Quantum correlations and atomic speckle

Size: px
Start display at page:

Download "Quantum correlations and atomic speckle"

Transcription

1 Quantum correlations and atomic speckle S. S. Hodgman R. G. Dall A. G. Manning M. T. Johnsson K. G. H. Baldwin A. G. Truscott ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia Abstract Here we utilize the single-atom detection capability of metastable helium to measure the second-order and third-order correlation functions for ensembles of ultracold atoms. We then extend these measurements to characterize the quantum statistics of atoms guided in a dipole potential. By appropriately loading atoms into the guide we are able to populate a selected number of guided modes, ranging from the majority of atoms in the lowest order mode (a BEC), to multi-mode guiding (equivalent to a thermal source). The guided BEC was characterised by a smooth gaussian transverse spatial profile, and a second-order correlation value of unity consistent with a coherent source. For multi-mode guiding, the matter-wave equivalent of speckle was observed. Furthermore, at short arrival times, the second-order correlation function was greater than unity, corresponding to atom bunching characteristic of an incoherent (thermal) source. 1 Introduction In analogy to quantum optics, sources of atoms can be characterized by their coherence properties which can be viewed in either the wave or particle picture. First order coherence is a measure of amplitude fluctuations that determine, for example, the fringe visibility in an interferometer. Second order coherence measures intensity fluctuations, and is responsible for laser light speckle which arises from multimode interference between multiple independent sources. In a landmark experiment, Hanbury Brown and Twiss (HBT) demonstrated that in the particle picture, such incoherent sources are characterized by photon bunching [1], whereby the second order correlation function exceeds unity for short arrival times between pairs of photons (the coherence time). A coherent source by contrast, has a correlation function of unity for all times, and as shown by the quantum theory of Glauber [2], this is true to all orders of the correlation function. Previous HBT experiments for atoms [3 5] have employed metastable species because of their efficient single-atom detection capability [6]. Atom bunching was observed for thermal (incoherent) sources of bosonic atoms (anti-bunching for fermions [5]), while a second-order correlation function value of unity i.e. an equal probability for all arrival times, was observed for BECs in analogy with coherent optical sources. We have undertaken similar experiments using our metastable helium BEC apparatus [7] to extend these measurements to higher order correlation functions. Figure 1 shows an Kenneth.baldwin@anu.edu.au 231

2 experimental schematic for the third-order correlation measurement, which can be interpreted in the particle picture as the arrival probability at times 1 and 2 between triplets of particles. Figure 1: An ensemble of He* atoms (red spheres) falls under gravity onto the MCP detector creating a series of detection events (yellow) separated in space and time. The middle inset (blue box) shows the arrival of the atomic ensemble in more detail, whereas the right hand inset (green cylinder) shows the arrival of a triplet of atoms within our analysis region. The third-order correlation function g 3 (0, 1, 2 ) characterises the arrival time differences 1 and 2 between the three atoms. Adapted from ref. 9. We utilize a microchannel plate (MCP) coupled with a delay line detector to measure both the arrival time and position of atoms on the detector. Together with a new technique [8] for outcoupling multiple pulses of atoms from the ultracold atomic cloud, this efficiently creates very large data sets that enable the measurement of the third-order correlation function for atoms for the first time [9]. The results for these experiments are shown in figure 2, where the normalized third-order correlation function g 3 (0, 1, 2 ) is plotted on the left hand side in three dimensions for (A) a thermal ensemble and (B) a BEC. In the cross-sections shown on the right, we measure for g 2 (0, ) {g 3 (0, 1, 2 )} an atom bunching enhancement for the thermal case of ~ 2% {~ 6%} and a correlation time of ~ 90 s {120 s}, in good agreement with a theoretical model [9]. For the BEC, both the second- and third-order correlation functions have a uniform value of unity within 0.1%, demonstrating for the first time the coherence of a BEC to third order. While there may be a very small thermal component present at finite temperatures, the contribution of this to our BEC correlation function is not discernible within our experimental uncertainty. These measurements provide strong confirmation of the quantum theory of boson statistics first developed by Glauber [2], as well as the prediction that a BEC possesses long-range coherence of matter waves to all orders in the correlation functions, in direct analogy with the long-range coherence of laser light. 232

