Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals

Size: px
Start display at page:

Download "Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals"

Transcription

1 Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw Experiment Chris Westbrook (Palaiaseau): Denis Boiron Jean-Christophe Jaskula Marie Bonneau Guthrie Partridge Josselin Ruaudel Raphael Lopes + Alain Aspect Theory Piotr Deuar (IF PAN) Karen Kheruntsyan (Uni. Queensland) Marek Trippenbach (UW) Paweł Ziń Jan Chwedeńczuk Tomasz Wasak

2 Outline 1. Atomic pair creation 2. Palaiseau He* experiment 3. Quantum nonlocality experiments + Bell test proposal 4. Tradeoffs for avoiding degradation of quantum correlations 5. New experimental setup in lattice 2/24

3 Atom pair creation 4 wave mixing Vogels, Xu, Ketterle, PRL 89, (2002) Spin dynamics RuGway, Hodgman, Dall, Johnsson, Truscott, PRL 107, (2011) Dissociation of molecular BEC Pair emission from a 1D gas Bucker, Grond, Manz, Berrada, Betz, Koller, Hohenster, Schumm, Perrin, Schmiedmayer, Nature Phys. 7, 608 (2011) Greiner, Regal, Stewart, Jin, PRL 94, (2005) Lücke, Scherer, Kruse, Pezzé, Deuretzbacher, Hyllus,Topic, Peise, Ertmer, Arlt, Santos, Smerzi, Klempt, Science 334, 773 (2011) 3/24

4 BEC collision Palaiseau experiment Single-atom tomography t=0 Bragg pulse t=0.3 s expansion momentum distribution E ~ 20eV 4 He in metastable state Perrin, Chang, Krachmalnicoff, Schellekens, Boiron, Aspect, Westbrook, PRL 99, (2007) Single atom detection efficiency η ~ 12% 4/24

5 BEC collision Above the speed of sound behaves as a superfluid a condensate no longer k-space density BEC k BEC -k PD, Ziń, Chwedeńczuk, Trippenbach, EPJD 65, 19 (2011) BEC width in k-space is Scattered atoms well separated from BEC 5/24

6 Bogoliubov pair creation Assume small BEC incoherent part scattered atoms K.E. + trap Potential from BEC For scattered atoms Pair creation cf. nondegenerate parametric down conversion 6/24

7 Experiment - correlations Kheruntsyan, Jaskula, PD, Bonneau, Partridge, Ruaudel, Boiron, Lopes, Westbrook, PRL 108, (2012) Cross-correlation (pair creation) k m z ism atc h Self-correlation (Hanbury Brown-Twiss) m m is ch t a k xy y k z mis ma t ch k y z z 7/24 m xy m is ch t a

8 Simulation - t-dependent Bogoliubov approx. PD, Chwedeńczuk, Ziń, Trippenbach, PRA 83, (2011) Useful to see what's going on (only have access to the final distribution in experiment) condensate Bogoliubov fluctuation field MUST BE small Bogoliubov is easily solvable. However, 3D simulation: 107 spatial grid points. H = x matrix? Did not try to diagonalize Treat only using positive-p representation See also Wigner treatment: Sinatra, Castin & Lobo J. Mod Opt 47, GP mean field Can use plane wave basis ---> no diagonalizing of 107 X 107 matrices :) 8/24

9 Quantum nonlocality Bell's theorem: Any hidden variable theory consistent with relativity cannot describe all the phenomena of quantum mechanics 1935 EPR paradox quantum mechanics is incomplete 1964 Bell's inequality either quantum mechanics or local realism Experiments: Freedman & Clauser Aspect [photons] looks like it's quantum mechanics Zeilinger (closed locality loophole) Wineland (closed detection loophole) [ion internal states] Zeilinger (ruled out Leggett-type non-local realism) Martinis [solid state qubits] Now consider separated entangled atomic pairs: - entangled mass - objects with internal structure 9/24

