Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Size: px
Start display at page:

Download "Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions"

Transcription

1 Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften Ion traps for quantum information processing Spectroscopy, addressing and cooling of trapped ions Cirac-Zoller CNOT gate operation Entanglement and Bell state generation Quantum teleportation Interfacing quantum information using cavities FWF SFB QUEST QGATES Industrie Tirol IQI GmbH $

2 Quantum gate proposals with trapped ions Controlled NOT : ε ε ε ε ε control bit bit target bit bit other gate proposals (and more): Cirac & Zoller Mølmer & Sørensen, Milburn Jonathan & Plenio & Knight Geometric phases Leibfried & Wineland

3 Quantum Quantumcomputer computer with withtrapped trappedions ions J. I. Cirac, P. Zoller; Phys. Rev. Lett. 74, 4091 (1995) L Ions in linear trap z state vector of quantum computer z quantum bits, quantum register - narrow optical transitions - groundstate Zeeman coherences z 2-qubit quantum gate laser pulses entangle pairs of ions z state measurement with 100% efficiency control controlbit bit target targetbit bit z decoherence small z quantum computer as series of gate operations (sequence of laser pulses)

4 Innsbruck linear ion trap (2000) 1.0 mm 6 mm ω z MHz ω x, y MHz

5 String of Ca + ions in in a linear Paul trap row of qubits in a linear Paul trap forms a quantum register 70 µm

6 Level scheme of of Ca + qubit on narrow S - D quadrupole transition P 3/2 854 nm P 1/2 393 nm 397 nm 866 nm D 5/2 D 3/2 729 nm S 1/2

7 Spectroscopy with withquantized fluorescence (quantum jumps) P monitor Fluorescence intensity S time (s) D spectroscopy S D Anzahl # of measurements der Messungen absorption and emission cause fluorescence steps (digital quantum jump signal) detection efficiency: 99.85% D-Zustand D state occupied besetzt S S-Zustand state occupied besetzt counts Zählrate per pro 9 ms

8 Quantized Ion Motion 2-level-atom e Ω Γ g harmonic trap ν {... coupled system... n 1,e n 1, g n,e n,g n +1,e n +1, g... excitation: various resonances spectroscopy: carrier and sidebands n = 0 D 5/2 n = -1 n = 1 S 1/2 ω n = 0 1 2

9 Spectroscopy of of the S 1/2 1/2 D 5/2 5/2 transition Zeeman structure in non-zero magnetic field: D 5/2-5/2-3/2-1/2 1/2 3/2 5/2 2-level-system: ( 12) S 1/2-1/2 1/2 + vibrational degrees of freedom sideband cooling quantum state processing

10 Excitation spectrum of of single ion in in linear trap ω ax = 1.0 MHz ω rad = 5.0 MHz

11 Addressing of of individual ions in in a linear Paul trap Experimental setup: CCD images: laser beam steering with an electrooptic deflector Fiber output 729nm viewport Paul trap lens 20µm P 3/2 P 1/2 40Ca + 854nm 866nm telescope 397nm 729nm D 5/2 D 3/2 dichroic beamsplitter S 1/2 detection at 397nm CCD H.C. Nägerl et al., Phys. Rev. A 60, 145 (1999)

12 Coherent state manipulation D,0 D,1 carrier S,0 S,1 carrier and sideband Rabi oscillations with Rabi frequencies sideband time (µs) Lamb-Dicke parameter time (µs)

13 The Cirac-Zoller CNOT gate operation with 2 ions allows the realization of a universal quantum computer! control bit bit target bit bit F. Schmidt-Kaler et al., Nature 422, 408 (2003)

14 Cirac --Zoller two-ion controlled-not operation ion 1 motion ion 2 S S, D SWAP SWAP , D control qubit target qubit pulse sequence: Ion 1 laser frequency pulse length optical phase Ion 2

15 Experimental fidelity of of Cirac-Zoller CNOT operation F. Schmidt-Kaler et al., Nature 422, 408 (2003) input output

16 measure the parity Π: Entanglement C. A. Sackett et al., Nature 404, 256 (2000) Ion 1 Ion 2 π/2 0 CNOT π/2 ϕ π/2 ϕ Π oscillates with 2ϕ! 54% visibility Fidelity = 0.5(P SS SS +P +P DD DD +visibility) = 71(3) % F. Schmidt-Kaler et al., Nature 422, 408 (2003)