3 Figure 2: Left: Normalized third-order correlation functions g 3 (0, 1, 2 ) for (A) ensembles of thermal atoms and (B) the BEC. Right: Sections of normalized third-order correlation functions. (A) The diagonal section ( 1 = 2 ) of g 3 (0, 1, 2 ) for both thermal atoms (red circles) and the BEC (blue squares). (B) Second-order correlation function g 2 (0, ) (i.e. g 3 (0, 1, 2 ) averaged over both 1 and 2 > 200 μs), for thermal atoms (red circles) and the BEC (blue squares). The dashed red and solid blue lines correspond to two-dimensional gaussian surface fits to the left-hand thermal and BEC plots, respectively. Adapted from ref Atom Waveguide Experiments We have further extended the above experiments by using correlation measurements to characterize the coherence properties of atoms guided in an optical potential, which doubles as a diagnostic of the number of modes sustained in the effective de Broglie waveguide. Atoms coherently output-coupled from a Bose-Einstein condensate (BEC) form a coherent beam of matter waves an atom laser. Most condensates are confined in a magnetic potential, where to achieve maximum flux, the atom laser beam is outcoupled from the centre of the BEC. These atoms in the atom laser beam originate from the highest density region of the BEC and experience a large repulsive force (mean field repulsion) via s-wave interactions. These interactions strongly distort the atom laser beam, yielding a non-ideal spatial profile with a double-peaked structure [10,11]. One method to alleviate this problem is to use an optically trapped BEC. An atom laser is then created by simply reducing the optical power, and letting the atoms fall out of the spatial minimum of the trap where the atomic density is low. Further, by not extinguishing the optical trap completely, the atom laser beam experiences a weak confining potential that acts like an optical fibre to guide the atomic de Broglie waves. Here we demonstrate near-single-mode guiding of a metastable helium (He*) atom laser in an optical dipole potential using a far-detuned laser beam [12]. Atoms cooled to ~ 1 μk in a magnetic trap are transferred to an optical trap aligned in the vertical direction (figure 3), where evaporative cooling takes place and a BEC is achieved. Subsequent lowering of the optical 233

4 potential releases the atoms into the guide, and they fall under gravity until they strike a multichannel plate (MCP) and are imaged. The process is adiabatic, allowing the atoms in the BEC to transfer smoothly from the ground state of the trap to the ground state of the guide. As the atoms progress down the guide, they are further adiabatically cooled before eventually falling out of the guide and onto the MCP. Figure 3: A thermal cloud/bec is confined in an optical trap, produced by a single focused laser beam in the vertical direction. By reducing the power in the optical beam the cloud is no longer supported against gravity and falls towards the single atom detector. The transverse potential is still strong enough to confine the atoms in that direction so the atoms are effectively guided. Adapted from ref. 14. The laser intensity ramp shown by the red (solid) line in figure 4 yields a BEC with no discernible thermal fraction. The BEC then equilibrates for a period before finally lowering the potential slightly to outcouple the BEC into the guide. By rapidly decreasing the guide laser intensity (blue dotted line), an ensemble of predominantly thermal atoms populates the trap, the proportion of which is controlled by varying the height of the final intensity step. The ensemble then equilibrates for a period before again lowering the potential, this time sufficiently to couple thermal atoms into the guide, but not as far as the BEC ramp in order to continue to trap any condensed atoms. The parameters of the intensity ramp can be varied to populate almost a pure (65%) lowest-order BEC guided mode [12], predominantly the first excited mode [13], or multiple modes [14]. An example of selective excitation of predominantly the first excited mode is shown in the MCP image of the transverse spatial profile in figure 5. A cross-section of this image is shown in figure 6, along with a mode composition fit to the profile. The fit incorporates contributions up to the fifth excited mode of the guide, with almost half the atoms being present in the first excited mode [13]. This is the first time to our knowledge that the first excited matter wave mode has selectively been excited in an optical waveguide. 234

