Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Size: px
Start display at page:

Download "Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti"

Transcription

1 Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti

2 Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

3 Degenerate atoms T e m p e r a t u r a Fermioni Bosoni T < T F T < T C E F

4 Degenerate Atoms 1925: Einstein predicts condensation of bosons 6 s: Development of Lasers 8 s: Development of laser cooling 1985: Magnetic Trapping of ultracold atoms 1986: Optical trapping of Na 1987: Na Magneto-Optical Trap 1995: First 87 Rb Bose-Einstein Condensate First applications: - Interferometry - Earth and Space sensors - Quantum Information Huge playground for fundamental physics: - BEC with Li, Na, K, Cs, Fr - Optical gratings, collective excitations 21: First BEC of 87 Rb on an Atom Chip

5 Route to BEC in dilute gases n 3 db T 3 K 1-2 laser cooling T 1 K 1-6 evaporative cooling T 1 nk 2.6

6 Magneto Optical Trap (MOT) F=- v-kz cooling trapping

7 temperature Evaporative cooling remove highest velocities thermalization through elastic collisions cooling Forced evaporation in a magnetic trap (conservative potential) E x

8 BEC on a chip Macroscopic trap Micro-trap I Current ~ 1 A Power ~ 1.5 kw Ultra High Vacuum ~ 1-11 Torr double MOT system: Laser power ~ 5 mw = 1-1 Hz Large BEC 1 6 atoms but production cycle > 1 min Current < 1 A Power < 1 W = 1-1 khz High Vacuum ~ 1-9 Torr single MOT system: Laser power ~ 1 mw BEC 1 5 atoms and production cycle ~ 1 s

9 Laser Cooling close to a surface s + s - s + s + s - s -

10 B (Gauss) B (Gauss) BEC on a chip Planar Geometry gold microstrips on silicon substrates B wir (I wir = 3A) B bias = {,3.3,1.2} Gauss z (m) I wir = 31 A ; B bias = {,3.3,1.2} Gauss x (m)

11 BEC on a chip

12 BEC Generation Routine time [ms] action MOT in reflection loading 1^8 atoms MOT transfer close to the chip (~1mm) CMOT + Molasses 5 x 1^7 T ~ 1 μk Optical pumping Ancillary magnetic trap (big Z wire) 2 x 1^6 T ~ 12 μk Compression and transfer to the magnetic trap on chip (chip Z wire) 2 x 1^6 T ~ 5 μk (~2 μm) Evaporation (big U under the chip) BEC with 3x1^3 atoms, Tc=.5 μk End of the cycle

13 BEC on a chip MOT ~ 1^8 atoms Molasses phase ~ 5 x 1^7 T ~ 15 uk First Magnetic Trap (big Z wire) ~ 2 x 1^6 T ~ 12 uk Magnetic Trap on Chip (chip Z wire) ~ 2 x 1^6 T ~ 5 uk Free fall of the BEC BEC ~ 2 x 1^3 T <.5 uk

14 Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

15 Atom Interferometer BEC coherent form of matter, a wavepacket BEC 1 BEC 2 BEC 1,2 BEC 2 BEC 1,2 different spin states BEC 1 BEC 1 coupling mechanism Rabi pulse separation for measurement Stern-Gerlach experiment

16 BEC on a chip

17 Atomic Ramsey Interferometer - Theory - Solve GPE for the BEC 2 Δ=ω -ω start from mix two states ω ω let them evolve 1 Solve SE for 1 atom for the non-interacting BEC for time T mix them up again

18 space Rabi Oscillations Stern-Gerlach method mf=2 Tp mf=2 mf=1 Δ B BEC mf=2 time - pulse BEC mf=1 Rabi frequency

19 Rabi Oscillation mf -2-1 π/2 1 2 Rabi frequency ~ 5KHz

20 space Experimental Scheme: Ramsey Interferometer π/2 π/2 Δ B mf=2 mf=2 mf=1mf=2 mf=1 time

