Heat Capacity Measurements. Scott Hannahs NHMFL Summer School 2016

Size: px
Start display at page:

Download "Heat Capacity Measurements. Scott Hannahs NHMFL Summer School 2016"

Transcription

1 Heat Capacity Measurements Scott Hannahs NHMFL Summer School

2 Why Heat Capacity Fundamental Quantity R Ef(E)g(E)dE Capacity to hold energy Equipartition in states Thermodynamic, bulk measurement 2

3 In Metals For solids (metals) two components C = C electron + C phonon = T + AT 3 C T = + AT 2 At low temperatures ignore phonon contribution Simple metals, free electron model Heavy Fermions, correlated elections, magnetic f-electron interactions 1 1 3

4 Spin Systems Cs2CuBr4 Insulators Latent Heat Transition order 4

5 Outline Introduction Measurement Techniques Cryogenics Thermometry Other Issues 5

6 We re Done??? Temperature C p = lim T!0 ( Q T ) p Heat Input Time 6

7 Not quite. Real World Effects! - Heat diffusion into sample interior - Heat leak to outside world - Temperature control of sample - Measurement of temperature Addenda of heater Addenda of thermometer - Measurement of heat pulse 7

8 Typical Setup 8

9 9

10 Thermal Relaxation T = P 0 apple SH e tapple SH/(C s +C ad ) Two Time constants, Sample to platform, Platform to bath Cp from time constant and from T C p = apple 10

11 Heat Pulse Calorimetry Heat Pulse Q in short time Decays to platform Temp tc = RL Ct Ct = Ca + Cs RL = Thermal resistance of Link Ct = T / Q 11

12 Dual Slope Relaxation Can be wide range in Temp Simple Calculation Assume external effects cancel (as function of temp) High temp stability of block needed C(T h (T P h (T Can t change field Need warming and cooling Noisy derivative 12

13 AC Calorimetry Fast, Continuous Measurement Small sample Can sweep field, temperature Hard to get absolute accuracy Needs good thermometry 13

14 Rsh relatively small, fast recovery Drive heater(h) at V=cos(½ ω t) Ph = Rh V 2 Measure ω Need DC current Ist to measure Ts 14

15 T ST (t) = T 0 + T dc +T ac cos(ωt+φ) T ac = P 0!C [1 + 1 (! e ) 2 + f( i )] 1 2 Frequency greater! e 1 than conduction time through wires f( i ) 1 Function depends on internal time constant of sample T ac ' P 0!C T ac =( dt dr )R ac = T R(T ) V ac I st 15

16 Comments Drive frequency sweeps to find sweet spot Phase Shifts amplitude not uniform in sample Adjust frequency as shift field to stay in sweet spot Phase Shifts amplitude not uniform in sample Can use triangular or square wave Vsh Small sample < 1mG, thin heaters and thermometers as much as possible Rotate! No Copper! 16

17 AC Cal Cell No pumping line Can rotate Indium seal, compression Ag platform, with heater thermometer Sapphire electrical isolation Heater/Sample/Thermometer sandwich on wires 17

18 Top Loading Rotatable Calorimeter: 0.1 K - 10 K, 45 T Top-loading small-sample calorimeters for measurements as a function of magnetic field angle N.A. Fortune and S.T. Hannahs, Journal of Physics: Conference Series 568 (2014)

19 19

20 Why Rotate? Anisotropic Materials Layered, 1D Alignment 20 Field is a vector! C P /T [mj/mol-k 2 ] K 2.03 K 1.58 K 0.58 K 0.30 K 0.18 K Field [T] 20

21 Magnetic Field-Orientation Dependent High-Field Phase Transition Within Superconducting State of CeCoIn5 Top-loading small-sample calorimeters for measurements as a function of magnetic field angle N.A. Fortune and S.T. Hannahs, Journal of Physics: Conference Series 568 (2014) Magnetic enhancement of superconductivity from electron spin domains, H.A. Radovan, N.A. Fortune, T.P. Murphy, S.T. Hannahs, E.C. Palm, S.W. Tozer and D. Hall, Nature 425 (2003) 51 21