10 So far in Palaiseau 2005 single atom measurements, HBT M. Schellekens et al, Science 310, 648 (2005) 2007 Observation of correlations across halo A. Perrin et al, PRL 99, (2007) 2010 sub-poissonian fluctuations of number difference across halo (cf. antibunching) J.C. Jaskula et al, PRL 105, (2010) 2012 Cauchy-Schwartz inequality violation K. V. Kheruntsyan et al, PRL 108, (2012) 10/24

11 Experiment number squeezing Jaskula, Bonneau, Partridge, Krachmalnicoff, PD, Kheruntsyan, Aspect, Boiron, Westbrook, PRL 105, (2010) Number difference squeezing between opposite regions of the halo.(sub-poissonian fluctuations) 11/24

12 Cauchy-Schwartz inequality For vectors: Limit on allowed fluctuations of random variables: Obeyed by classically understood field intensities. Simplest test of stronger-than-classical correlation Precursor, necessary condition of Bell tests etc. Violated in the past in quantum optics: - Clauser, Phys. Rev. D 9, 853 (1974) - Kimble Dagenais, Mandel, PRL 39, 691 (1997) - Zou, Wang, Mandel, Opt. Commun. 84, 351 (1991) - Marino, Boyer, Lett, PRL 100, (2008) 12/24

13 Cauchy-Schwartz quantum formulation Consider 2 boson modes e.g. small bins in k-space and simultaneous detection of two particles: - coincidence rate for ~ two particles in mode 1: - coincidence counts for one particle in each mode: ~ If these came from classical field amplitudes, they would obey the Cauchy-Schwartz inequality: For classical fields 13/24

14 (half-) collision started by Bragg pulse Experiment setup, bins Small time BEC BIN halo BIN BEC short time momentum distribution = long time position distribution MCP 14/24

15 Multimode Cauchy-Schwartz violation Kheruntsyan, Jaskula, PD, Bonneau, Partridge, Ruaudel, Boiron, Lopes, Westbrook, PRL 108, (2012) Consider two bins in k-space, rather than modes Bin averaged correlations Opposing zones simulation Neighbour zones CLASSICAL REGION compare 15/24

16 Rarity-Tapster Bell test A similar concept with He* Rarity-Tapster experiment σ Bell inequality violation collision down-converted pair screen Bragg pulses down-converted pair Rarity & Tapster, PRL 64, 2495 (1990) beam splitter coincidence counting 16/24

17 Tradeoffs for quantum effects : simple model PD, Wasak, Zin, Chwedeńczuk, Trippenbach, PRA 88, (2013) Gaussian ansatz for correlations Multimode relationships for number squeezing : LARGE BIN Green: simple model Blue, red: full simulation long t w SMALL BIN short t w V: 17/24

18 Tests with a simplified system We simulated a simplified model with spherical initial condensates of various particle numbers 1 shot to extract the generic behaviour BIN SIZE 18/24

19 Degradation of squeezing PD, Wasak, Zin, Chwedeńczuk, Trippenbach, PRA 88, (2013) Full calculation Squeezing still destroyed Reduced model (RBM) Halo: free flight + pair production only Condensates: stiff movement 19/24

20 Monochromatic source PD, Wasak, Zin, Chwedeńczuk, Trippenbach, PRA 88, (2013) Full calculation Monochromatic source (plane waves) Full calculation Reduced model (RBM) RBM Squeezing becomes almost perfect, even with all extra Bogoliubov effects 20/24

21 Dense vs. dilute halos PD, Wasak, Zin, Chwedeńczuk, Trippenbach, PRA 88, (2013) High density Low density Many particles per bin 1 or 0 particles per bin Good signal Poor signal Strong degradation Little degradation 21/24

22 Degradation: summary Degradation of squeezing can be traced back to the non-monochromaticity of the mother clouds. Spatial extent of phase grains mediates the appearance of stray atoms in opposite bins. (via a number of processes). Sensitivity to the non-monochromatic source grows with halo density. Low density halos are advantageous because the probability of having some uncorrelated pairs in the opposite bin is low, since the neighboring bins are mostly empty. 22/24

