CHEM 1105 S10 March 11 & 14, 2014

Size: px
Start display at page:

Download "CHEM 1105 S10 March 11 & 14, 2014"

Transcription

1 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some definitions: Energy (E) capacity to do work or transfer heat Heat (q) energy transferred through temperature differences Energy units: Joule = J = kg m 2 /s 2 calorie = the amount of energy required to raise 1 gram of water by 1 o C 1

2 calorie (cal) = the amount of energy required to raise 1 gram of water by 1 o C 1 kcal = 10 3 cal kcal = Calorie = food Calorie 1 cal = J 1 kcal = 1 Calorie = kj 1 kj = 10 3 J Calorimetry Calorimetry = measurements of heat changes Heat changes are observed through changes in temperature q = C. ΔT C = heat capacity (of an object or system) ΔT = T f T i (final temp initial temp) q = m. C s. ΔT C s = specific heat capacity (for a pure substance) (sometimes called s or specific heat ) 2

3 A 28.0 g sample of Ni at 22.5 C is allowed to cool down on a piece of dry ice. It cools to a temperature of -9.7 C. How much heat is lost in the process? C s for Ni = J/g C. Enthalpy Enthalpy = H = energy from chemical reactions Change in Enthalpy (ΔH) Heat is evolved or absorbed in all chemical reactions q rxn = reaction heat q p = heat of reaction at constant pressure q p = ΔH = H(products)- H(reactants) Enthalpy is a state function (independent of path) 3

4 Exothermic and endothermic reactions Heat is evolved or absorbed in all chemical reactions ΔH = H(products)- H(reactants) Exothermic reaction: heat evolved heat flows from reaction mixture to surroundings products have lower energy than reactants energy loss appears as heat ΔH is negative Endothermic reaction: heat absorbed heat flows from surroundings to reaction mixture products have higher energy than reactants energy gain takes heat from surroundings ΔH is positive 144 J were needed to raise the temperature of 32.3 g of an oil from 20.0 C to 25.0 C. Calculate the specific heat of the oil. (Answer: 0.89 J/g C) 4

5 500. g of gold at 75.0 C were added to 100. ml of water at 20.0 C in a calorimeter. Calculate the final temperature. Assume that there is no heat exchange with the surroundings (i.e., all the heat lost by the gold is gained by the water) and that the calorimeter has zero heat capacity. C s for water = 4.18 J/g C; C s for gold = J/g C (Answer: 27.5 C) Thermochemical equations Thermochemical equation: a chemical equation that indicates gain or loss of heat. 4 Fe(s) + 3 O 2 (g) 2 Fe 2 O 3 ΔH = kj H 2 O NH 4 NO 3 (s) NH 4 + (aq) + NO 3 - (aq) ΔH = kj Note: when ΔH is given with a chemical reaction, this means energy PER MOLE of reaction. 5

6 Combustion of glucose (blood sugar): C 6 H 12 O 6 (s) + 6O 2 (g) 6CO 2 (g) + 6H 2 O(l) ΔH = kj ΔH = kj/mol, or burning one mole of glucose gives off 2826 kj Example: John burns 635 Calories when running for one hour. If he uses only glucose for energy, how many grams of glucose is he burning? 635 Calories = 635 kcal 635 kcal (4.184 kj/1 kcal )(1 mol/ 2826 kj )( g/mol) = 169 g glucose Measuring ΔH using calorimetry In calculating for a reaction by measuring q, the heat given off in the reaction corresponding to the number of moles in the reaction must be calculated 6

7 Bomb calorimeter Setup Some heat from the reaction warms water; therefore: q water = m C s DT Some heat from the reaction warms the calorimeter bomb ; therefore: q cal = C cal DT Total heat evolved q total = q water + q cal Calculate ΔH for the reaction C 6 H 4 O 2 (s) + 6O 2 (g) 6 CO 2 (g) + 2H 2 O(l) from the following data: 2.30 g of C 6 H 4 O 2 (s) were burned in a bomb calorimeter (C cal = 3.27 kj/ C) containing g of water at C. After the reaction, the temperature of the calorimeter and contents rose to C. (Use C s for water = 4.18 J/g C) 7