22 Bonus! Magnetocaloric Effect in the Swept-Field Limit Thermodynamics in the high-field phases of (TMTSF)2ClO4, U.M. Scheven, S.T. Hannahs, C. Immer, P.M. Chaikin, Phys. Rev. B. 56 (1997) 7804 Thermodynamics of the up-up-down phase of the S = 1/2 triangular-lattice antiferromagnet Cs2CuBr4 H. Tsuji, C.R. Rotundu, T. Ono, H. Tanaka, B. Andraka, K. Ingersent, and Y. Takano, Physical Review B 76 (2007) Cascade of Magnetic-Field-Induced Quantum Phase Transitions in a Spin-1/2 Triangular-Lattice Antiferromagnet N.A. Fortune, S.T. Hannahs, Y. Yoshida, T.E. Sherline, T. Ono, H. Tanaka, and Y. Takano, Phys. Rev. Lett. 102 (2009) ΔT sample - reservoir? Energy Conservation TdS! =!"# κ ΔTdt + C! $ dt sample " #$ from system to reservoir Thermodynamics to sample TdS = T S T H dt + T S H T dh Maxwell Relation C H = T S T H S H T = M T H Substituting C H dt T M T H dh = κ ΔTdt + C sample dt Solving for ΔT in swept-field + short relaxation time limits ΔT = T κ M T H dh dt ( C S + C ) H κ dt dt T κ M T H dh dt 22

23 Magneto-Caloric Effect b Temperature [K] a 20 a b T/min - 2 T/min 30 b a b T/min -1 T/min 30 Magnetic Field [T] 23

24 Remember. C = P o R(T )! T I st V ac Pesky thermometry and sensitivity! Need R(B, T) Need η(b, T) There is no resistance type (<1%) field independent thermometer < 1K Goal, to calibrate field dependence 24

25 Frac Temp Err Resistance [Ohm] x10 3 Thermometer Calibration - PT Fortune/Hannahs Jan 2016 B = 10.0 tesla Tchebyshev Fit Order = Fit to Tchebyshev Polynomials Orthogonal! Temperature [K] Sensitivity is function of same parameters Extract coefficients as function of B Fit C i(b) as Padé approximate 25

26 Padé Approximates Thermometer Calibration June 2015 Tchebyshev Coeficient 2 CT ST PT C(B) =C 0 + apple 1B+apple 2 B B+ 2 B Ratio of two power C series Can fit functions with rapid changes and smooth sections Field [T] Watch out for nasty poles 26

27 3ω Technique Heater = Thermometer Resistance changes give 3ω response Thin film samples 27

Thermal analysis heat capacity. Sergey L. Bud ko

Thermal analysis heat capacity. Sergey L. Bud ko Thermal analysis heat capacity 590B F18 Sergey L. Bud ko Heat capacity C p = (dq/dt) p = T( S/ T) p Q heat, S - entropy C v = (dq/dt) v = T( S/ T) v C p C v = TVβ 2 /k T β volume thermal expansion, k T

More information

Thermal analysis heat capacity. Sergey L. Bud ko

Thermal analysis heat capacity. Sergey L. Bud ko Thermal analysis heat capacity 590B S14 Sergey L. Bud ko Detour phase transitions of 2 ½ order Heat capacity 2 ½ order phase transition Paul Ehrenfest: First-order phase transitions exhibit a discontinuity

More information

Specific heat study on the S=1 one-dimensional antiferromagnet NDMAP at low temperatures and in high magnetic fields

Specific heat study on the S=1 one-dimensional antiferromagnet NDMAP at low temperatures and in high magnetic fields Specific heat study on the S=1 one-dimensional antiferromagnet NDMAP at low temperatures and in high magnetic fields David Welch a, under the mentoring of Prof. Yasumasa Takano b a Department of Physics,

More information

Specific heat under pressure

Specific heat under pressure Specific heat under pressure Physics 590 B Elena Gati T DC T AC ~ 1/C temperature T Bath time 11/16/2018 Specific heat under pressure 1 Last lectures. relevant pressure units and scales? How to generate

