Li You, Georgia Tech (KITP Quantum Gases Conf 5/13/04) 1

Size: px
Start display at page:

Download "Li You, Georgia Tech (KITP Quantum Gases Conf 5/13/04) 1"

Transcription

1 Li You D. L. Zhou B. Zeng, M. Zhang, Z. Xu (Tsinghua Univ.) C. P. Sun, (ITP) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04)

2 i (,,, +,, e ϕ ) -GH Z =, i ( e ϕ ) = + W. M. Itano et al., Phs. Rev. A 4, 95 (990).!"#!#$ % & ' ( ) * +, - Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04)

3 . /00-. 4/005 (" 3$ A B Ψ ( r A, r B, ) = αiφi ( r A ) β jψ j ( r B ) i= j= = αφ ( ra ) + αφ ( ra ) + βψ ( rb ) + βψ ( rb ) +,, A B i, j, i A j B i, j, = A B ( r, r, ) φ ( r ) ψ ( r ) Ψ = ϒ '# Schmidt decomposition T ϒ = U DV * 6 Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 3

4 Φ = ( r, r, r, ) φ ( r ) φ ( r ) φ ( r ) 3 3 GP equation (coarse-grained mean-field) + + = M Vext r asc r r r ( ) φ ( ) φ ( ) µφ ( ) Ψ r, r Two-atom scattering state ( ) a r r r r sc umber fluctuations, Phase diffusions, Goldstone modes, Phs. Rev. Lett. 77, 3489 (996); 90, (003). 7 ' 7 % * 8 9 : Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 4

5 ; 9 / 6 ' * %! (mode) entanglement? ( a + b ) 0,0 +, (,0 +, + 0, +, ) 0,0, [ ϕ ( r ) ϕ ( r ) + ϕ ( r ) ϕ ( r )] a b a A b B b A a B L.-M. Duan, J. I. Cirac, and P. Zoller, Phs. Rev. A 65, (00) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 5

6 "# F ωij fi f j i, j Ψ = 0 / = Z f f 0 k ' ' k k k John Schliemann, Daniel Loss, A. H. MacDonald, Phs. Rev. B 63, 0853 (00). John Schliemann, J. I. Cirac, M. Ku\'s, M. Lewenstein, and Daniel Loss, Phs. Rev. A 64, 0303 (00). "# Ψ B = βijbi bj 0 i, j ' ' Bk bk bk 0 k = = B,0,0, + B 0,,0, + B 0,0,, + 3 R. Pauskauskas and L. You, Phs. Rev. A 64, 0430 (00). Y.S. Li, B. Zeng, X.S. Liu, and G. L. Long, Phs. Rev. A 64, (00). Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 6

7 $ % # L. You D. L. Zhou B. Zeng, Z. Xu (Tsinghua Univ.) "% % 3 <" : i 0 + e j l 000 l 00 l 0 l 0 l &, : GHZ = ( ) W = ( ) 3!"# $%& '( Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 7

8 "% # " : e j i r s ( ) + t &, : GHZ W = z a a a + z a b bbb = ( ) ( a bb ba b bba ) + a b & L. You, Phs. Rev. Lett. 90, (003) ( ) -GHZ =,,, +,,, B. Zeng, D. L. Zhou, P. Zhang, Z. Xu, and L. You, Phs. Rev. A 68, 0436 (003). -GHZ ρ particle -GHZ > Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 8

9 a (k)a(k)a(k) a (k)a(k)a(k) Controlled entanglement of quantum degenerate atoms ' EPR, Phs. Rev. 47, 777 (935); J. S. Bell, Phsics (Long Island Cit, Y), 95 (964). A. Aspect, J. Dalibard, Roger, PRL 49, 804 (98) BELL ( ) = +! Bell Z. Y. Ou & L. Mandel, PRL. 6, 50 (988) Y. H. Shih & C. O. Alle, PRL. 6, 9 (988) Kwiat & Zeilinger et. al, PRL. 75, 4337 (995) ( )* Zeilinger A. Zeilinger et. al, PRL 8, 345 (999). 4-photons J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger Phs. Rev. Lett. 86, 4435 (00) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 9