8 Coffee-Cup Calorimeter Setup Calculations are similar to those with bomb calorimeter You must use the information about the solutions to calculate the stoichiometry Heat from reaction transferred to or from solution (With aqueous solutions, use C s and density of water) Calculate ΔH for the reaction 2NaOH(aq) + H 2 SO 4 (aq) Na 2 SO 4 (aq) + 2H 2 O(l) from the following data: 40.0 ml of M NaOH were placed in a calorimeter (C cal = 72.0 J/ C) at 22.0 C and 20.0 ml of M H 2 SO 4 at 22.0 C were added. The temperature of the mixture rose to 29.0 C. 8

9 Standard Enthalpy of Formation ( H fo ) The change in enthlapy associated with the formation of a substance from its elements in their standard states. Measured under standard conditions P = 1 atm, T = 25 o C (298K) NOTE: NOT the same as STP for gases for solutions: 1 molar Table 6.5 in book, or Appendix IIB, units of kj/mol Depends on state (state will be given for substance) The DH f o values for all elements in their standard states is 0 (zero). DH f o = 0 for O 2 (g), Fe(s), C(s, graphite), Br 2 (l), etc. 9

10 Write the thermochemical equation corresponding to the DH f o for: CH 4 (g) DH f o = kj/mol (from table 6.5) Na 2 CO 3 (s), DH f o = kj/mol Using ΔH f o values to calculate ΔH for a chemical reaction H rxn = H o f (products) - Ho f (reactants) Example: Calculate H for the following reaction: 2NH 3 (g) + 3Cl 2 (g) N 2 (g) + 6HCl(g) 10

11 Using the information from a Table 6.5 or a similar table, calculate the heat of combustion of methanol: CH 3 OH(g) + 3/2 O 2 (g) CO 2 (g) + 2 H 2 O(g) 2ClF 3 (g) + 2NH 3 (g) N 2 (g) + 6HF(g) + Cl 2 (g); ΔH = kj Use data from Table 6.5 to calculate ΔH f for ClF 3 (g) 11

12 Hess s Law Hess s Law states that the total enthalpy change for a reaction is the same whether the reaction occurs in one or several steps. Remember, since enthalpy is a state function, ΔH is independent of the path. Example: given the following thermochemical equations: Sn(s) + Cl 2 (g) SnCl 2 (s) ΔH = kj SnCl 2 (s) + Cl 2 (g) SnCl 4 (l) ΔH = kj calculate ΔH for the reaction: Sn(s) + 2Cl 2 (g) SnCl 4 (l) 12

13 Based on the thermochemical equations for the three reactions shown below: BCl 3 (g) + 3H 2 O(l) H 3 BO 3 (s) + 3HCl(g) ΔH = kj B 2 H 6 (g) + 6H 2 O(l) 2H 3 BO 3 (s) + 6H 2 (g) ΔH = kj ½ H 2 (g) + ½ Cl 2 (g) HCl(g) ΔH = kj calculate ΔH for the following reaction: B 2 H 6 (g) + 6Cl 2 (g) 2BCl 3 (g) + 6HCl(g) 13

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy of motion:

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Thermochemistry The study of chemical reactions and the energy changes

More information

First Law of Thermodynamics

First Law of Thermodynamics Energy Energy: ability to do work or produce heat. Types of energy 1) Potential energy - energy possessed by objects due to position or arrangement of particles. Forms of potential energy - electrical,

More information

Study Guide Chapter 5

Study Guide Chapter 5 Directions: Answer the following 1. When writing a complete ionic equation, a. what types of substances should be shown as dissociated/ionized? soluble ionic compounds, acids, bases b. What types of substances

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry 1. Light the Furnace: The Nature of Energy and Its Transformations a. Thermochemistry is the study of the relationships between chemistry and energy i. This means that we will

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Thermodynamics - Energy Relationships in Chemical Reactions:

Thermodynamics - Energy Relationships in Chemical Reactions: Thermodynamics - Energy Relationships in Chemical Reactions: energy - The capacity to do work. Types of Energy: radiant-energy from the sun. potential-energy due to an objects position. chemical-energy

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6. Thermochemistry 1 1. Terms to Know: thermodynamics thermochemistry energy kinetic energy potential energy heat heat vs. temperature work work of expanding gases work of expanding gases under

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

Law of conservation of energy: energy cannot be created or destroyed, only transferred One object to another One type of energy to another

Law of conservation of energy: energy cannot be created or destroyed, only transferred One object to another One type of energy to another ch6blank Page 1 Chapter 6: Thermochemistry Thermochemistry: study of the relationships between chemistry and energy Energy: capacity to do work Work:result of a force acting over a certain distance, one

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C?