23 New experimental setup in moving lattice Bonneau, Ruaudel, Lopes, Jaskula, Aspect, Boiron, Westbrook, PRA 87, (R) (2013) Dispersion relation Number squeezing between bins covering k and k peaks 0 23/24 2

24 Summary Collisions of BECs produce strongly correlated atom pairs Similar to non-degenerate parametric down-conversion Cauchy-Schwartz violation with massive, separated particles Simplest non-classicality test Precursor of Bell tests on entanglement of mass Outlook: Bell inequality tests Rarity-Tapster scheme Non-monochromatic nature of clouds mediates degradation Through the presence of stray pairs Badness can be dodged at the cost of poor SNR 24/24

Nonclassical atom pairs in collisions of BECs: from squeezing to Bell test proposals

Nonclassical atom pairs in collisions of BECs: from squeezing to Bell test proposals Nonclassical atom pairs in collisions of BECs: from squeezing to Bell test proposals Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland With particular thanks to: Chris Westbrook,

More information

Quantum atom optics with Bose-Einstein condensates

Quantum atom optics with Bose-Einstein condensates Quantum atom optics with Bose-Einstein condensates Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland With particular thanks to: Chris Westbrook, Denis Boiron, J-C Jaskula, Alain

More information

Bogoliubov quantum dynamics at T>=0 (even without a condensate)

Bogoliubov quantum dynamics at T>=0 (even without a condensate) Bogoliubov quantum dynamics at T>=0 (even without a condensate) Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw 1. Supersonic pair creation 2. Palaiseau BEC collision experiment 3.

More information

Hong Ou Mandel experiment with atoms

Hong Ou Mandel experiment with atoms BEC on an MCP Hong Ou Mandel experiment with atoms Chris Westbrook Laboratoire Charles Fabry, Palaiseau FRISNO 13, Aussois 18 march 2015 2 particles at a beam splitter 1 particle at each input 4 possibilities:

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Chapter 2 Proposal for Demonstrating the Hong Ou Mandel Effect with Matter Waves

Chapter 2 Proposal for Demonstrating the Hong Ou Mandel Effect with Matter Waves Chapter 2 Proposal for Demonstrating the Hong Ou Mandel Effect with Matter Waves Two-particle interference is a quintessential effect of quantum mechanics which is perhaps most beautifully demonstrated

More information

Quantum correlations and atomic speckle

Quantum correlations and atomic speckle Quantum correlations and atomic speckle S. S. Hodgman R. G. Dall A. G. Manning M. T. Johnsson K. G. H. Baldwin A. G. Truscott ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics

More information

The Hanbury Brown and Twiss effect: from stars to cold atoms

The Hanbury Brown and Twiss effect: from stars to cold atoms Huntingdon and Broad Top Mountain RR The Hanbury Brown and Twiss effect: from stars to cold atoms Chris Westbrook Institute Optique, Palaiseau Toronto,18 November 2010 Outline 1. HB&T for light (stars

More information

Atomic Hong Ou Mandel experiment

Atomic Hong Ou Mandel experiment Atomic Hong Ou Mandel experiment Raphael Lopes, Almazbek Imanaliev, Alain Aspect, Marc Cheneau, Denis Boiron, Christoph I Westbrook To cite this version: Raphael Lopes, Almazbek Imanaliev, Alain Aspect,

More information

Piotr Pawe l Deuar: Curriculum Vitae

Piotr Pawe l Deuar: Curriculum Vitae Piotr Pawe l Deuar: Curriculum Vitae Born: 27 October 1975, Warsaw, Poland University address: Institute of Physics, Polish Academy of Sciences (PAN), Al. Lotników 32/46, 02-668 Warszawa, Poland Phone:

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

0.5 atoms improve the clock signal of 10,000 atoms

0.5 atoms improve the clock signal of 10,000 atoms 0.5 atoms improve the clock signal of 10,000 atoms I. Kruse 1, J. Peise 1, K. Lange 1, B. Lücke 1, L. Pezzè 2, W. Ertmer 1, L. Santos 3, A. Smerzi 2, C. Klempt 1 1 Institut für Quantenoptik, Leibniz Universität

More information

arxiv:quant-ph/ v1 19 Aug 2005

arxiv:quant-ph/ v1 19 Aug 2005 arxiv:quant-ph/050846v 9 Aug 005 WITNESSING ENTANGLEMENT OF EPR STATES WITH SECOND-ORDER INTERFERENCE MAGDALENA STOBIŃSKA Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warszawa 00 68, Poland magda.stobinska@fuw.edu.pl

More information

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014 The Hanbury Brown Twiss effect for matter waves Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014 Outline: Hanbury Brown Twiss effect... 1.... in optics and

More information

Bose-Einstein condensates (Fock states): classical or quantum?

Bose-Einstein condensates (Fock states): classical or quantum? Bose-Einstein condensates (Fock states): classical or quantum? Does the phase of Bose-Einstein condensates exist before measurement? Quantum non-locality, macroscopic superpositions (QIMDS experiments))

More information

Bose-Einstein condensates & tests of quantum mechanics

Bose-Einstein condensates & tests of quantum mechanics Bose-Einstein condensates & tests of quantum mechanics Poul Lindholm Pedersen Ultracold Quantum Gases Group PhD day, 31 10 12 Bose-Einstein condensation T high Classical particles T = 0 Pure condensate

More information

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage C. S. Unnikrishnan Fundamental Interactions Laboratory Tata Institute

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Alain Aspect, Adilet Imambekov, Vladimir Gritsev, Takuya Kitagawa,

More information

Violation of Bell Inequalities

Violation of Bell Inequalities Violation of Bell Inequalities Philipp Kurpiers and Anna Stockklauser 5/12/2011 Quantum Systems for Information Technology Einstein-Podolsky-Rosen paradox (1935) Goal: prove that quantum mechanics is incomplete

More information

arxiv: v2 [cond-mat.quant-gas] 27 Sep 2012

arxiv: v2 [cond-mat.quant-gas] 27 Sep 2012 Twin-atom beams Robert Bücker, 1 Julian Grond, 1, 2, 3, Stephanie Manz, 1, Tarik Berrada, 1 Thomas Betz, 1, Christian Koller, 1 Ulrich Hohenester, 2 Thorsten Schumm, 1, 3 Aurélien Perrin, 1, 3, and Jörg

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics,

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Contextuality and the Kochen-Specker Theorem. Interpretations of Quantum Mechanics

Contextuality and the Kochen-Specker Theorem. Interpretations of Quantum Mechanics Contextuality and the Kochen-Specker Theorem Interpretations of Quantum Mechanics by Christoph Saulder 19. 12. 2007 Interpretations of quantum mechanics Copenhagen interpretation the wavefunction has no

More information

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES W. VASSEN, T. JELTES, J.M. MCNAMARA, A.S. TYCHKOV, W. HOGERVORST Laser Centre Vrije Universiteit Amsterdam, The Netherlands K.A.H. VAN LEEUWEN Dept. of

More information

Timeline: Bohm (1951) EPR (1935) CHSH (1969) Bell (1964) Theory. Freedman Clauser (1972) Aspect (1982) Weihs (1998) Weinland (2001) Zeilinger (2010)

Timeline: Bohm (1951) EPR (1935) CHSH (1969) Bell (1964) Theory. Freedman Clauser (1972) Aspect (1982) Weihs (1998) Weinland (2001) Zeilinger (2010) 1.EPR paradox 2.Bohm s version of EPR with spin ½ particles 3.Entangled states and production 4.Derivation of CHSH inequality - S parameter for mixed and entangled state 5. Loopholes 6.Experiments confirming