10 a (k)a(k)a(k) a (k)a(k)a(k) Controlled entanglement of quantum degenerate atoms + Wineland Monroe D. J. Wineland, and C. I. Monroe et. al, ATURE 404, 56 (000) five 9 Be + ions in linear trap )&* +,'--- Ω σ i< j σ ( i ) ( j ) R x x ( ) ( ) = Ω R + + i j J x "#$%,,,, +,,,, Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 0

11 % %, J = mode condensate Schwinger representation J x = ( b a + a b) i J = b a a b J z = ( b b a a ) ( ) J - H = uj z, ( ) ϕ ( ) 4 u= a + a a dr r aa bb ab a/ b Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04)

12 ./0 z x J, J, J, J x z z Can be used to generate an smmetric state "# Single atom Raman coupling H = ΩJ is readil implemented with external laser pulses Step 3 Step i π J iuj z t / i π J U ( t) e e e = e Step x iuj t / Ω u Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04)

13 "# D. S. Hall et al., Phs. Rev. Lett. 8, 453 (998) two-photon transition one-photon transition ikuni and Williams, cond-mat/ J, single atom tunneling rate of the nearest neighbor wells u, on-site collisional interaction Quantum Phase Transition u J z.6, M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, ature 43, 44 (00). D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phs. Rev. Lett. 8, 308 (998). Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 3

14 - # ( ) ϕ ( ) 4 u= a + a a dr r aa bb ab a/ b aaa abb aab ( π) ( ) ωtrap 30 khz ( ) 0( Hz ) -GHZ in 0 (milli-second u π )! "# $ % &% '( $ % )% '&** % +,-. E. A. Burt et. al., Phs. Rev. Lett. 79, 337 (997). 0 H = u S + Ω S z ( u t ) = ( k + ) π Ω ( u t ) + = m π u Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 4

15 +, 0()* =4 atoms 0 - = atoms. /!0 " 3 /! 4 " / Ω u, 0 0 f o r u p to 4 -a to m s / + "%. (,,,,,, ) + Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 5

16 * & &'% ( ) *' PRL, 9, (003). +*, Ψˆ + Ψ ˆ = Ψˆ 0 ˆ Ψ m f = c 4π 4 3 a a c π = + = M 3M a a ( ), ( ) Single mode approximation Ψ a ( t) ( r ) α α φ Phs. Rev. A 66, 060 (00). Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 6

17 a (k)a(k)a(k) Controlled entanglement of quantum degenerate atoms.%# ), a, a, a = a a + a a + a a ( 0 + ) + ( 0 0 ) J = a a + a a J + + = A = a a a 3 J = J z a + a + a a ( ) J = J + J + J = + 3 A A x z ).''/.!0). Law et al., PRL 8, 557 (998); Ho and Yip, PRL 84, 403 (000)../ S = 4T ( )( ) ( ) 3 + ε+ ε Y Y0 + G Y Phs. Rev. A 66, 0336 (00). Gell-Mann decomposition 3 ( ) 0 3 ( 0 ) 0 3 ( 0 ) ( ) 3 T = a a ; T = V = a a ; V = U = a a ; U = + Y = V 0 U + -- T ( ) G = V U + h. c. Y + + Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 7

18 * P. Facchi and S. Pascazio, Phs. Rev. Lett. 89, (00). H = H + KH K measurement Ω T 3 * Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 8

19 4()* =0 atoms 4 % 5 0 L. You D. L. Zhou B. Zeng, Z. Xu (Tsinghua Univ.) C. P. Sun (ITP) x 0 z Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 9