21 Ramsey Interferometer Oscillation frequency = 1/RF = 1/65KHz = 1.5 μs

22 Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

23 Parameters of the Interferometric Signal amplitude D Ariano & Paris, PRA (1996) Resolution: Working range: background Sensitivity: Weihs et al., Opt. Lett. (1996) 23

24 Multi-path Interferometer

25 Multi-Path interferometer Funny enougn for N>3 the system can be aperiodic since frequencies are incommensurable Even more fun they are the solutions of a complex Fibonacci Polynomial ) ( ) ( ) ( 1 1 x F x xf x F n n n

26 Multi-Path interferometer There does not exist a p/2 pulse. To obtain the best resolution from the interferometer one has to optimize pulse area

27 Multi-Path interferometer

28 Multi-Path interferometer

29 Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

30 What can you use it for? Detection of a Light-Induced Phase Shift Polarisation σ+ Polarisation σ- Light-pulse detuning from F=2 F=3 was 6.8GHz. 31

31 Conclusions We have demonstrated a compact time-domain multi-path interferometer on an atom chip Sensitivity can be controlled by an RF pulse acting as a controllable state splitter. Resolution superior to that of an ideal two-path interferometer. Simultaneous measurement of multiple signals at the output enables a range of advanced sensing applications in atomic physics and optics Integration of interferometer with a chip puts it into consideration for future portable cold-atom based measurement systems.

32 Who did it? A typical BEC Ivan Herrera Jovana Petrovic Atom Chip Pietro Lombardi Team

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris Les Puces à Atomes Jakob Reichel Laboratoire Kastler Brossel de l E.N.S., Paris Atom chips: Cold atoms meet the nanoworld ~ 100 nm BEC (~ 10 5 atoms, ~ 100 nk) microstructured surface bulk material ( ~

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Abstract: The most accurate time and frequency

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Atom Quantum Sensors on ground and in space

Atom Quantum Sensors on ground and in space Atom Quantum Sensors on ground and in space Ernst M. Rasel AG Wolfgang Ertmer Quantum Sensors Division Institut für Quantenoptik Leibniz Universität Hannover IQ - Quantum Sensors Inertial Quantum Probes

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 419 423 Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap SPRAM, S K TIWARI, S R

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering with Ultracold Atoms < 200 nk Our group: Precision BEC interferometry. Ultracold Mixtures

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Les Houches 2009: Metastable Helium Atom Laser

Les Houches 2009: Metastable Helium Atom Laser Les Houches 2009: Metastable Helium Atom Laser Les Houches, Chamonix, February 2005 Australian Research Council Centre of Excellence for Quantum-Atom Optics UQ Brisbane SUT Melbourne ANU Canberra Snowy

More information

Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer

Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer A Dissertation Presented to the Faculty of the School of Engineering and Applied

More information

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions SYRTE - IACI AtoM Interferometry dual Gravi- GradiOmeter AMIGGO from capability demonstrations in laboratory to space missions A. Trimeche, R. Caldani, M. Langlois, S. Merlet, C. Garrido Alzar and F. Pereira

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc The physics of cold atoms from fundamental problems to time measurement and quantum technologies Michèle Leduc Lima, 20 October 2016 10 5 Kelvin 10 4 Kelvin Surface of the sun 10 3 Kelvin 10 2 Kelvin earth

More information

A new experimental apparatus for quantum atom optics

A new experimental apparatus for quantum atom optics A new experimental apparatus for quantum atom optics Andreas Hüper, Jiao Geng, Ilka Kruse, Jan Mahnke, Wolfgang Ertmer and Carsten Klempt Institut für Quantenoptik, Leibniz Universität Hannover Outline

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Towards compact transportable atom-interferometric inertial sensors

Towards compact transportable atom-interferometric inertial sensors Towards compact transportable atom-interferometric inertial sensors G. Stern (SYRTE/LCFIO) Increasing the interrogation time T is often the limiting parameter for the sensitivity. Different solutions:

More information

Bose-Einstein condensates & tests of quantum mechanics

Bose-Einstein condensates & tests of quantum mechanics Bose-Einstein condensates & tests of quantum mechanics Poul Lindholm Pedersen Ultracold Quantum Gases Group PhD day, 31 10 12 Bose-Einstein condensation T high Classical particles T = 0 Pure condensate

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5.