5 Figure 4: Intensity ramp for the dipole beam for the single-mode BEC guide (solid red line) and the multimode thermal guide (dotted blue line). Adapted from ref. 14. These experiments demonstrate that mode selectivity can be achieved which enables a desired mode occupancy (in the single-figure range) to be populated, starting with the lowest (TEM00) mode populated by the BEC. This development of a few-mode matter waveguide may enable future sensors based upon matter wave interferometers that promise improved sensitivity over their current state-of-the-art optical counterparts. Entanglement of the lower-order atomic modes may also be possible in a direct analogy with multimode light entanglement, with potential applications for quantum information and quantum imaging. Figure 5: False color image of the transverse spatial profile of guided atoms dominated by the first excited mode of the waveguide. Adapted from ref

6 Figure 6: Modal fit to the transverse profile of the guided atomic beam incorporating the lowest six supported modes, dominated by the first excited mode 1. Adapted from ref Speckle and Second Order Correlation Results The ability to determine the mode occupancy then allows a quantum statistical study of the transition from a thermal to a coherent source of guided matter waves. When a thermal atomic cloud is loaded into the guide, a multimode transverse spatial profile results. Interference between these modes causes intensity variations to be measured as shown in figure 7. This corresponds to the speckle observed in a multimode guided laser beam, and we believe that this is the first spatial observation of an atomic speckle pattern arising from interfering matter waves. The speckle pattern changes (as expected) between different realizations of the experiment (figures 7 a c). When the speckle patterns are averaged over a large number of shots (figure 7d) then the transverse spatial structure is removed to yield a smooth profile, consistent with the random independent nature of the modes that create the speckle pattern. It is noticeable that this averaged profile is much broader in the transverse plane than the almost purely singlemode pattern created by a guided BEC (figure 7e), which has a smooth but much narrower gaussian profile. To further test the speckle hypothesis, we measured the second-order correlation function for the guided atoms using the same delay line detector as we employed previously to measure the second- and third-order correlation functions for ultracold He* atoms [9]. Figure 8 shows that when thermal atoms are loaded into the dipole guiding potential, clear atom bunching is detected (the HBT effect), indicating that multimode guiding is occurring and is associated with matter-wave speckle. When a BEC is loaded into the guide, the atom bunching disappears, consistent with propagation of a coherent matter wave in the lowest-order mode of the guide. 236

7 Figure 7: Same scale: (a-c) Guided thermal atom speckle patterns for 3 data runs. (d) Average over 20 runs yielding a smooth pattern. (e) BEC guided in the lowest order mode, with a gaussian profile. Adapted from ref. 14. Figure 8: Temporal second-order correlation function for a guided multimode thermal cloud. Adapted from ref. 14. Furthermore, we can measure the bunching enhancement of the second order correlations as a function of the average mode occupancy of the guide (figure 9). Our ability to selectively determine the mode number by varying the intensity ramp enables a continuous variation of the average mode occupancy as shown in the figure. As the temperature of the trapped and guided 237

8 ensemble decreases, so does the mode occupancy, and at the same time the transverse correlation length becomes larger. Since the transverse spatial resolution of the detector is finite (~150 m), the bunching signal is enhanced at lower temperatures (larger de Broglie wavelengths) as the coherence length becomes larger. This is demonstrated in figure 9 where the experimental data match a simple theoretical model [14]. The maximum atom-bunching enhancement (~20%) is the highest value measured thus far. Eventually, when a BEC is formed at low temperatures and the atoms are mostly in the lowest order mode of the guide, the bunching enhancement collapses and the correlation function attains a value of unity. This indicates that the atoms guided in the lowest order mode are coherent, as would be expected when a BEC is coupled into a matching de Broglie waveguide. Such a pure coherent guided mode would be useful for applications which require a highly coherent beam such as atom interferometry. These experiments indicate that measurement of the correlation functions can be a useful diagnostic for determining the coherence properties of guided matter waves for such applications. Figure 9: Graph of peak bunching amplitude as a function of average mode occupancy. A simulation of our experiment yields the theory curve shown as a dashed light blue line, in comparison to our multimode data points shown as blue circles. Also shown is the unity bunching amplitude when a BEC is guided (red point). Adapted from ref Conclusions and Future Work We have demonstrated in these experiments the correspondence between the quantum statistical properties of matter waves and the transverse mode occupancy and structure (speckle) for atoms guided in an optical potential. The mode occupancy can be controlled in a selective fashion as a function of temperature by varying the intensity ramp parameters for the guiding potential. 238