20 ! " ' #"# ( 5 æ q k q k ö = Õ cos 0 + sin ç è ø k = 5 H ( j) ( k) I µ å s s : J j, k =, j< k 6 5 p p qi + qi + i ( i) ( i) 0 x = cos 0 + sin p p qi + q + i i sin 0 i cos x = - + i ( i) ( i) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 0

21 4()* æ p ö æ p ö æ ( j) p ö ( j) ( k) S = exp i ( ) exp i( ) s exp i s s ç è 4ø ç å 4 j ç å è ø è 4 j, k =, j < k ø = å i, j =, i< j ( i) ( j) ( i) ( j) ( I s s s s ) %89# 5 æ ö = + ç ø i i ç M Õ 0 x Õ x çè i= i= H. J. Briegel and R. Raussendorf, Phs. Rev. Lett. 86, 90 (00) % 5 æ q k k cos 0 sin q i ö = Õ + e f ç è ø k = ; " &<%89#5 æ ö æ ö = è ø è ø ( k) s ( k) k sk F å f S f çõ çõ { sk } k = k = : f f + - k k hk h = cos 0 + sin hk h = - sin 0 + cos ( k) k ( k) ( k) k ( k) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04)

22 & ( k ) = ( + - sin k sin k ) ( + - sin sin ) p max h q f q f x 0 z 0.5 x z = 30 = 3. & =# 3% > # >#? J 7 ' = =#3% > & $, 6 < 3% > Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04)

23 % L. You D. L. Zhou, B. Zeng, Z. Xu (Tsinghua Univ.) C. P. Sun (ITP) an -bit error: E = e I + e X + e Z + e X Z i i0 i i i3 bit-flip: X : α 0 + β α + β 0 phase-error: Z : α 0 + β α 0 β Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 3

24 bit-flip code L L phase-flip code L L Initial state H = uj x ( ) ( ) ψ 0 = α 0 + β 0,,0 9 5% 8 - ancilla bits "% L L bit error rate p <, 3 ( bit ) error rate p + p ( < p) 3 3, error-detection (quantum measurement): P P P P no error bit flip on qubit one bit flip on qubit two bit flip on qubit three Recover: flip the flipped qubit again Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 4

25 "% % L L error-detection (quantum measurement): P 0 P P P no error phase flip on qubit one qubit two qubit three Recover: flip the flipped qubit again "%.% L 000 L 3 3 P. Shor, PRA 5, 493 (995). Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 5

26 7 % α 0 + β α 0,,0 + β,, + + Initial state ( ) ( ) ψ 0 = α 0 + β 0,,0 ancilla bits 3 ( α β ) 0 + 0,,0 σ ( ) ( ) z σ z H = uj x H = uj x Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 6

27 - ( α + β ) 0 0,,0 H = uj x &! ( α β ) 0 + 0,,0 = 8 α 0,0,0 0,0,0 0,0,0 + β,,,,,, 3 3 α ( 0,0,0,, ) + β ( 0,0,0 +,, ) 9 5% 8 - Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 7

28 -..$. * S ( ) = exp ( ga g a ) t ξ [ x, p x ] = i x p x. $ [ S i, S j ] = is k Sx S Sk 4 S Sstem of fixed particles S = S Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 8

29 ./0 % Coordinate rotation squeezes spin? z Squeezing: area preserving deformations S S M. Kitagawa and M. Ueda, Phs. Rev. A 47, 538 (993) D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phs. Rev. A. 50, 67 (994). random correlated M. Kitagawa and M. Ueda, PRA 47, 538 (993) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 9

30 . $ x : = DS S ( ) ^ min )./0)',--' "!&&--(, $ ( S )( Sn ) ξ < ( Sn ) + ( Sn ) 3 n, n, n 3 Mutuall orthogonal unit vectors " ρ p ρ ρ ρ ρ () ( ) (3 ) ( ) k k k k k k A. Sorensen, L-M. Duan, J. I. Cirac, and P. Zoller, ature 409, 63 (00). Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 30