More information

The measurement ΔQ ΔT C = 21/09/2011 CryoCourse Chichiliane

The measurement ΔQ ΔT C = 21/09/2011 CryoCourse Chichiliane The measurement C = ΔQ ΔT 62 How to measure Cp? Principle : apply P, read T and time adiabatic : isolated sample and pt by pt C = quasi-adiabatic, continuous heating P = C dt/dt ΔQ ΔT relaxation : heat

More information

Experimental Implementation of Measurement of Specific Heat under Pressure. Phys 590B Sangki Hong

Experimental Implementation of Measurement of Specific Heat under Pressure. Phys 590B Sangki Hong Experimental Implementation of Measurement of Specific Heat under Pressure Phys 590B Sangki Hong Methods: Specific Heat Measurement Relaxation AC modulation + sophisticated temperature control and fitting

More information

Tunneling Spectroscopy of PCCO

Tunneling Spectroscopy of PCCO Tunneling Spectroscopy of PCCO Neesha Anderson and Amlan Biswas Department of Physics, University of Florida, Gainesville, Florida Abstract A point-contact probe capable of operating down to temperatures

More information

Stability Analysis of the Interconnection of the LHC Main Superconducting Bus Bars

Stability Analysis of the Interconnection of the LHC Main Superconducting Bus Bars Stability Analysis of the Interconnection of the LHC Main Superconducting Bus Bars M. Bianchi 1,2, L. Bottura 2, M. Breschi 1, M. Casali 1, P.P. Granieri 2,3 1 University of Bologna, Italy 2 CERN, Geneva,

More information

Frozen Spin Targets. In a Nutshell. Version 2.0. Chris Keith

Frozen Spin Targets. In a Nutshell. Version 2.0. Chris Keith Frozen Spin Targets In a Nutshell Version 2.0 Chris Keith Dynamic Nuclear Polarization (the simple model) Use Low Temperature + High Field to polarize free electrons (aka paramagnetic centers) in the target

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

1. ADR General Description

1. ADR General Description 1. ADR General Description 1.1. Principle of Magnetic Cooling A cooling process may be regarded as an entropy reducing process. Since entropy (or degree of disorder) of a system at constant volume or constant

More information

Direct observation of magnetocaloric effect by differential thermal analysis: influence of experimental parameters

Direct observation of magnetocaloric effect by differential thermal analysis: influence of experimental parameters 1 Direct observation of magnetocaloric effect by differential thermal analysis: influence of experimental parameters Yamila Rotstein Habarnau a,b, Pablo Bergamasco a,b, Joaquin Sacanell a, Gabriela Leyva

More information

Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductor Particles

Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductor Particles Entropy 2004, 6, 116-127 Entropy ISSN 1099-4300 www.mdpi.org/entropy/ Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductor Particles Peter D. Keefe Keefe and

More information

Steven W. Van Sciver. Helium Cryogenics. Second Edition. 4) Springer

Steven W. Van Sciver. Helium Cryogenics. Second Edition. 4) Springer Steven W. Van Sciver Helium Cryogenics Second Edition 4) Springer Contents 1 Cryogenic Principles and Applications 1 1.1 Temperature Scale 2 1.2 Historical Background 4 1.3 Applications for Cryogenics

More information

AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields

AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields REVIEW OF SCIENTIFIC INSTRUMENTS 81, 104902 2010 AC measurement of heat capity and magnetocaloric effect for pulsed magnetic fields Yoshimitsu Kohama, 1,a Christophe Marcenat, 2 Thierry Klein, 3 and Marcelo

More information

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter S. Sadat 1, E. Meyhofer 1 and P. Reddy 1, 1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 Department

More information

Vacuum techniques (down to 1 K)

Vacuum techniques (down to 1 K) Vacuum techniques (down to 1 K) For isolation (deep Knudsen regime) liquid helium dewar / inner vacuum jacket Leak testing at level 10-11 Pa m3/s (10-10 mbar l/s) liquid helium dewar & transfer syphon