9 For the future, at very low transverse temperatures, the transverse coherence length can be made much larger than the detector resolution, enabling large bunching enhancements to be achieved that may approach the theoretical maximum (n!) for the n th -order correlation function. Further, this opens up the possibility of measuring fourth- and fifth-order correlation functions, beyond the second- and third-order correlation measurements presented here. This topic will be the subject of future publications. Acknowledgements This work is supported by the Australian Research Council Centre of Excellence for Quantum- Atom Optics. References [1] R. Hanbury Brown and R.Q. Twiss, Nature 177, 27 (1956). [2] R.J. Glauber, Physical Review 130, 2529 (1963). [3] M. Yasuda and F. Shimizu, Physical Review Letters 77, 3090 (1996). [4] M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes, D. Boiron, A. Aspect, C. I. Westbrook, Science 310, 648 (2005). [5] T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect and C. I. Westbrook, Nature 445, 402 (2007). [6] K. G. H. Baldwin, Contemporary Physics 46, 105 (2005). [7] R. G. Dall and A. G. Truscott, Optics Commun. 270, 255 (2007). [8] A. G. Manning, S. S. Hodgman, R. G. Dall, M. T. Johnsson, and A. G. Truscott, Optics Express 18, (2010). [9] S.S. Hodgman, R.G. Dall, A.G. Manning, K. G. H. Baldwin, and A.G. Truscott, Science 331, 1046 (2011). [10] J.-F. Riou, W. Guerin, Y. Le Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, Phys. Rev. Lett., 96, (2006). [11] R. G. Dall, L. J. Byron, A. G. Truscott, G. R. Dennis, M. T. Johnsson, M. Jeppesen and J. J. Hope, Optics Express 15, (2007). [12] R.G. Dall, S.S. Hodgman, M.T. Johnsson, K. G. H. Baldwin, and A.G. Truscott, Physical Review A 81, (R) (2010). [13] R. G. Dall, S. S. Hodgman, A. G. Manning, and A. G. Truscott, Optics Letters 36, 1131 (2011). [14] R.G. Dall, S.S. Hodgman, A.G. Manning, M.T. Johnsson, K.G.H. Baldwin and A.G. Truscott, Nature Communications 2, article 291 (2011). 239

Les Houches 2009: Metastable Helium Atom Laser

Les Houches 2009: Metastable Helium Atom Laser Les Houches 2009: Metastable Helium Atom Laser Les Houches, Chamonix, February 2005 Australian Research Council Centre of Excellence for Quantum-Atom Optics UQ Brisbane SUT Melbourne ANU Canberra Snowy

More information

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014 The Hanbury Brown Twiss effect for matter waves Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014 Outline: Hanbury Brown Twiss effect... 1.... in optics and

More information

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES W. VASSEN, T. JELTES, J.M. MCNAMARA, A.S. TYCHKOV, W. HOGERVORST Laser Centre Vrije Universiteit Amsterdam, The Netherlands K.A.H. VAN LEEUWEN Dept. of

More information

Hanbury Brown Twiss effect for ultracold quantum gases

Hanbury Brown Twiss effect for ultracold quantum gases Hanbury Brown Twiss effect for ultracold quantum gases arxiv:cond-mat/58466 v3 5 Sep 6 M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes,, D. Boiron, A. Aspect, C. I. Westbrook Laboratoire Charles

More information

Quantum atom optics with Bose-Einstein condensates

Quantum atom optics with Bose-Einstein condensates Quantum atom optics with Bose-Einstein condensates Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland With particular thanks to: Chris Westbrook, Denis Boiron, J-C Jaskula, Alain

More information

January 2010, Maynooth. Photons. Myungshik Kim.