31 7 & # z U(t) = exp(-iφsz) φ U(t) = exp(-iχtsz ) S z φ = χts z z Coherent Minimum variance reduced from ½S to ½(S/3) /3 "# u ( ) ( ) ( µ λ ) Heff = a a aa + b b bb a a + b b a b + b a u = S z λ S A. Imamoglu, M. Lewenstein, and L. You, x Phs. Rev. Lett. 77, 5 (997) S S + = = a b S + S z = b b a a ( ) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 3

32 4 :% $ G b ( t) a ( t) G exp u σ a/b( ) t τ c = u σ a / b "% % Science 9, 386 (00). ature 49, 5 (00). Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 3

33 "# & # Swirling Effect Cancels Out U(t) = exp[-χt(s + -S - )] x x x Coherent Squeezed Minimum variance reduced to ½ $ Li You K. Helmerson (IST) M. Zhang B. Deb (PRL, India) Kristian Helmerson and L. You, Phs. Rev. Lett. 87, 7040 (00). Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 33

34 - ' e Ω Ω g g For each atom: aborption of one photon emission of one photon :' e atomic excited state molecular excited state e g K K M g g K ( M) K Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 34

35 0 ' ( i) ( j) ( i) ( j) Ω R σ+ σ+ + σ σ For ever pair of atoms: absorption of one photon emission of one photon 4 H u J J R = ( x ) H S = uj x optimal spin squeezing snap shots Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 35

36 4 0; 4<== H = u J J H = uj R ( x ) S x 4 H = u J J R ( x ) 50% overlap with the maximall entangled state Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 36

37 ; < " $,= #3% > &!# Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) 37

Manipulation of single neutral atoms in optical lattices

Manipulation of single neutral atoms in optical lattices PHYSICAL REVIEW A 74, 436 6 Manipulation of single neutral atoms in optical lattices Chuanwei Zhang, S. L. Rolston, and S. Das Sarma Condensed Matter Theory Center, Department of Physics, University of

More information

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices Quantum computing and quantum communication with atoms L.-M. Duan 1,2, W. Dür 1,3, J.I. Cirac 1,3 D. Jaksch 1, G. Vidal 1,2, P. Zoller 1 1 Institute for Theoretical Physics, University of Innsbruck, A-6020

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

arxiv:quant-ph/ v2 9 Apr 2003

arxiv:quant-ph/ v2 9 Apr 2003 Entanglement generation and multiparticle interferometry with neutral atoms. Artem M. Dudarev, 1,2 Roberto B. Diener, 1 Biao Wu, 1,3 Mark G. Raizen, 1,2 and Qian Niu 1 1 Department of Physics, The University

More information

Ultracold Atoms in optical lattice potentials

Ultracold Atoms in optical lattice potentials ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Ultracold Atoms in optical lattice potentials Experiments at the interface between atomic physics and condensed

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Encoding a logical qubit into physical qubits

Encoding a logical qubit into physical qubits Encoding a logical qubit into physical qubits B. Zeng, 1, * D. L. Zhou, 2,3 Z. Xu, 1 C. P. Sun, 2 and L. You 2,3 1 Department of Physics, Tsinghua University, Beijing 100084, Peoples Republic of China

More information

A Superluminal communication solution based on Four-photon entanglement

A Superluminal communication solution based on Four-photon entanglement A Superluminal communication solution based on Four-photon entanglement Jia-Run Deng cmos001@163.com Abstract : Based on the improved design of Four-photon entanglement device and the definition of Encoding

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

The feasible generation of entangled spin-1 state using linear optical element

The feasible generation of entangled spin-1 state using linear optical element The feasible generation of entangled spin-1 state using linear optical element XuBo Zou, K. Pahlke and W. Mathis Institute TET, University of Hannover, Appelstr. 9A, 30167 Hannover, Germany Abstract We

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Beyond mean field physics with Bose-Einstein condensates in optical lattices