More information

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

Two-photon double-slit interference experiment

Two-photon double-slit interference experiment 1192 J. Opt. Soc. Am. B/Vol. 15, No. 3/March 1998 C. K. Hong and T. G. Noh Two-photon double-slit interference experiment C. K. Hong and T. G. Noh Department of Physics, Pohang University of Science and

More information

New perspectives on classical field simulations of ultracold Bose gases

New perspectives on classical field simulations of ultracold Bose gases New perspectives on classical field simulations of ultracold Bose gases Piotr Deuar Joanna Pietraszewicz Tomasz Świsłocki Igor Nowicki Karolina Borek Institute of Physics, Polish Academy of Sciences, Warsaw,

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

A stable c-field theory that includes quantum fluctuations

A stable c-field theory that includes quantum fluctuations A stable c-field theory that includes quantum fluctuations Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland Collaboration: Nick Proukakis University of Newcastle, United Kingdom

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-30 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Atom-atom correlation measurements: a fundamental tool for quantum atom optics

More information

Quantum Ghost Imaging by Measuring Reflected Photons

Quantum Ghost Imaging by Measuring Reflected Photons Copyright c 2008 ICCES ICCES, vol.8, no.3, pp.101-106 Quantum Ghost Imaging by Measuring Reflected Photons R. E. Meyers 1 and K. S. Deacon 1 Summary A new type of imaging, Quantum ghost imaging, is described

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states G. Tóth 1,2,3 Collaboration: Entanglement th.: G. Vitagliano 1, I. Apellaniz 1, I.L. Egusquiza

More information

Lab 1 Entanglement and Bell s Inequalities

Lab 1 Entanglement and Bell s Inequalities Quantum Optics Lab Review Justin Winkler Lab 1 Entanglement and Bell s Inequalities Entanglement Wave-functions are non-separable Measurement of state of one particle alters the state of the other particle

More information

Quantum Optics and Quantum Information Laboratory

Quantum Optics and Quantum Information Laboratory Quantum Optics and Quantum Information Laboratory OPT 253, Fall 2011 Institute of Optics University of Rochester Instructor: Dr. Lukishova Jonathan Papa Contents Lab 1: Entanglement and Bell s Inequalities

More information

Karen V. Kheruntsyan Curriculum Vitae 14 June 2018

Karen V. Kheruntsyan Curriculum Vitae 14 June 2018 Karen V. Kheruntsyan Curriculum Vitae 14 June 2018 CONTACT DEATAILS Professor Karen V. Kheruntsyan School of Mathematics and Physics Phone: +61 (0)404 753 449 (mobile) The University of Queensland Fax:

More information

Entanglement of projection and a new class of quantum erasers

Entanglement of projection and a new class of quantum erasers PHYSICAL REVIEW A VOLUME 60, NUMBER 2 AUGUST 1999 Entanglement of projection and a new class of quantum erasers Robert Garisto BNL Theory Group, Building 510a, Brookhaven National Laboratory, Upton, New

More information

A new experimental apparatus for quantum atom optics

A new experimental apparatus for quantum atom optics A new experimental apparatus for quantum atom optics Andreas Hüper, Jiao Geng, Ilka Kruse, Jan Mahnke, Wolfgang Ertmer and Carsten Klempt Institut für Quantenoptik, Leibniz Universität Hannover Outline

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Kicking Bogoliubov quasiparticles FIG. 1. The Bragg and condensate clouds. (a) Average of two absorption images after 38 msec time of flight, following a resonant Bragg pulse with

More information

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Greg Howland and Steven Bloch May 11, 009 Abstract We prepare a solution of nano-diamond particles on a glass microscope slide

More information

Bell tests in physical systems

Bell tests in physical systems Bell tests in physical systems Seung-Woo Lee St. Hugh s College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of

More information

EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist

EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist KITP, May 19, 004 Alain Aspect Laboratoire Charles Fabry de l Institut d Optique http://atomoptic.iota.u-psud.fr