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? Learning Check q = c * m * ΔT How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? (c water =4.184 J/ C g, c iron =0.450 J/ C g) q Fe = 0.450

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

Thermochemistry: Part of Thermodynamics

Thermochemistry: Part of Thermodynamics Thermochemistry: Part of Thermodynamics Dr. Vickie M. Williamson @vmwilliamson Student Version 1 Chemical Thermodynamics! Thermodynamics: study of the energy changes associated with physical and chemical

More information

Chapter 6 Review. Part 1: Change in Internal Energy

Chapter 6 Review. Part 1: Change in Internal Energy Chapter 6 Review This is my own personal review, this should not be the only thing used to study. You should also study using notes, PowerPoint, homework, ect. I have not seen the exam, so I cannot say

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Chpter 17 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these phase changes is an endothermic process? a.

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Thermochemistry Thermochemistry is a part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? - Will a reaction proceed

More information

Chapter 8. Thermochemistry

Chapter 8. Thermochemistry Chapter 8 Thermochemistry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department,

More information

Chapter 6. Heat Flow

Chapter 6. Heat Flow Chapter 6 Thermochemistry Heat Flow Heat (q): energy transferred from body at high T to body at low T Two definitions: System: part of universe we are interested in Surrounding: the rest of the universe

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

All chemical reactions involve changes in energy. Typically this energy comes in the form of heat.

All chemical reactions involve changes in energy. Typically this energy comes in the form of heat. Topic: Thermochemistry Essential Question: How does energy flow in chemical reactions? Name: Class: Date: / / Period: All chemical reactions involve changes in energy. Typically this energy comes in the

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

5/14/14. How can you measure the amount of heat released when a match burns?

5/14/14. How can you measure the amount of heat released when a match burns? CHEMISTRY & YOU Chapter 7 Thermochemistry How can you measure the amount of heat released when a match burns? 7. The Flow of Energy 7.3 Heat in Changes of State 7.4 Calculating Heats of Reaction Remember:

More information

Thermochemistry AP Chemistry Lecture Outline

Thermochemistry AP Chemistry Lecture Outline Thermochemistry AP Chemistry Lecture Outline Name: thermodynamics: the study of energy and its transformations -- thermochemistry: the subdiscipline involving chemical reactions and energy changes Energy

More information

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

measure ΔT in water to get q = q surroundings and use q system = q surroundings

measure ΔT in water to get q = q surroundings and use q system = q surroundings example using water: Calculate the amount of energy required to heat 95.0 g of water from 22.5 C to 95.5 C. q = s m ΔT ( C (4.184 J g 1 C 1 ) (95.0 g) (73.0 = = 2.90 x 10 4 J or 29.0 kj Constant Pressure

More information

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY.

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY. !! www.clutchprep.com CONCEPT: ENERGY CHANGES AND ENERGY CONSERVATION is the branch of physical science concerned with heat and its transformations to and from other forms of energy. is the branch of chemistry

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

CP Chapter 17 Thermochemistry

CP Chapter 17 Thermochemistry CP Chapter 17 Thermochemistry Thermochemistry Thermochemistry is the study of energy that occur during chemical reactions and phase changes (changes of state) The Nature of Energy Energy is the ability

More information

Chapter 6 Thermochemistry 許富銀

Chapter 6 Thermochemistry 許富銀 Chapter 6 Thermochemistry 許富銀 6.1 Chemical Hand Warmers Thermochemistry: the study of the relationships between chemistry and energy Hand warmers use the oxidation of iron as the exothermic reaction: Nature

More information

THERMOCHEMISTRY -1. Dr. Sapna Gupta

THERMOCHEMISTRY -1. Dr. Sapna Gupta THERMOCHEMISTRY -1 Dr. Sapna Gupta THERMODYNAMICS Thermodynamics: Relationship between heat and other forms of energy Thermochemistry: Study of heat absorbed or evolved by chemical reactions. Energy: Capacity

More information

AP CHEMISTRY. Unit 5 Thermochemistry. Jeff Venables Northwestern High School

AP CHEMISTRY. Unit 5 Thermochemistry. Jeff Venables Northwestern High School AP CHEMISTRY Unit 5 Thermochemistry Jeff Venables Northwestern High School Kinetic Energy and Potential Energy Kinetic energy - the energy of motion: Ek = 1 mv 2 Potential energy - the energy an object