January 2010, Maynooth. Photons. Myungshik Kim. January 2010, Maynooth Photons Myungshik Kim http://www.qteq.info Contents Einstein 1905 Einstein 1917 Hanbury Brown and Twiss Light quanta In 1900, Max Planck was working on black-body radiation and suggested

More information

The Hanbury Brown and Twiss effect: from stars to cold atoms

The Hanbury Brown and Twiss effect: from stars to cold atoms Huntingdon and Broad Top Mountain RR The Hanbury Brown and Twiss effect: from stars to cold atoms Chris Westbrook Institute Optique, Palaiseau Toronto,18 November 2010 Outline 1. HB&T for light (stars

More information

Nonclassical atom pairs in collisions of BECs: from squeezing to Bell test proposals

Nonclassical atom pairs in collisions of BECs: from squeezing to Bell test proposals Nonclassical atom pairs in collisions of BECs: from squeezing to Bell test proposals Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland With particular thanks to: Chris Westbrook,

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-30 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Atom-atom correlation measurements: a fundamental tool for quantum atom optics

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

arxiv: v2 [physics.atom-ph] 9 Oct 2008

arxiv: v2 [physics.atom-ph] 9 Oct 2008 Probing a Bose-Einstein condensate with an atom laser arxiv:8.477v2 [physics.atom-ph] 9 Oct 28 D. Döring, N. P. Robins, C. Figl, and J. D. Close Australian Research Council Centre of Excellence for Quantum-Atom

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Abstract: The most accurate time and frequency

More information

Interferometry and precision measurements with Bose-condensed atoms

Interferometry and precision measurements with Bose-condensed atoms Interferometry and precision measurements with Bose-condensed atoms Daniel Döring A thesis submitted for the degree of Doctor of Philosophy of The Australian National University. April 2011 Declaration

More information

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage C. S. Unnikrishnan Fundamental Interactions Laboratory Tata Institute

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Simple method for producing Bose Einstein condensates of metastable helium using a single beam optical dipole trap

Simple method for producing Bose Einstein condensates of metastable helium using a single beam optical dipole trap Appl. Phys. B (2015) 121:391 399 DOI 10.1007/s00340-015-6243-5 Simple method for producing Bose Einstein condensates of metastable helium using a single beam optical dipole trap Adonis Silva Flores 1 Hari

More information

Bunching-Antibunching of Quantum Particles From Astronomy to AMO. Indu Satija George Mason

Bunching-Antibunching of Quantum Particles From Astronomy to AMO. Indu Satija George Mason Bunching-Antibunching of Quantum Particles From Astronomy to AMO Indu Satija George Mason What is the most beautiful experiment in physics? This is the question that Robert Crease asked Physics World readers

More information

Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals

Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw Experiment Chris Westbrook (Palaiaseau):

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 78 10 FEBRUARY 1997 NUMBER 6 Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number C. C. Bradley, C. A. Sackett, and R. G. Hulet Physics Department

More information

Realization of Bose-Einstein Condensation in dilute gases

Realization of Bose-Einstein Condensation in dilute gases Realization of Bose-Einstein Condensation in dilute gases Guang Bian May 3, 8 Abstract: This essay describes theoretical aspects of Bose-Einstein Condensation and the first experimental realization of

More information

Hong Ou Mandel experiment with atoms

Hong Ou Mandel experiment with atoms BEC on an MCP Hong Ou Mandel experiment with atoms Chris Westbrook Laboratoire Charles Fabry, Palaiseau FRISNO 13, Aussois 18 march 2015 2 particles at a beam splitter 1 particle at each input 4 possibilities:

More information

The phonon dispersion relation of a Bose-Einstein condensate

The phonon dispersion relation of a Bose-Einstein condensate The phonon dispersion relation of a Bose-Einstein condensate I. Shammass, 1 S. Rinott, 2 A. Berkovitz, 2 R. Schley, 2 and J. Steinhauer 2 1 Department of Condensed Matter Physics, Weizmann Institute of

More information

Bose-Einstein condensates & tests of quantum mechanics

Bose-Einstein condensates & tests of quantum mechanics Bose-Einstein condensates & tests of quantum mechanics Poul Lindholm Pedersen Ultracold Quantum Gases Group PhD day, 31 10 12 Bose-Einstein condensation T high Classical particles T = 0 Pure condensate

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

arxiv: v1 [quant-ph] 17 Oct 2016

arxiv: v1 [quant-ph] 17 Oct 2016 Fermionic ghost imaging arxiv:1610.05002v1 [quant-ph] 17 Oct 2016 Jianbin Liu, 1, Yu Zhou, 2 Huaibin Zheng, 1 Hui Chen, 1 Fu-li Li, 2 and Zhuo Xu 1 1 Electronic Materials Research Laboratory, Key Laboratory

More information

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998 Atom lasers MIT 1997 Yale 1998 NIST 1999 Munich 1999 FOMO summer school 2016 Florian Schreck, University of Amsterdam Overview What? Why? Pulsed atom lasers Experiments with atom lasers Continuous atom

More information

Lab 1 Entanglement and Bell s Inequalities

Lab 1 Entanglement and Bell s Inequalities Quantum Optics Lab Review Justin Winkler Lab 1 Entanglement and Bell s Inequalities Entanglement Wave-functions are non-separable Measurement of state of one particle alters the state of the other particle

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Single-photon NV sources. Pauli Kehayias March 16, 2011

Single-photon NV sources. Pauli Kehayias March 16, 2011 Single-photon NV sources 1 Outline Quantum nature of light Photon correlation functions Single-photon sources NV diamond single-photon sources 2 Wave/particle duality Light exhibits wave and particle properties

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Alain Aspect, Adilet Imambekov, Vladimir Gritsev, Takuya Kitagawa,

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Andreas W. Schell, 1, a) Johannes Kaschke, 2 Joachim Fischer,

More information

The Planck distribution of phonons in a Bose-Einstein condensate

The Planck distribution of phonons in a Bose-Einstein condensate The Planck distribution of phonons in a Bose-Einstein condensate R. Schley, 1 A. Berkovitz, 1 S. Rinott, 1 I. Shammass, 2 A. Blumkin, 1 and J. Steinhauer 1 1 Department of Physics, Technion Israel Institute

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Innovation and Development of Study Field. nano.tul.cz

Innovation and Development of Study Field. nano.tul.cz Innovation and Development of Study Field Nanomaterials at the Technical University of Liberec nano.tul.cz These materials have been developed within the ESF project: Innovation and development of study

More information

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Axion BEC: a model beyond CDM Based on: Bose-Einstein Condensation of Dark Matter

More information

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 419 423 Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap SPRAM, S K TIWARI, S R

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Quantum Ghost Imaging by Measuring Reflected Photons

Quantum Ghost Imaging by Measuring Reflected Photons Copyright c 2008 ICCES ICCES, vol.8, no.3, pp.101-106 Quantum Ghost Imaging by Measuring Reflected Photons R. E. Meyers 1 and K. S. Deacon 1 Summary A new type of imaging, Quantum ghost imaging, is described

More information

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon LAB 3: Confocal Microscope Imaging of single-emitter fluorescence LAB 4: Hanbury Brown and Twiss setup. Photon antibunching Roshita Ramkhalawon PHY 434 Department of Physics & Astronomy University of Rochester

More information

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Greg Howland and Steven Bloch May 11, 009 Abstract We prepare a solution of nano-diamond particles on a glass microscope slide

More information

8 Incoherent fields and the Hanbury Brown Twiss effect

8 Incoherent fields and the Hanbury Brown Twiss effect 8 Incoherent fields and the Hanbury Brown Twiss effect References: Loudon, Quantum Theory of Light Ch. 3, Ch. 6 A. Aspect, D. Boiron, C. Westbrook, "L'optique quantique atomique", Reflets de la physique,