More information

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m. College of Science and Engineering School of Physics H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat Thursday 24th April, 2008

More information

NMR of CeCoIn5. AJ LaPanta 8/15/2016

NMR of CeCoIn5. AJ LaPanta 8/15/2016 NMR of CeCoIn5 AJ LaPanta 8/15/2016 In Co-NMR measurements on CeCoIn5, we see an increasing peak width below 50K. We interpret this as the growth of antiferromagnetic regions surrounding Cadmium dopants

More information

Uniaxial Pressure on Strongly Correlated Materials

Uniaxial Pressure on Strongly Correlated Materials Uniaxial Pressure on Strongly Correlated Materials Zieve lab, UC Davis Owen Dix Miles Frampton Scooter Johnson Adrian Swartz Rena Zieve Samples Adam Dioguardi, UC Davis Jason Cooley, LANL Todd Sayles,

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/112495

More information

Ultrasensitive Atomic Magnetometers

Ultrasensitive Atomic Magnetometers Ultrasensitive Atomic Magnetometers Faculty Thad Walker Ron Wakai Grad Students Bob Wyllie Zhimin Li (University of Texas Houston Health Science Center) University of Wisconsin-Madison Principles and Sensitivity

More information

PHYS-E0551. Low Temperature Physics Basics of Cryoengineering Course 2015:

PHYS-E0551. Low Temperature Physics Basics of Cryoengineering Course 2015: PHYS-E0551 Low Temperature Physics Basics of Cryoengineering Course 2015: 18.9. 4.12. Introduction Short history of cryogenics Some phase diagrams Cryogenic fluids Safety measures 1 Three courses under

More information

Low Vibration Cryogenic Equipment

Low Vibration Cryogenic Equipment PAGE 12 PAGE 13 ATTOCUBE S CRYOSTATS ATTODRY attodry1000....................... 14 cryogen-free cryostats with/without s attodry700.........................18 cryogen-free table-top cryostats with optical

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B F09 Sergey L. Bud ko (Сергей Леокадьевич Будько) Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should

More information

A variational approach to the macroscopic. Electrodynamics of hard superconductors

A variational approach to the macroscopic. Electrodynamics of hard superconductors A variational approach to the macroscopic electrodynamics of hard superconductors Dept. of Mathematics, Univ. of Rome La Sapienza Torino, July 4, 2006, joint meeting U.M.I. S.M.F. Joint work with Annalisa

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Caloric Determination of the Upper Critical Fields and Anisotropy of NdFeAsO 1-x F x. Single Crystals. U. Welp, R. Xie, A. E. Koshelev and W. K.

Caloric Determination of the Upper Critical Fields and Anisotropy of NdFeAsO 1-x F x. Single Crystals. U. Welp, R. Xie, A. E. Koshelev and W. K. Caloric Determination of the Upper Critical Fields and Anisotropy of NdFeAsO 1-x F x Single Crystals U. Welp, R. Xie, A. E. Koshelev and W. K. Kwok Materials Science Division, Argonne National Laboratory,

More information

Modelling Dynamical Fluorescent Micro Thermal Imaging of the Heat Diffusion in the La 5 Ca 9 Cu 24 O 41 Spin Ladder Compound.

Modelling Dynamical Fluorescent Micro Thermal Imaging of the Heat Diffusion in the La 5 Ca 9 Cu 24 O 41 Spin Ladder Compound. Modelling Dynamical Fluorescent Micro Thermal Imaging of the Heat Diffusion in the La 5 Ca 9 Cu 4 O 41 Spin Ladder Compound. E.I. Khadikova* 1, M.Montagnese, F. de Haan 1, P.H.M. van Loosdrecht 1,. 1 Zernike

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

He II Heat transfer through a Corrugated Tube - Test Report

He II Heat transfer through a Corrugated Tube - Test Report He II Heat transfer through a Corrugated Tube - Test Report Authors: Ch. Darve, Y. Huang, T. Nicol, T. Peterson Keywords: LHC inner triplet, heat exchanger, He II heat transfer, Kapitza resistance. Abstract