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5. Week 13 PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal,2018 These notes are provided for the students of the class above only. There is no warranty for correctness, please

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics Atom Interferometry Experiments for Precision Measurement of Fundamental Physics Shau-Yu Lan 藍劭宇 University of California, Berkeley Department of Physics Contents Principle of Light-Pulse Atom Interferometer

More information

Progress on Atom Interferometer (AI) in BUAA

Progress on Atom Interferometer (AI) in BUAA Progress on Atom Interferometer (AI) in BUAA Group of Prof. FANG Jiancheng Beihang University ZHANG Yuchi, Hu Zhaohui, QI Lu, WANG Tongyu, WANG Tao 01.09.2011 7 th UK-China Workshop on Space Science and

More information

Interferometry and precision measurements with Bose-condensed atoms

Interferometry and precision measurements with Bose-condensed atoms Interferometry and precision measurements with Bose-condensed atoms Daniel Döring A thesis submitted for the degree of Doctor of Philosophy of The Australian National University. April 2011 Declaration

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Experiments in Cold Atom Optics at ARL I: Introduction to Atom Chip Set-up

Experiments in Cold Atom Optics at ARL I: Introduction to Atom Chip Set-up Experiments in Cold Atom Optics at ARL I: Introduction to Atom Chip Set-up by Jason Alexander, Christopher Rowlett, Violeta Prieto, William Golding, and Patricia Lee ARL-TR-5787 September 2011 Approved

More information

0.5 atoms improve the clock signal of 10,000 atoms

0.5 atoms improve the clock signal of 10,000 atoms 0.5 atoms improve the clock signal of 10,000 atoms I. Kruse 1, J. Peise 1, K. Lange 1, B. Lücke 1, L. Pezzè 2, W. Ertmer 1, L. Santos 3, A. Smerzi 2, C. Klempt 1 1 Institut für Quantenoptik, Leibniz Universität

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

arxiv:quant-ph/ v2 5 Feb 2001

arxiv:quant-ph/ v2 5 Feb 2001 Understanding the production of dual BEC with sympathetic cooling G. Delannoy, S. G. Murdoch, V. Boyer, V. Josse, P. Bouyer and A. Aspect Groupe d Optique Atomique Laboratoire Charles Fabry de l Institut

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

High stability laser source for cold atoms applications

High stability laser source for cold atoms applications High stability laser source for cold atoms applications Cold atoms research, which historically started as part of the atomic physics field, has grown into a wide, highly interdisciplinary research effort.

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Singh, M., et al. (2007). Bose-Einstein condensates on magnetic film microstructures. Electronic version of an article published as: L. Hollberg,

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Arron Potter Laser stabilization via saturated absorption spectroscopy

More information

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases Bad Honnef, 07 July 2015 Impurities in a Fermi sea: Decoherence and fast dynamics impurity physics: paradigms of condensed matter-physics Fermi sea fixed scalar impurity orthogonality catastrophe P.W.