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Second-order Fermionic Interference with Independent Photons

Second-order Fermionic Interference with Independent Photons Second-order Fermionic Interference with Independent Photons bosons are similar as the ones of photons in the secondand higher-order interference. There is two-atom bunching in ultracold quantum gases

More information

Solutions for Exercise session I

Solutions for Exercise session I Solutions for Exercise session I 1. The maximally polarisation-entangled photon state can be written as Ψ = 1 ( H 1 V V 1 H ). Show that the state is invariant (i.e. still maximally entangled) after a

More information

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice Nature 462, 74 77 (5 November 2009) Team 6 Hyuneil Kim Zhidong Leong Yulia Maximenko Jason Merritt 1 Outline Background

More information

Bogoliubov quantum dynamics at T>=0 (even without a condensate)

Bogoliubov quantum dynamics at T>=0 (even without a condensate) Bogoliubov quantum dynamics at T>=0 (even without a condensate) Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw 1. Supersonic pair creation 2. Palaiseau BEC collision experiment 3.

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2//e50054/dc Supplementary Materials for Two-photon quantum walk in a multimode fiber Hugo Defienne, Marco Barbieri, Ian A. Walmsley, Brian J. Smith, Sylvain Gigan

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 8 Quantum noise measurements as a probe of

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

arxiv: v2 [cond-mat.quant-gas] 24 Jan 2014

arxiv: v2 [cond-mat.quant-gas] 24 Jan 2014 Observation of Grand-canonical Number Statistics in a Photon Bose-Einstein condensate Julian Schmitt, Tobias Damm, David Dung, Frank Vewinger, Jan Klaers and Martin Weitz Institut für Angewandte Physik,

More information

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry) Experimental AMO meets Model Building: Part I (Precision Atom Interferometry) Interference of Rb atoms Chiow, et. al, PRL, 2011 Young s double slit with atoms Young s 2 slit with Helium atoms Interference

More information

Large Momentum Beamsplitter using Bloch Oscillations

Large Momentum Beamsplitter using Bloch Oscillations Large Momentum Beamsplitter using Bloch Oscillations Pierre Cladé, Saïda Guellati-Khélifa, François Nez, and François Biraben Laboratoire Kastler Brossel, UPMC, Ecole Normale Supérieure, CNRS, 4 place

More information

Correlations and Fluctuations

Correlations and Fluctuations Correlations and Fluctuations Scott Pratt, Michigan State University prattsc@msu.edu Interference from a coherent probe Femtoscopy Topics Some Perspective Theory Koonin Equation Bose-Einstein/Coulomb/Strong

More information

Quantum and Nano Optics Laboratory. Jacob Begis Lab partners: Josh Rose, Edward Pei

Quantum and Nano Optics Laboratory. Jacob Begis Lab partners: Josh Rose, Edward Pei Quantum and Nano Optics Laboratory Jacob Begis Lab partners: Josh Rose, Edward Pei Experiments to be Discussed Lab 1: Entanglement and Bell s Inequalities Lab 2: Single Photon Interference Labs 3 and 4:

More information

Atom Quantum Sensors on ground and in space

Atom Quantum Sensors on ground and in space Atom Quantum Sensors on ground and in space Ernst M. Rasel AG Wolfgang Ertmer Quantum Sensors Division Institut für Quantenoptik Leibniz Universität Hannover IQ - Quantum Sensors Inertial Quantum Probes

More information

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

Correlation functions in optics; classical and quantum 2. TUW, Vienna, Austria, April 2018 Luis A. Orozco

Correlation functions in optics; classical and quantum 2. TUW, Vienna, Austria, April 2018 Luis A. Orozco Correlation functions in optics; classical and quantum 2. TUW, Vienna, Austria, April 2018 Luis A. Orozco www.jqi.umd.edu Correlations in optics Reference that includes pulsed sources: Zheyu Jeff Ou Quantum