More information

Superconducting-Insulating Quantum Phase Transition in Homogenous Thin Films

Superconducting-Insulating Quantum Phase Transition in Homogenous Thin Films Superconducting-Insulating Quantum Phase Transition in Homogenous Thin Films Jonathan K. Whitmer Department of Physics, University of Illinois at Urbana-Champaign 1110 West Green Street, Urbana, IL 61801,

More information

Experiment 12: Superconductivity

Experiment 12: Superconductivity Experiment 12: Superconductivity Using a superconducting ceramic disk (composition: YBa 2 Cu 3 0 7 ), you will demonstrate the Meissner effect (by magnetic levitation) and measure its critical temperature.

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Frustrated Magnets as Magnetic Refrigerants

Frustrated Magnets as Magnetic Refrigerants Frustrated Magnets as Magnetic Refrigerants M. E. Zhitomirsky, A. I. Golov, I. B. Berkutov, O. A. Petrenko European Synchrotron Radiation Facility, BP-220, F-38043 Grenoble, France Dept. of Phys. and Astr.,

More information

Potential Concept Questions

Potential Concept Questions Potential Concept Questions Phase Diagrams Equations of State Reversible Processes Molecular Basis of Heat Capacity State Functions & Variables Temperature Joules Experiment for conversion of one form

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Low temperature measurements for detecting phase transitions in MnCl 3 -phen. Abstract

Low temperature measurements for detecting phase transitions in MnCl 3 -phen. Abstract Low temperature measurements for detecting phase transitions in MnCl 3 -phen Jerrold E. Kielbasa + and Michael A. Walsh ± Department of Physics, University of Florida August 2, 2002 Abstract Many high

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1 Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins (7th, 8th & 9th editions) Section 2.1 of Atkins (10th, 11th editions) Expansion Work General Expression for Work Free

More information

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Martin Dressel 1. Physikalisches Institut, Universität Stuttgart, Germany Outline 1. Introduction ESR resonators 2. Strip

More information

Introduction to Thermoelectric Materials and Devices

Introduction to Thermoelectric Materials and Devices Introduction to Thermoelectric Materials and Devices 4th Semester of 2012 2012.03.29, Thursday Department of Energy Science Sungkyunkwan University Radioisotope Thermoelectric Generator (PbTe) Space probe

More information

EXPERIMENT ET: ENERGY TRANSFORMATION & SPECIFIC HEAT

EXPERIMENT ET: ENERGY TRANSFORMATION & SPECIFIC HEAT MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.01X Fall 2000 EXPERIMENT ET: ENERGY TRANSFORMATION & SPECIFIC HEAT We have introduced different types of energy which help us describe

More information

NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase

NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase S. S. Kim 1 C. Huan 1 L. Yin 1 J. S. Xia 1 D.

More information

Measurement of small sample thermal conductivity by parallel thermal conductance technique

Measurement of small sample thermal conductivity by parallel thermal conductance technique Measurement of small sample thermal conductivity by parallel thermal conductance technique Bartosz M. Zawilski 1, Roy T. Littleton IV 2, and Terry M. Tritt 1, 2 1 Department of Physics and Astronomy 2

More information

Cryogenic Techniques below 1K How to get cold, stay cold and measure something!

Cryogenic Techniques below 1K How to get cold, stay cold and measure something! Cryogenic Techniques below 1K How to get cold, stay cold and measure something! Ian Bradley Physics Department, Lancaster University, UK e-mail: I.Bradley@Lancaster.ac.uk Initial statement of problem You

More information

Thermal and electrical conductivity of metals

Thermal and electrical conductivity of metals Thermal and electrical conductivity of metals (Item No.: P2350200) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Thermodynamics Subtopic: Heat, Work, and the First