More information

Output coupling of a Bose-Einstein condensate formed in a TOP trap

Output coupling of a Bose-Einstein condensate formed in a TOP trap Output coupling of a Bose-Einstein condensate formed in a TOP trap J. L. Martin, C. R. McKenzie, N. R. Thomas, J. C. Sharpe, D. M. Warrington, P. J. Manson, W. J. Sandle and A. C. Wilson Department of

More information

arxiv: v1 [physics.ins-det] 25 May 2017

arxiv: v1 [physics.ins-det] 25 May 2017 Prepared for submission to JINST arxiv:1705.09376v1 [physics.ins-det] 25 May 2017 Atom Interferometry for Dark Contents of the Vacuum Searches O. Burrow, a,1 A. Carroll, a S. Chattopadhyay, b,c,2 J. Coleman,

More information

Observation of Feshbach resonances in ultracold

Observation of Feshbach resonances in ultracold Observation of Feshbach resonances in ultracold Rb and 133 Cs mixtures at high magnetic field Rubidium Caesium Hung-Wen, Cho Motivation Bialkali molecules in the ground state have a large permanent electric

More information

Chapter 2 Experimental Realization of One-Dimensional Bose Gases

Chapter 2 Experimental Realization of One-Dimensional Bose Gases Chapter 2 Experimental Realization of One-Dimensional Bose Gases In this chapter we review the basic concepts necessary for the realization of a degenerate 1D Bose gas, as well as the actual experimental

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

arxiv: v1 [quant-ph] 8 Apr 2015

arxiv: v1 [quant-ph] 8 Apr 2015 Quantum state reconstruction on Atom-Chips arxiv:.96v [quant-ph] 8 Apr C. Lovecchio, S. Cherukattil, B. Cilenti, I. Herrera,6, F. S. Cataliotti,,, S. Montangero, T. Calarco, and F. Caruso,, LENS and Università

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

Absolute gravity measurements with a cold atom gravimeter

Absolute gravity measurements with a cold atom gravimeter Absolute gravity measurements with a cold atom gravimeter Anne Louchet-Chauvet, Sébastien Merlet, Quentin Bodart, Tristan Farah, Arnaud Landragin, Franck Pereira Dos Santos LNE-SYRTE Observatoire de Paris

More information

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Atom interferometry in microgravity: the ICE project

Atom interferometry in microgravity: the ICE project Atom interferometry in microgravity: the ICE project (4) G. Stern 1,2, R. Geiger 1, V. Ménoret 1,B. Battelier 1, R. Charrière 3, N. Zahzam 3, Y. Bidel 3, L. Mondin 4, F. Pereira 2, A. Bresson 3, A. Landragin

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Magnetic resonance in Dense Atomic Hydrogen Gas

Magnetic resonance in Dense Atomic Hydrogen Gas Magnetic resonance in Dense Atomic Hydrogen Gas S. Vasiliev University of Turku, Finland Turku Magnetic resonance in Dense Atomic Hydrogen Gas Sergey Vasiliev University of Turku H group at Turku: Janne

More information

Cold Quantum Gas Group Hamburg

Cold Quantum Gas Group Hamburg Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture BEC in Space Spinor-BEC Atom-Guiding in PBF Fermi Bose Mixture Project Quantum Degenerate Fermi-Bose Mixtures of 40K/87Rb at Hamburg: since 5/03 Special

More information

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Exploring long-range interacting quantum many-body systems with Rydberg atoms Exploring long-range interacting quantum many-body systems with Rydberg atoms Christian Groß Max-Planck-Institut für Quantenoptik Hannover, November 2015 Motivation: Quantum simulation Idea: Mimicking

More information

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang Hangzhou Workshop on Quantum Matter, 2013 Experimental realization of spin-orbit coupled degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of

More information

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Towards a Space Optical Clock with 88 Sr Titelmasterformat durch Klicken bearbeiten Influence of Collisions on a Lattice Clock U. Sterr Ch. Lisdat J. Vellore Winfred T. Middelmann S. Falke F. Riehle ESA

More information

Spinor dynamics-driven formation of a dual-beam atom laser

Spinor dynamics-driven formation of a dual-beam atom laser Spinor dynamics-driven formation of a dual-beam atom laser N. Lundblad, R.J. Thompson, D.C. Aveline, and L. Maleki Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena,