More information

A Superluminal communication solution based on Four-photon entanglement

A Superluminal communication solution based on Four-photon entanglement A Superluminal communication solution based on Four-photon entanglement Jia-Run Deng cmos001@163.com Abstract : Based on the improved design of Four-photon entanglement device and the definition of Encoding

More information

Hanbury Brown Twiss effect for ultracold quantum gases

Hanbury Brown Twiss effect for ultracold quantum gases Hanbury Brown Twiss effect for ultracold quantum gases arxiv:cond-mat/58466 v3 5 Sep 6 M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes,, D. Boiron, A. Aspect, C. I. Westbrook Laboratoire Charles

More information

arxiv:quant-ph/ v1 14 Sep 1999

arxiv:quant-ph/ v1 14 Sep 1999 Position-momentum local realism violation of the Hardy type arxiv:quant-ph/99942v1 14 Sep 1999 Bernard Yurke 1, Mark Hillery 2, and David Stoler 1 1 Bell Laboratories, Lucent Technologies, Murray Hill,

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Collapse versus correlations, EPR, Bell Inequalities, Cloning

Collapse versus correlations, EPR, Bell Inequalities, Cloning Collapse versus correlations, EPR, Bell Inequalities, Cloning The Quantum Eraser, continued Equivalence of the collapse picture and just blithely/blindly calculating correlations EPR & Bell No cloning

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement 12/02/13 Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement Ryo Namiki Quantum optics group, Kyoto University 京大理 並木亮 求職中 arxiv:1109.0349 Quantum Entanglement

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Broadband energy entangled photons and their potential for space applications. André Stefanov University of Bern, Switzerland

Broadband energy entangled photons and their potential for space applications. André Stefanov University of Bern, Switzerland Broadband energy entangled photons and their potential for space applications André Stefanov University of Bern, Switzerland Quantum Technology in Space, Malta, 29.03.2016 SPDC for quantum communication

More information

Li You, Georgia Tech (KITP Quantum Gases Conf 5/13/04) 1

Li You, Georgia Tech (KITP Quantum Gases Conf 5/13/04) 1 Li You D. L. Zhou B. Zeng, M. Zhang, Z. Xu (Tsinghua Univ.) C. P. Sun, (ITP) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) i (,,, +,, e ϕ ) -GH Z =, i ( e ϕ ) = + W. M. Itano et al., Phs. Rev.

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

Unconventional electron quantum optics in condensed matter systems

Unconventional electron quantum optics in condensed matter systems Unconventional electron quantum optics in condensed matter systems Dario Ferraro Centre de Physique Théorique, Marseille nanoqt-2016, Kyiv, October 10, 2016 In collaboration with: J. Rech, T. Jonckheere,

More information

le LPTMS en Bretagne... photo extraite du site

le LPTMS en Bretagne... photo extraite du site le LPTMS en Bretagne... 1 photo extraite du site http://www.chateau-du-val.com le LPTMS en Bretagne... 1 2 Quantum signature of analog Hawking radiation in momentum space Nicolas Pavloff LPTMS, CNRS, Univ.

More information

- Presentation - Quantum and Nano-Optics Laboratory. Fall 2012 University of Rochester Instructor: Dr. Lukishova. Joshua A. Rose

- Presentation - Quantum and Nano-Optics Laboratory. Fall 2012 University of Rochester Instructor: Dr. Lukishova. Joshua A. Rose - Presentation - Quantum and Nano-Optics Laboratory Fall 2012 University of Rochester Instructor: Dr. Lukishova Joshua A. Rose Contents Laboratory 1: Entanglement and Bell s Inequalities Laboratory 2:

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Interference and the lossless lossy beam splitter

Interference and the lossless lossy beam splitter Interference and the lossless lossy beam splitter JOHN JEFFERS arxiv:quant-ph/000705v1 10 Jul 000 Department of Physics and Applied Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK.