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Energy Thermodynamics Study of the relationship between heat, work, and other forms of energy Thermochemistry A branch of thermodynamics Focuses on the study of heat given off

More information

Thermochemistry. Chapter 6. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermochemistry. Chapter 6. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermochemistry Chapter 6 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Energy is the capacity to do work. Radiant energy comes from the sun and is earth s

More information

I. Chemical Reactions that Involve Heat

I. Chemical Reactions that Involve Heat Unit 12 Energy I. Chemical Reactions that Involve Heat Thermochemistry: study of changes in heat in chemical reactions. Endothermic: absorbs heat; temp. goes down Exothermic: releases heat; temp. goes

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Thermochemistry: energy considerations associated with chemical and physical change Energy: the capacity of a system to do work or produce heat potential energy energy of position;

More information

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin)

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin) Chapter 5 Thermochemistry 許富銀 ( Hsu Fu-Yin) 1 Thermodynamics The study of energy and its transformations is known as thermodynamics The relationships between chemical reactions and energy changes that

More information

Reaction Energy. Thermochemistry

Reaction Energy. Thermochemistry Reaction Energy Thermochemistry Thermochemistry The study of the transfers of energy as heat that accompany chemical reactions & physical changes Thermochemistry -In studying heat changes, think of defining

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Contents and Concepts Understanding Heats of Reaction The first part of the chapter lays the groundwork for understanding what we mean by heats of reaction. 1. Energy and Its

More information

Energy Relationships in Chemical Reactions

Energy Relationships in Chemical Reactions Energy Relationships in Chemical Reactions What is heat? What is a state function? What is enthalpy? Is enthalpy a state function? What does this mean? How can we calculate this? How are the methods the

More information

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or Page III-5-1 / Chapter Five Lecture Notes Energy & Chemistry Energy and Chemical Reactions: Thermochemistry or Thermodynamics Chapter Five Burning peanuts supplies sufficient energy to boil a cup of water

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C Units of Energy Like we saw with pressure, many different units are used throughout the world for energy. SI unit for energy 1kg m 1J = 2 s 2 Joule (J) calorie (cal) erg (erg) electron volts (ev) British

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process.

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process. 31. This is an endothermic reaction so heat must be absorbed in order to convert reactants into products. The high temperature environment of internal combustion engines provides the heat. 33. a. Heat

More information

Enthalpy and Internal Energy

Enthalpy and Internal Energy Enthalpy and Internal Energy H or ΔH is used to symbolize enthalpy. The mathematical expression of the First Law of Thermodynamics is: ΔE = q + w, where ΔE is the change in internal energy, q is heat and

More information

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj)

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj) CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC D PROBLEMS 1) For all problems involving energy, you may give your answer in either joules or kilojoules, unless the problem specifies a unit. (In general, though,

More information

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016 Chapter 6 Thermochemistry Chapter 6 Chapter 6 Thermochemistry 6.1 Chemical Hand Warmers 6.2 The Nature of Energy: Key Definitions 6.3 The First Law of Thermodynamics: There is no Free Lunch 6.4 6.5 Measuring

More information

Class work on Calorimetry. January 11 and 12, 2011

Class work on Calorimetry. January 11 and 12, 2011 Class work on Calorimetry January 11 and 12, 2011 Name 1. The number of calories needed to raise the temperature of 100 grams of water 10 degrees Celsius is the same as the number of calories needed to

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Chemistry. Friday, March 30 th Monday, April 9 th, 2018

Chemistry. Friday, March 30 th Monday, April 9 th, 2018 Chemistry Friday, March 30 th Monday, April 9 th, 2018 Do-Now: BrainPOP: Heat 1. Write down today s FLT 2. Distinguish between exothermic and endothermic processes. 3. What is the specific heat of water?