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Many-Body Physics with Quantum Gases

Many-Body Physics with Quantum Gases Many-Body Physics with Quantum Gases Christophe Salomon Okinawa Summer school on quantum dynamics September 26-October 6, 2017 Ecole Normale Supérieure, Paris Summary of lectures Quantum simulation with

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

arxiv: v2 [physics.atom-ph] 31 Jan 2018

arxiv: v2 [physics.atom-ph] 31 Jan 2018 On loading of a magneto-optical trap on an atom-chip with U-wire quadrupole field arxiv:1801.09461v2 [physics.atom-ph] 31 Jan 2018 1. Introduction Vivek Singh 1, V. B. Tiwari 1,3, K. A. P. Singh 2, S.

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms Patrick Cheinet Julien Le Gouët Kasper Therkildsen Franck Pereira Dos Santos Arnaud Landragin David Holleville André

More information

Quantum correlations and atomic speckle

Quantum correlations and atomic speckle Quantum correlations and atomic speckle S. S. Hodgman R. G. Dall A. G. Manning M. T. Johnsson K. G. H. Baldwin A. G. Truscott ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics

More information

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5 Lecture Trapping of neutral atoms Evaporative cooling Foot 9.6, 10.1-10.3, 10.5 34 Why atom traps? Limitation of laser cooling temperature (sub)-doppler (sub)-recoil density light-assisted collisions reabsorption

More information

12 rad be Ω max 10 / Hz. This result is better by two orders of magnitude than any

12 rad be Ω max 10 / Hz. This result is better by two orders of magnitude than any 1 Abstract Recent developments in spatial atom interferometry have stimulated new fields in atomic physics and quantum optics, opening up new areas in fundamental research. Moreover, there are ideas for

More information

From Optical Pumping to Quantum Gases

From Optical Pumping to Quantum Gases From Optical Pumping to Quantum Gases Claude Cohen-Tannoudji 22 nd International Conference on Atomic Physics Cairns, Australia, 26 July 2010 Collège de France 1 2010 : three anniversaries 60 th anniversary

More information

Limits of the separated-path Ramsey atom interferometer

Limits of the separated-path Ramsey atom interferometer J. Phys. B: At. Mol. Opt. Phys. 3 (1999) 5033 5045. Printed in the UK PII: S0953-4075(99)06844-3 Limits of the separated-path Ramsey atom interferometer R M Godun,CLWebb, P D Featonby, M B d Arcy, M K

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Forca-G: A trapped atom interferometer for the measurement of short range forces

Forca-G: A trapped atom interferometer for the measurement of short range forces Forca-G: A trapped atom interferometer for the measurement of short range forces Bruno Pelle, Quentin Beaufils, Gunnar Tackmann, Xiaolong Wang, Adèle Hilico and Franck Pereira dos Santos Sophie Pelisson,

More information

Spontaneous topological defects in the formation of a Bose-Einstein condensate

Spontaneous topological defects in the formation of a Bose-Einstein condensate Spontaneous topological defects in the formation of a Bose-Einstein condensate Matthew Davis 1, Ashton Bradley 1,, Geoff Lee 1, Brian Anderson 2 1 ARC Centre of Excellence for Quantum-Atom Optics, University

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

EYLSA laser for atom cooling

EYLSA laser for atom cooling 1/7 For decades, cold atom system and Bose-Einstein condensates (obtained from ultra-cold atoms) have been two of the most studied topics in fundamental physics. Several Nobel prizes have been awarded

More information

A novel 2-D + magneto-optical trap configuration for cold atoms

A novel 2-D + magneto-optical trap configuration for cold atoms A novel 2-D + magneto-optical trap configuration for cold atoms M. Semonyo 1, S. Dlamini 1, M. J. Morrissey 1 and F. Petruccione 1,2 1 Quantum Research Group, School of Chemistry & Physics, University

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information