17 Gate tomography characterizes gate operation completely

18 ideal CNOT gate operation Gate tomography, theory

19 real CNOT gate operation Gate tomography, experiment

20 Preparation of of Bell states and measurement Ion 1 Ion 2 bsb π/2 carrier bsb carrier π π τ carrier π/2 ϕ carrier π π/2 ϕ parity measurement C. Roos et al., Phys. Rev. Lett. 92, (2004)

21 Push-button preparation and tomography of of Bell states Ψ + Φ + Fidelity: F = 0.91 SS SDDS SS SDDS DD SS SD DD DS DD SS SD DD DS Entanglement of formation: E(ρ exp ) = 0.79 Ψ Φ SS SDDS SS SDDS Violation of Bell inequality: DD SS SD DD DS DD SS SD DD DS S(ρ exp ) = 2.53 > 2 C. Roos et al., Phys. Rev. Lett. 92, (2004)

22 Time evolution of of the Bell state: phase evolution Bell state production analysis Time evolution in the presence of a magnetic field gradient b :

23 Decoherence-free Bell states C. Roos et al., Phys. Rev. Lett. 92, (2004) decoherence-time: 0.5 x 1.05(15) s

24 Decoherence-free Bell states prepare qubits in S states D 1/2 3/2-1/2-5/2-3/2 5/2 Hiding states in S, S states avoids decoherence from spontaneous emission D 5/ Lifetime: 11.6 ± 1.3 s S 1/2 S -1/2 1/2 S Contrast Time (s)

25 Entangled states with three ions GHZ states: W states: C. Roos et al., Science 304, 1478 (2004)

26 3 Ions: Preparation of of W states Ion 1 Ion 2 Ion 3

27 W states: populations Fidelity: 85 % DDD DDS DSD DSS SDD SDS SSD SSS experimental result DDD DDS DSD DSS SDD SDS SSD SSS theoretical expectation C. Roos et al., Science 304, 1478 (2004)

28 Preparation Preparationof ofaaghz GHZstate state Ion 1 Ion 2 Ion 3

29 GHZ states: populations Fidelity: 72 % DDD DDS DSD DSS SDD SDS SSD SSS DDD experimental result DDS DSD DSS SDD SDS SSD SSS theoretical expectation C. Roos et al., Science 304, 1478 (2004)

30 Measuring GHZ and W states coherence destroyed projection of the center ion Bell state survives!

31 Selective readout of of the 2nd qubit C. Roos et al., Science 304, 1478 (2004) ion #2 in D> ion #2 in S> Read out of ion #2 of a W state does not destroy the coherence between ion #1 and #3. The information on the state of ion #2 is available before the tomography of the remaining quantum register is carried out.

32 ALICE Teleportation measurement in Bell basis recover input state unknown input state class. communication rotation Bell state BOB M. Riebe et al., Nature 429, 734 (2004)

33 Quantum teleportation protocol Ion 1 classical communication Ion 2 Ion 3 Bell state C initialize #1, #2, #3 #2 and #3 entangled CNOT operation, Bell basis state prepared on #1 Bell measurement conditional rotations on #3 recovered on #3 check #3

34 Hiding qubits detect quantum state of ion #1 only D 5/2 D 5/2 π D 5/2 π S 1/2 S 1/2 S 1/2 ion #1 ion #2 ion #3

35 Hiding qubits detect quantum state of ion #1 only superpositions of ions #2, #3 protected D D D D D 5/2 D 5/2 D 5/2 S 1/2 S 1/2 S 1/2 ion #1 ion #2 ion #3

36 Quantum teleportation protocol, hiding states Ion 1 Z C H Ion 2 Ion 3 Bell state H C H state protected U H U C Z X Hiding state in D Unhiding state to S

