplicity a 3rd-order IIR filter with a transfer function. where Basic IIR Digital Filter The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient ifference equation

More information

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM ON THE OPTIMALITY SYSTEM FOR A D EULER FLOW PROBLEM Eugene M. Cliff Matthias Heinkenschloss y Ajit R. Shenoy z Interisciplinary Center for Applie Mathematics Virginia Tech Blacksburg, Virginia 46 Abstract

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information