Beyond mean field physics with Bose-Einstein condensates in optical lattices Beyond mean field physics with Bose-Einstein condensates in optical lattices M. Greiner 1,2,O.Mandel 1,2,A.Altmeyer 1,2, A. Widera 1,2,T.Rom 1,2,T.W.Hänsch 1,2 and I. Bloch 1,2 1 Sektion Physik, Ludwig-Maximilians-Universität,

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Measuring atomic NOON-states and using them to make precision measurements

Measuring atomic NOON-states and using them to make precision measurements Measuring atomic NOON-states and using them to make precision measurements David W. Hallwood, Adam Stokes, Jessica J. Cooper and Jacob Dunningham School of Physics and Astronomy, University of Leeds, Leeds,

More information

Cold Quantum Gas Group Hamburg

Cold Quantum Gas Group Hamburg Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture BEC in Space Spinor-BEC Atom-Guiding in PBF Fermi Bose Mixture Project Quantum Degenerate Fermi-Bose Mixtures of 40K/87Rb at Hamburg: since 5/03 Special

More information

arxiv:quant-ph/ v1 4 Mar 2005

arxiv:quant-ph/ v1 4 Mar 2005 Quantum Information Processing using coherent states in cavity QED Ming Yang 1, and Zhuo-Liang Cao 1, 1 School of Physics & Material Science, Anhui University, Hefei, 230039, PRChina Using the highly detuned

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Measuring Entanglement Entropy in Synthetic Matter

Measuring Entanglement Entropy in Synthetic Matter Measuring Entanglement Entropy in Synthetic Matter Markus Greiner Harvard University H A R V A R D U N I V E R S I T Y M I T CENTER FOR ULTRACOLD ATOMS Ultracold atom synthetic quantum matter: First Principles

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

Nonlinear Quantum Interferometry with Bose Condensed Atoms

Nonlinear Quantum Interferometry with Bose Condensed Atoms ACQAO Regional Workshop 0 onlinear Quantum Interferometry with Bose Condensed Atoms Chaohong Lee State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Physical implementations of quantum computing

Physical implementations of quantum computing Physical implementations of quantum computing Andrew Daley Department of Physics and Astronomy University of Pittsburgh Overview Introduction DiVincenzo Criteria Characterising coherence times Survey of

More information

Imaging the Mott Insulator Shells using Atomic Clock Shifts

Imaging the Mott Insulator Shells using Atomic Clock Shifts arxiv:cond-mat/0606642v1 [cond-mat.other] 25 Jun 2006 Imaging the Mott Insulator Shells using Atomic Clock Shifts Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Patrick Medley, Aaron E. Leanhardt, 1 Luis

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

arxiv:quant-ph/ v2 26 Jan 1999

arxiv:quant-ph/ v2 26 Jan 1999 Quantum computation with ions in thermal motion Anders Sørensen and Klaus Mølmer Institute of Physics and Astronomy, University of Aarhus DK-8 Århus C arxiv:quant-ph/9839v 6 Jan 999 We propose an implementation

More information

arxiv:quant-ph/ v1 5 Sep 2002

arxiv:quant-ph/ v1 5 Sep 2002 Realization of All-or-nothing-type Kochen-Specker Experiment with Single Photons Yun-Feng Huang, Chuan-Feng Li, Yong-Sheng Zhang, Jian-Wei Pan, and Guang-Can Guo Key Laboratory of Quantum Information,

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Quantum Nonlocality of N-qubit W States

Quantum Nonlocality of N-qubit W States Quantum onlocality of -qubit W States Chunfeng Wu, Jing-Ling Chen, L. C. Kwek,, 3 and C. H. Oh, Department of Physics, ational University of Singapore, Science Drive 3, Singapore 754 Theoretical Physics

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s

More information

Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields Commun. Theor. Phys. (Beijing, China) 4 (004) pp. 103 109 c International Academic Publishers Vol. 4, No. 1, July 15, 004 Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent

More information

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state Perfect quantum teleportation and dense coding protocols via the -qubit W state Wang Mei-Yu( ) a)b) and Yan Feng-Li( ) a)b) a) College of Physics Science and Information Engineering, Hebei ormal University,

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Quantum Metrology Optical Atomic Clocks & Many-Body Physics Quantum Metrology Optical Atomic Clocks & Many-Body Physics Jun Ye JILA, National Institute of Standards & Technology and University of Colorado APS 4CS Fall 2011 meeting, Tucson, Oct. 22, 2011 Many-body

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states G. Tóth 1,2,3 Collaboration: Entanglement th.: G. Vitagliano 1, I. Apellaniz 1, I.L. Egusquiza

More information

IPT 5340 (PHYS 6840) Quantum Optics. Ray-Kuang Lee. Institute of Photonics Technologies Department of Electrical Engineering and Department of Physics

IPT 5340 (PHYS 6840) Quantum Optics. Ray-Kuang Lee. Institute of Photonics Technologies Department of Electrical Engineering and Department of Physics IPT5340, Spring 09 p. 1/35 IPT 5340 (PHYS 6840) Quantum Optics Ray-Kuang Lee Institute of Photonics Technologies Department of Electrical Engineering and Department of Physics National Tsing-Hua University,

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Entanglement concentration for multi-atom GHZ class state via cavity QED

Entanglement concentration for multi-atom GHZ class state via cavity QED Vol 5 No, December 006 c 006 Chin. Phys. Soc. 009-963/006/5()/953-06 Chinese Physics and IOP Publishing Ltd Entanglement concentration for multi-atom GHZ class state via cavity QED Jiang Chun-Lei( ), Fang

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Quantum computing hardware

Quantum computing hardware Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576 Class format 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed

More information

Storing and manipulating quantum information using atomic ensembles

Storing and manipulating quantum information using atomic ensembles Storing and manipulating quantum information using atomic ensembles Mikhail Lukin Physics Department, Harvard University Introduction: Rev. Mod. Phys. 75, 457 (2003) Plan: Basic concepts and ideas Application

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Quantum Dense Coding and Quantum Teleportation

Quantum Dense Coding and Quantum Teleportation Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Quantum entanglement and its detection with few measurements

Quantum entanglement and its detection with few measurements Quantum entanglement and its detection with few measurements Géza Tóth ICFO, Barcelona Universidad Complutense, 21 November 2007 1 / 32 Outline 1 Introduction 2 Bipartite quantum entanglement 3 Many-body

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

SPIN SQUEEZING ON AN ATOMIC-CLOCK TRANSITION

SPIN SQUEEZING ON AN ATOMIC-CLOCK TRANSITION 107 SPIN SQUEEZING ON AN ATOMIC-CLOCK TRANSITION MONIKA H. SCHLEIER-SMITH, IAN D. LEROUX, and VLADAN VULETIĆ Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

Controlled exchange interaction between pairs of neutral atoms in an optical lattice

Controlled exchange interaction between pairs of neutral atoms in an optical lattice 1 Controlled exchange interaction between pairs of neutral atoms in an optical lattice Marco Anderlini *, Patricia J. Lee, Benjamin L. Brown, Jennifer Sebby-Strabley, William D. Phillips, and J. V. Porto

More information

Teleportation of electronic many- qubit states via single photons

Teleportation of electronic many- qubit states via single photons (*) NanoScience Technology Center and Dept. of Physics, University of Central Florida, email: mleuenbe@mail.ucf.edu, homepage: www.nanoscience.ucf.edu Teleportation of electronic many- qubit states via

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices

Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices Mirta Rodríguez Instituto de Estructura de la Materia CSIC, Madrid SPAIN Overview I. Introduction II. III. IV. I. QIP