More information

Switching of magnetic domains reveals spatially inhomogeneous superconductivity

Switching of magnetic domains reveals spatially inhomogeneous superconductivity Switching of magnetic domains reveals spatially inhomogeneous superconductivity Simon Gerber, Marek Bartkowiak, Jorge L. Gavilano, Eric Ressouche, Nikola Egetenmeyer, Christof Niedermayer, Andrea D. Bianchi,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: Ripplons Problem Set #11 Due in hand-in box by 4:00 PM, Friday, May 10 (k) We have seen

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Experimental Investigation of Hybrid System Pulse Tube and Active Magnetic Regenerator

Experimental Investigation of Hybrid System Pulse Tube and Active Magnetic Regenerator Experimental Investigation of Hybrid System Pulse Tube and Active Magnetic Regenerator D. Kwon, I. Park, S. Jeong Cryogenic Engineering Laboratory, Mechanical Engineering Dept., School of Mechanical and

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Structural and Thermal Characterization of Polymorphic Er 2 Si 2 O 7 Asghari Maqsood

Structural and Thermal Characterization of Polymorphic Er 2 Si 2 O 7 Asghari Maqsood Key Engineering Materials Online: 202-05-4 ISSN: 662-9795, Vols. 50-5, pp 255-260 doi:0.4028/www.scientific.net/kem.50-5.255 202 Trans Tech Publications, Switzerland Structural and Thermal Characterization

More information

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins Expansion Work General Expression for Work Free Expansion Expansion Against Constant Pressure Reversible Expansion

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Thermodynamics: A Brief Introduction. Thermodynamics: A Brief Introduction

Thermodynamics: A Brief Introduction. Thermodynamics: A Brief Introduction Brief review or introduction to Classical Thermodynamics Hopefully you remember this equation from chemistry. The Gibbs Free Energy (G) as related to enthalpy (H) and entropy (S) and temperature (T). Δ

More information

Features of Uni-Thermo

Features of Uni-Thermo Pelti ier Device in the 21st Uni-Thermo Century Hi eliability NTENTS Comparison with a Conventional Peltier Device. The Result of Operating Reliability Test Peltier Device Uni-Thermo Quality Chart Peltier

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Lecture 16.1 :! Final Exam Review, Part 2

Lecture 16.1 :! Final Exam Review, Part 2 Lecture 16.1 :! Final Exam Review, Part 2 April 28, 2015 1 Announcements Online Evaluation e-mails should have been sent to you.! Please fill out the evaluation form. May 6 is deadline.! Remember that

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J Spring Term 23 May 8, 23 Lecture 1: Protection & HTS Magnets Key magnet issues

More information

Adiabatic Demagnetization Refrigeration

Adiabatic Demagnetization Refrigeration Adiabatic Demagnetization Refrigeration External magnetic field ( B ) aligns... Thermal disorder ( T ) mixes up... => degree of order ( M ) depends on the ratio B/T Measure M in known B and get T OR Fix

More information

Specific Heat of MCE materials

Specific Heat of MCE materials Specific Heat of MCE materials Van der Waals-Zeeman Institute, University of Amsterdam Jacques C. P. Klaasse Measurement and interpretation of specific-heat data around magnetic transitions Presentation

More information

Effet Nernst et la figure de mérite thermomagnétique dans les semi-métaux

Effet Nernst et la figure de mérite thermomagnétique dans les semi-métaux Effet Nernst et la figure de mérite thermomagnétique dans les semi-métaux Kamran Behnia Laboratoire Photons et Matière Ecole Supérieure de Physique et de Chimie Industrielles - Paris Alexandre Pourret,

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Calorimetric Principles and TAM III

Calorimetric Principles and TAM III Calorimetric Principles and III Nomenclature t P Φ (dq/) Q H time Heat production rate or Thermal power Heat flow heat Enthalpy change [sec] [W = J s -1 ] [W = J s -1 ] [J] [J mol -1, J g -1 ] Thermal

More information

SPECIFIC HEAT OF SOLIDS

SPECIFIC HEAT OF SOLIDS CINDAS Data Series on Material Properties Volume 1-2 SPECIFIC HEAT OF SOLIDS Edited by С Y. Ho Director, Center for Information and Numerical Data Analysis and Synthesis Purdue University Authored by Ared