More information

12 rad be Ω max 10 / Hz. This result is better by two orders of magnitude than any

12 rad be Ω max 10 / Hz. This result is better by two orders of magnitude than any 1 Abstract Recent developments in spatial atom interferometry have stimulated new fields in atomic physics and quantum optics, opening up new areas in fundamental research. Moreover, there are ideas for

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar Path Entanglement Liat Dovrat Quantum Optics Seminar March 2008 Lecture Outline Path entangled states. Generation of path entangled states. Characteristics of the entangled state: Super Resolution Beating

More information

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Arron Potter Laser stabilization via saturated absorption spectroscopy

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Labs 3-4: Single-photon Source

Labs 3-4: Single-photon Source Labs 3-4: Single-photon Source Lab. 3. Confocal fluorescence microscopy of single-emitter Lab. 4. Hanbury Brown and Twiss setup. Fluorescence antibunching 1 Labs 3-4: Single-photon Source Efficiently produces

More information

arxiv:quant-ph/ v1 19 Aug 2005

arxiv:quant-ph/ v1 19 Aug 2005 arxiv:quant-ph/050846v 9 Aug 005 WITNESSING ENTANGLEMENT OF EPR STATES WITH SECOND-ORDER INTERFERENCE MAGDALENA STOBIŃSKA Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warszawa 00 68, Poland magda.stobinska@fuw.edu.pl

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Kicking Bogoliubov quasiparticles FIG. 1. The Bragg and condensate clouds. (a) Average of two absorption images after 38 msec time of flight, following a resonant Bragg pulse with

More information

Lynn Hoendervanger, David Clément, Alain Aspect, Christoph I Westbrook, Danielle Dowek, Yan Picard, Denis Boiron

Lynn Hoendervanger, David Clément, Alain Aspect, Christoph I Westbrook, Danielle Dowek, Yan Picard, Denis Boiron Influence of Gold Coating and Interplate Voltage on the Performance of Chevron Micro-Channel Plates for the Time and Space Resolved Single Particle Detection Lynn Hoendervanger, David Clément, Alain Aspect,

More information

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS Brief Review Modern Physics Letters B, Vol. 20, No. 21 (2006) 1287 1320 c World Scientific Publishing Company LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION

More information

Coherent Combining and Phase Locking of Fiber Lasers

Coherent Combining and Phase Locking of Fiber Lasers Coherent Combining and Phase Locking of Fiber Lasers Moti Fridman, Micha Nixon, Nir Davidson and Asher A. Friesem Weizmann Institute of Science, Dept. of Physics of Complex Systems, Rehovot 76100, Israel.

More information

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

Thermodynamic Measurements in a Strongly Interacting Fermi Gas J Low Temp Phys (2009) 154: 1 29 DOI 10.1007/s10909-008-9850-2 Thermodynamic Measurements in a Strongly Interacting Fermi Gas Le Luo J.E. Thomas Received: 25 July 2008 / Accepted: 12 October 2008 / Published

More information

Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer

Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer A Dissertation Presented to the Faculty of the School of Engineering and Applied

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

Spinor dynamics-driven formation of a dual-beam atom laser

Spinor dynamics-driven formation of a dual-beam atom laser Spinor dynamics-driven formation of a dual-beam atom laser N. Lundblad, R.J. Thompson, D.C. Aveline, and L. Maleki Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena,

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Achieving steady-state Bose-Einstein condensation

Achieving steady-state Bose-Einstein condensation PHYSICAL REVIEW A VOLUME 57, NUMBER 3 MARCH 1998 Achieving steady-state Bose-Einstein condensation J. Williams, R. Walser, C. Wieman, J. Cooper, and M. Holland JILA and Department of Physics, University

More information

arxiv:atom-ph/ v2 24 Mar 1997

arxiv:atom-ph/ v2 24 Mar 1997 An Atom Laser Based on Raman Transitions G.M. Moy, J.J. Hope and C.M. Savage Department of Physics and Theoretical Physics, The Australian National University, Australian Capital Territory 0200, Australia.

More information