37 Quantum teleportation protocol, details Ion 1 Ψ B B B B C C H conditional rotations using electronic logic, triggered by PM signal Ion 2 C B B B C H U H Ion 3 C H U C H U C C C C 1 Ψ B C blue sideband pulses carrier pulses spin echo sequence full fullsequence: pulses + 2 measurements

38 Teleportation procedure, analysis Initial Input state Output state Final U TP U -1 Fidelities

39 Quantum teleportation with atoms: result 75 % 67 % 50 % M. Riebe et al., Nature 429, 734 (2004) similar results by NIST Boulder, ibid., 737 (2004)

40 Quantum teleportation with atoms: result 83 % class.: 67 % no cond. op. 50 % latest results!

41 Scaling the ion trap quantum computer. more ions, larger traps, phonons carry quantum information Cirac-Zoller, slow for many ions (few 10 ions maybe possible) move ions, carry quantum information around Kielpinski et al., Nature 417, 709 (2002) requires small, integrated trap structures, miniaturized optics and electronics

42 Scaling the ion trap quantum computer. cavity QED: atom photon interface, use photons for networking J. I. Cirac et al., PRL 78, 3221 (1997) C. Becher et al., Univ. Innsbruck trap arrays, using single ion as moving head motion I. Cirac und P. Zoller, Nature 404, 579 (2000) head ion solid state qubits (e.g. charge qubit) L. Tian et al., PRL 92, (2004) target pushing laser more ideas?

43 High finesse cavity: Cavity QED with single trapped ions Paul trap qubit photons Experimental sequence: i) Ion in superposition state ii) iii) Cavity tuned to qubit transition, vacuum cavity field induces spontaneous decay Photonic qubit leaves cavity P 1/2 D 5/2 S 1/2 729 nm cavity Applications: single photon source Interface: static qubits flying qubits Cavity QED with continuously trapped atoms Quantum feedback

44 Nanoscopic mapping of of a standing wave A. Mundt et al., Phys. Rev. Lett. 89, (2002) Excitation probability Visibility 96% wavepacket 16 nm Spatial Spatial precision of of positioning the the ion ion is is given given by by uncertainty in in the the excitation probability Piezo offset voltage (V) (7, (7, 12, 12, 36) 36) nm (slope,min,max) See also MPQ group, Nature 414, 49 (2001)

45 Coherent ion --field coupling n Cavity stabilized to laser frequency n Few µs laser pulse coupled into cavity n Rabi oscillations on carrier excited by cavity field n State detection after ~ 1ms n Ion Doppler-cooled to <n> 15 A.B. Mundt et al., Appl. Phys. B 76, 117 (2003).

46 Cavity parameters Ion - cavity field coupling: Cavity decay rate: Spontaneous emission rate: g / 2π = 134 Hz κ / 2π = 102 khz γ / 2π = 0.17 Hz Cooperativity parameter: C = g 2 / (2κγ) = 0.52 Purcell factor: F = 2C+1 = 2 Spontaneous emission factor: β = 2C / (2C+1) = 51% Demonstration of cavity-modified spontaneous emission Potential for deterministic single photon source Atom-photon interface

47 Lifetime in in the cavity vacuum field standing wave n Place ion at specific point in standing wave n Measure lifetime: excite to m j =-5/2 state, experiments with 50 ms waiting time for each data point (19 min) n Drift: ~linear ~λ/50 (15 nm) for each data point n Purcell-effect: 15(5)% A. Kreuter et al., PRL 92, (2004) n Map of cavity standingwave vacuum field!

48 Qubit interfacing: Transferring quantum information S 1/2 P 3/2 D 5/2 π/2 Cavity Transfer quantum state state of of the the ion ion to to cavity cavity photon: qubit qubitinterface Create Create superposition photon photon state state (STIRAP) Detect Detect cavity cavity output output and and ion ion state state qubit 1 Choose coupling g by by STIRAP detuning Controlled ion-cavity interaction photonic channel J. I. Cirac et al., PRL 78, 3221 (1997) qubit 2