More information

Thermodynamics and Phase Transitions in Minerals

Thermodynamics and Phase Transitions in Minerals Studiengang Geowissenschaften M.Sc. Wintersemester 2004/05 Thermodynamics and Phase Transitions in Minerals Victor Vinograd & Andrew Putnis Basic thermodynamic concepts One of the central themes in Mineralogy

More information

National 5 Physics. Electricity and Energy. Notes

National 5 Physics. Electricity and Energy. Notes National 5 Physics Electricity and Energy Notes Name. 1 P a g e Key Area Notes, Examples and Questions Page 3 Conservation of energy Page 10 Electrical charge carriers and electric fields and potential

More information

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position?

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position? PHYS 213 Exams Database Midterm (A) A block slides across a rough surface, eventually coming to a stop. 1) What happens to the block's internal thermal energy and entropy? a. and both stay the same b.

More information

Experiment 3. Electrical Energy. Calculate the electrical power dissipated in a resistor.

Experiment 3. Electrical Energy. Calculate the electrical power dissipated in a resistor. Experiment 3 Electrical Energy 3.1 Objectives Calculate the electrical power dissipated in a resistor. Determine the heat added to the water by an immersed heater. Determine if the energy dissipated by

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B S14 Sergey L. Bud ko Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should be? What is the sample size?

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit. Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

More information

PHY 102: Notes. FBDs and Buoyancy: How does one solve problems?

PHY 102: Notes. FBDs and Buoyancy: How does one solve problems? PHY 102: Notes Chapter 9: Solids and Fluids (sections 3-7) 1. Density Difference between mass and weight density 2. Pressure:General Definition P = Read tip 9.1 pg 211 and summarize: 3. Pressure in a fluid

More information

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal Cryogenic Instrumentation I 1. Thermometry 2. anges of Application 3. Constant Volume 4. Thermocouples 5. Time esponse Data 6. 4 Terminal esistance Measurement OUTLINE 8. Pt (pure metal) 9. Typical esistive

More information

LOW-TEMPERATURE THERMAL CHARACTERIZATION OF SUPPORT MATERIAL FOR MASSIVE CRYOGENIC DETECTORS

LOW-TEMPERATURE THERMAL CHARACTERIZATION OF SUPPORT MATERIAL FOR MASSIVE CRYOGENIC DETECTORS LOW-TEMPERATURE THERMAL CHARACTERIZATION OF SUPPORT MATERIAL FOR MASSIVE CRYOGENIC DETECTORS M. BARUCCI, G. VENTURA INFM Florence, Italy T. DEL ROSSO, E. GOTTARDI, E. PASCA Department of Physic, University

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Switched Mode Power Conversion

Switched Mode Power Conversion Inductors Devices for Efficient Power Conversion Switches Inductors Transformers Capacitors Inductors Inductors Store Energy Inductors Store Energy in a Magnetic Field In Power Converters Energy Storage

More information

Pressure-induced magnetic quantum critical point and unconventional

Pressure-induced magnetic quantum critical point and unconventional Institute of Physics, CAS Pressure-induced magnetic quantum critical point and unconventional superconductivity in CrAs and MnP Jinguang Cheng jgcheng@iphy.ac.cn SchoolandWorkshoponStronglyCorrelatedElectronicSystems-

More information

Calorimetric Principles and Problems in Pd-D 2 O Electrolysis

Calorimetric Principles and Problems in Pd-D 2 O Electrolysis The Third International Conference on Cold Fusion. 1991. Nagoya, Japan:, Universal Academy Press, Inc., Tokyo: p. 113. Calorimetric Principles and Problems in Pd-D 2 O Electrolysis Melvin H. MILES and

More information

Measurements of ultralow temperatures

Measurements of ultralow temperatures Measurements of ultralow temperatures Anssi Salmela 1 Outline Motivation Thermometry below 1K Methods below 1K (Adiabatic melting experiment) 2 Motivation Why tedious refrigeration is worthwhile? Reduced

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Thermoelectricity: From Atoms to Systems