More information

Inequalities for Dealing with Detector Inefficiencies in Greenberger-Horne-Zeilinger Type Experiments

Inequalities for Dealing with Detector Inefficiencies in Greenberger-Horne-Zeilinger Type Experiments PHYSICAL REVIEW LETTERS VOLUME 84 31 JANUARY 000 NUMBER 5 Inequalities for Dealing with Detector Inefficiencies in Greenberger-Horne-Zeilinger Type Experiments J. Acacio de Barros* and Patrick Suppes CSLI-Ventura

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Seiji Armstrong 1, Meng Wang 2, Run Yan Teh 3, Qihuang Gong 2, Qiongyi He 2,3,, Jiri Janousek 1,

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows:

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows: C/CS/Phys C9 Qubit gates, EPR, ell s inequality 9/8/05 Fall 005 Lecture 4 Two-qubit gate: COT The controlled-not (COT) gate exors the first qubit into the second qubit ( a,b a,a b = a,a + b mod ). Thus

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Lynn Hoendervanger, David Clément, Alain Aspect, Christoph I Westbrook, Danielle Dowek, Yan Picard, Denis Boiron

Lynn Hoendervanger, David Clément, Alain Aspect, Christoph I Westbrook, Danielle Dowek, Yan Picard, Denis Boiron Influence of Gold Coating and Interplate Voltage on the Performance of Chevron Micro-Channel Plates for the Time and Space Resolved Single Particle Detection Lynn Hoendervanger, David Clément, Alain Aspect,

More information

Nonlinear Quantum Interferometry with Bose Condensed Atoms

Nonlinear Quantum Interferometry with Bose Condensed Atoms ACQAO Regional Workshop 0 onlinear Quantum Interferometry with Bose Condensed Atoms Chaohong Lee State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun

More information

arxiv: v1 [quant-ph] 17 Oct 2016

arxiv: v1 [quant-ph] 17 Oct 2016 Fermionic ghost imaging arxiv:1610.05002v1 [quant-ph] 17 Oct 2016 Jianbin Liu, 1, Yu Zhou, 2 Huaibin Zheng, 1 Hui Chen, 1 Fu-li Li, 2 and Zhuo Xu 1 1 Electronic Materials Research Laboratory, Key Laboratory

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Quantum Nonlocality of N-qubit W States

Quantum Nonlocality of N-qubit W States Quantum onlocality of -qubit W States Chunfeng Wu, Jing-Ling Chen, L. C. Kwek,, 3 and C. H. Oh, Department of Physics, ational University of Singapore, Science Drive 3, Singapore 754 Theoretical Physics

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

Quantum Entanglement and Bell s Inequalities Zachary Evans, Joel Howard, Jahnavi Iyer, Ava Dong, and Maggie Han

Quantum Entanglement and Bell s Inequalities Zachary Evans, Joel Howard, Jahnavi Iyer, Ava Dong, and Maggie Han Quantum Entanglement and Bell s Inequalities Zachary Evans, Joel Howard, Jahnavi Iyer, Ava Dong, and Maggie Han Institute of Optics, University of Rochester Opt 101 Meeting, December 4, 2012, Rochester

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Andreas W. Schell, 1, a) Johannes Kaschke, 2 Joachim Fischer,

More information

Bunching-Antibunching of Quantum Particles From Astronomy to AMO. Indu Satija George Mason

Bunching-Antibunching of Quantum Particles From Astronomy to AMO. Indu Satija George Mason Bunching-Antibunching of Quantum Particles From Astronomy to AMO Indu Satija George Mason What is the most beautiful experiment in physics? This is the question that Robert Crease asked Physics World readers

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

No Fine theorem for macroscopic realism

No Fine theorem for macroscopic realism No Fine theorem for macroscopic realism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany 2nd International Conference on Quantum Foundations Patna, India 17 Oct. 2016

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Quantum entanglement and its detection with few measurements

Quantum entanglement and its detection with few measurements Quantum entanglement and its detection with few measurements Géza Tóth ICFO, Barcelona Universidad Complutense, 21 November 2007 1 / 32 Outline 1 Introduction 2 Bipartite quantum entanglement 3 Many-body

More information