More information

Enthalpies of Reaction

Enthalpies of Reaction Enthalpies of Reaction Enthalpy is an extensive property Magnitude of H is directly related to the amount of reactant used up in a process. CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) H = 890 kj 2CH 4 (g)

More information

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (g) H 2 O (l) + energy Endothermic process is any process in which heat has to

More information

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy AP Chemistry: Thermochemistry Lecture Outline 5.1 The Nature of Energy Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationships between chemical

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Section 6.1: Introduction to Thermochemistry Thermochemistry refers to the study of heat flow or heat energy in a chemical reaction. In a study of Thermochemistry the chemical

More information

Major Concepts Calorimetry (from last time)

Major Concepts Calorimetry (from last time) Major Concepts Calorimetry (from last time) Heat capacity Molar heat capacity (per mole) Specific heat capacity (per mass) Standard state enthalpies: Hº Physical Changes Chemical Changes Hess's Law Balancing

More information

Thermochemistry Ch. 8

Thermochemistry Ch. 8 Definitions I. Energy (E): capacity to do work. II. Heat (q): transfer of energy from a body at a high temp. to a body at a low temp. III. Reaction perspectives: A. System: the focus. B. Surroundings:

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion Chapter 3 Thermochemistry: Energy Flow and Chemical Change 5.1 Forms of Energy and Their Interconversion 5.2 Enthalpy: Chemical Change at Constant Pressure 5.3 Calorimetry: Measuring the Heat of a Chemical

More information

Energy Transformations

Energy Transformations Thermochemistry Energy Transformations Thermochemistry - concerned with heat changes that occur during chemical reactions Energy - capacity for doing work or supplying heat weightless, odorless, tasteless

More information

47 people in recitation yesterday. Expect quizzes there and in class.

47 people in recitation yesterday. Expect quizzes there and in class. Announcements 47 people in recitation yesterday. Expect quizzes there and in class. Chapter 6 Problems: 6.9, 6.11, 6.13(except c), 6.19, 6.23, 6.34, 6.38, 6.42, 6.51, 6.53, 6.54, 6.57, 6.64, 6.66, 6.69,

More information

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages Chapter 11 Thermochemistry 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages 293-94 The Flow of energy - heat Thermochemistry concerned with the heat changes that occur

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics 1 Thermodynamics Thermodynamics is a Greek term which means, heat power. Thermodynamics is the study of energy and its transformations. 2 Thermodynamics Thermochemistry how we observe,

More information

Thermochemistry Notes

Thermochemistry Notes Name: Thermochemistry Notes I. Thermochemistry deals with the changes in energy that accompany a chemical reaction. Energy is measured in a quantity called enthalpy, represented as H. The change in energy

More information

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C?

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? q = m C T 80 g (4.18 J/gC)(38.8-23.3C) = 5183 J 11. A piece of metal weighing

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors:

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors: Lecture Presentation Chapter 6 Thermochemistry Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron: Exothermic reaction 4 Fe(s) + 3 O 2 (g) 2 Fe 2 O

More information

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 6 Thermochemistry Sherril Soman Grand Valley State University Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s)

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Chapter 6. Energy Thermodynamics

Chapter 6. Energy Thermodynamics Chapter 6 Energy Thermodynamics 1 Energy is... The ability to do work. Conserved. made of heat and work. a state function. independent of the path, or how you get from point A to B. Work is a force acting

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

5.1 Exothermic and endothermic reactions

5.1 Exothermic and endothermic reactions Topic 5: Energetics 5.1 Exothermic and endothermic reactions Chemical reactions involve the breaking and making of bonds. Breaking bonds requires energy,whereas energy is given out when new bonds are formed.

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Guided Notes and Practice- Topi 5.1: Calorimetry and Enthalpy Calculations

Guided Notes and Practice- Topi 5.1: Calorimetry and Enthalpy Calculations Name: Date: Pd: Guided Notes and Practice- Topi 5.1: Calorimetry and Enthalpy Calculations Endothermic vs. Exothermic 1. Label each ΔH value as being exothermic or endothermic. Thermochemical Equations

More information

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels Thermochemistry Understanding Heats of Reaction - Energy and Its Units - Heat of Reaction - Enthalpy and Enthalpy Change - Thermochemical Equations - Applying Stoichiometry to Heats of Reaction - Measuring

More information

Chemistry Slide 1 of 33

Chemistry Slide 1 of 33 Chemistry 17.2 1 of 33 17.2 Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will

More information

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0 Thermochemistry Part 2: Calorimetry p p If you leave your keys and your chemistry book sitting in the sun on a hot summer day, which one is hotter? Why is there a difference in temperature between the

More information

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5.

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5. Chapter 5: Thermochemistry 1. Thermodynamics 2. Energy 3. Specific Heat 4. Enthalpy 5. Enthalpies of Reactions 6. Hess s Law 7. State Functions 8. Standard Enthalpies of Formation 9. Determining Enthalpies

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information