More information

Quantum communications

Quantum communications 06.0.05 Quantum communications Quantum teleportation Trapping of single atoms Atom-photon entanglement Entanglement of remote single atoms Elementary quantum network Telecommunication today Secure communication

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

arxiv: v2 [quant-ph] 9 Jan 2008

arxiv: v2 [quant-ph] 9 Jan 2008 Characterization of quantum angular-momentum fluctuations via principal components Ángel Rivas and Alfredo Luis Departamento de Óptica, Facultad de Ciencias Físicas, Universidad Complutense, 8040 Madrid,

More information

ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES

ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES ADVANCES IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, VOL. 55 ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES 11 L.-M. DUAN and C. MONROE 14 FOCUS, MCTP, and

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Quantum Entanglement and Error Correction

Quantum Entanglement and Error Correction Quantum Entanglement and Error Correction Fall 2016 Bei Zeng University of Guelph Course Information Instructor: Bei Zeng, email: beizeng@icloud.com TA: Dr. Cheng Guo, email: cheng323232@163.com Wechat

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics Tang Jing-Wu( ), Zhao Guan-Xiang( ), and He Xiong-Hui( ) School of Physics, Hunan

More information

Strongly Correlated Photons in a Two-Dimensional Array of. Photonic Crystal Microcavities

Strongly Correlated Photons in a Two-Dimensional Array of. Photonic Crystal Microcavities Strongly Correlated Photons in a Two-Dimensional Array of Photonic Crystal Microcavities Y.C. Neil Na, 1 Shoko Utsunomiya, and Yoshihisa Yamamoto 1, 1 E. L. Ginzton Laboratory, Stanford University, Stanford,

More information

Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals

Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw Experiment Chris Westbrook (Palaiaseau):

More information

with ultracold atoms in optical lattices

with ultracold atoms in optical lattices Attempts of coherent of coherent control contro with ultracold atoms in optical lattices Martin Holthaus Institut für Physik Carl von Ossietzky Universität Oldenburg http://www.physik.uni-oldenburg.de/condmat

More information

Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms

Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms A. S. Parkins Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand H. J. Kimble Norman

More information

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard-Regime Optical Lattice

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard-Regime Optical Lattice A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard-Regime Optical Lattice The Harvard community has made this article openly available. Please share how this access benefits you. Your story

More information

MRSEC. Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point. Cheng Chin. Funding:

MRSEC. Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point. Cheng Chin. Funding: SPICE Workshop: Non-equilibrium Quantum Matter, Mainz Germany, 5/31/2017 Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point Cheng Chin James Franck institute

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist

EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist KITP, May 19, 004 Alain Aspect Laboratoire Charles Fabry de l Institut d Optique http://atomoptic.iota.u-psud.fr

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser

One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser Commun. Theor. Phys. 56 (2011) 263 267 Vol. 56, No. 2, August 15, 2011 One-Step Generation of Scalable Multiparticle Entanglement for Hot ons Driven by a Standing-Wave Laser YANG Wen-Xing ( ), 1, and CHEN

More information

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices IASTU Condensed Matter Seminar July, 2015 Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices Xiaopeng Li ( 李晓鹏 ) CMTC/JQI University of Maryland [Figure from JQI website] Gauge fields

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Entanglement of two-mode Bose-Einstein condensates

Entanglement of two-mode Bose-Einstein condensates PHYSICAL REVIEW A 67, 03609 2003 Entanglement of two-mode Bose-Einstein condensates Andrew P. Hines, Ross H. McKenzie, and Gerard J. Milburn Centre for Quantum Computer Technology, Department of Physics,

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

Reversible loss of superfluidity of a Bose Einstein condensate in a 1D optical lattice

Reversible loss of superfluidity of a Bose Einstein condensate in a 1D optical lattice New Journal of Physics The open access journal for physics Reversible loss of superfluidity of a Bose Einstein condensate in a 1D optical lattice R E Sapiro 1, R Zhang and G Raithel FOCUS Center and Department

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information