Thermoelectricity: From Atoms to Systems Thermoelectricity: From Atoms to Systems Week 3: Thermoelectric Characterization Lecture 3.6: Summary of Week 3 By Ali Shakouri Professor of Electrical and Computer Engineering Birck Nanotechnology Center

More information

Chapter 18 Heat and the First Law of Thermodynamics

Chapter 18 Heat and the First Law of Thermodynamics Chapter 18 Heat and the First Law of Thermodynamics Heat is the transfer of energy due to the difference in temperature. The internal energy is the total energy of the object in its centerofmass reference

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1. The effect of window size. The phonon MFP spectrum of intrinsic c-si (T=300 K) is shown for 7-point, 13-point, and 19-point windows. Increasing the window

More information

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers)

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers) Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers) N. Peter Armitage The Institute of Quantum Matter The Johns Hopkins University Acknowledgements Liang

More information

Theory of Phonon Hall Effect in Paramagnetic Dielectrics. L. Sheng, D. N. Sheng and C. S. Ting

Theory of Phonon Hall Effect in Paramagnetic Dielectrics. L. Sheng, D. N. Sheng and C. S. Ting Journal Club by Oleg Chalaev Theory of Phonon Hall Effect in Paramagnetic Dielectrics L. Sheng, D. N. Sheng and C. S. Ting 14.03.2006 cond-mat/0601281... will probably be published soon... best viewed

More information

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Table S1 Comparison of cooling performance of various thermoelectric (TE) materials and device architectures

More information

Effect of phonon confinement on the heat dissipation in ridges

Effect of phonon confinement on the heat dissipation in ridges Effect of phonon confinement on the heat dissipation in ridges P.-O. Chapuis 1*, A. Shchepetov 2*, M. Prunnila 2, L. Schneider 1, S. Lasko 2, J. Ahopelto 2, C.M. Sotomayor Torres 1,3 1 Institut Catala

More information

Standard Gibbs Energies of Formation of the Ferro and Paramagnetic Phases of AlNd 2

Standard Gibbs Energies of Formation of the Ferro and Paramagnetic Phases of AlNd 2 Standard Gibbs Energies of Formation of the Ferro and Paramagnetic Phases of AlNd 2 M. Morishita*, H. Yamamoto*, M. Kodera**, N. Nishimura**, S. Miura** and Y. Yamada*** *Department of Materials Science

More information

A Hydrated Superconductor

A Hydrated Superconductor A Hydrated Superconductor Karmela Padavic, Bikash Padhi, Akshat Puri A brief discussion of Superconductivity in 2D CoO 2 Layers Kazunori Takada, Hiroya Sakurai, Eiji Takayama Muromachi, Fujio Izumi, Ruben

More information

Nanoelectronic Thermoelectric Energy Generation

Nanoelectronic Thermoelectric Energy Generation Nanoelectronic Thermoelectric Energy Generation Lourdes Ferre Llin l.ferre-llin.1@research.gla.ac.uk 1 Overview: Brief introduction on Thermoelectric generators. Goal of the project. Fabrication and Measurements

More information

PHY3901 PHY3905. Hall effect and semiconductors Laboratory protocol

PHY3901 PHY3905. Hall effect and semiconductors Laboratory protocol PHY3901 PHY3905 Hall effect and semiconductors Laboratory protocol PHY3901 PHY3905 Hall effect and semiconductors Laboratory protocol Objectives Observe and qualitatively understand the phenomenon of transverse

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universität Bonn What are we dealing with? System: 0 4 0 5 Photons ultracold : 300K Box: Curved mirror cavity A few

More information

THERMODYNAMICS. Thermodynamics is the study of energy relationships that involve heat, mechanical work, and other aspects of energy and heat transfer.

THERMODYNAMICS. Thermodynamics is the study of energy relationships that involve heat, mechanical work, and other aspects of energy and heat transfer. THERMODYNAMICS Thermodynamics is the study of energy relationships that involve heat, mechanical work, and other aspects of energy and heat transfer. Central Heating Objectives: After finishing this unit,

More information