49 Outlook: Deterministic single photon source P 3/2 P 1/2 393 nm 1 GHz 854 nm cavity D 5/2 D 3/2 Couple P 3/2 -D 5/2 : high-finesse 854 nm Emission of a single photon into cavity: adiabatic Raman passage (STIRAP) Photon leaves cavity within decay time of ~8.5µs S 1/2 Proposals: A.S. Parkins et al., PRL 71, 3095 (1993); C.K. Law and H.J. Kimble, J. Mod. Opt. 44, 2067 (1997); A. Kuhn et al. Appl. Phys. B 69, 373 (1999) Experiment: A. Kuhn et al. PRL 89, (2002)

50 Cavity and ion trap (2004) 2 cm C. Becher, C. Russo

51 Ion trap and cavity (2004) 2 cm

52 Cavity and ion trap as single photon source Finesse ~ waist ~ 13 µm (nearly concentric cavity) expect ~ 20 khz single photons with ~ 90% emission into cavity details: 2 cm C. Maurer, C. Becher et al. New Journ. Physics 6, 94 (2004)

53 Quantum information processing with trapped Ca + ions Innsbruck: Ca + experiments - linear trap (ν z = MHz, ν x,y = 4 MHz) composite phase gate and CNOT operations realization of two-ion Cirac-Zoller CNOT operation Bell and GHZ measurements, tomography entanglement measurements, teleportation interfacing quantum information with cavities Future: optimization of Cirac-Zoller gate achieve 3-5 CNOT gate operations error correction protocols with three and five qubits implementation with 43 Ca +, logical qubits + scalability

54 The international team R. Bhat D. Rotter J. Benhelm T. Körber F. Splatt G. Lancaster M. Riebe A. Kreuter V. Steixner RB C. Becher H. Häffner W. Hänsel T. Deuschle C. Russo C. Roos M. Bacher A. Wilson P. Bushev M. Chwalla F. Schmidt-Kaler FWF SFB QUEST QGATES Industrie Tirol IQI GmbH $

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Towards Quantum Computation with Trapped Ions

Towards Quantum Computation with Trapped Ions Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert Which technology? 000 001 010 011 Quantum processor 100 011 110 011 Cavity QED NMR Superconducting qubits Quantum dots Trapped atoms/ions A. Ekert Which technology? 000 001 010 011 Quantum processor 100

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum information processing and cavity QED experiments with trapped Ca + ions Quantum information processing and cavity QED experiments with trapped Ca + ions S. Gulde, H. Häffner, M. Riebe, G. Lancaster, A. Mundt, A. Kreuter, C. Russo, C. Becher, J. Eschner, F. Schmidt-Kaler, I.

More information

Quantum teleportation

Quantum teleportation Quantum teleportation "Deterministic quantum teleportation with atoms", M. Riebe et al., Nature 429, 734 (2004). "Deterministic quantum teleportation of atomic qubits", M. D. Barrett et al., Nature 429,

More information

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS 1 QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS C. F. ROOS, M. CHWALLA, T. MONZ, P. SCHINDLER, K. KIM, M. RIEBE, and R. BLATT Institut für Experimentalphysik, Universität Innsbruck,

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Quantum information processing with trapped atoms

Quantum information processing with trapped atoms Quantum information processing with trapped atoms Introduction Fundamentals: ion iontraps, quantum bits, bits, quantum gates Implementations: 2-qubit gates, teleportation, More recent, more advanced, Jürgen

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Dietrich Leibfried Time and Frequency Division National Institute of Standards and Technology Boulder, CO USA The remaining QIP challenge DiVincenzo requirements:

More information

Teleportation of a two-atom entangled state via cavity decay

Teleportation of a two-atom entangled state via cavity decay Vol 16 No 6, June 007 c 007 Chin. Phys. Soc. 1009-1963/007/16(06)/1678-05 Chinese Physics and IOP Publishing Ltd Teleportation of a two-atom entangled state via cavity decay Ye Sai-Yun( ) Department of

More information

Exploring the Quantum with Ion Traps

Exploring the Quantum with Ion Traps Exploring the Quantum with Ion Traps Exploring the Quantum with Ion Traps Ion Traps: A Tool for Quantum Optics and Spectroscopy The Paul trap and its application to quantum physics Why quantum computers?

More information

CONTROLLING THREE ATOMIC QUBITS

CONTROLLING THREE ATOMIC QUBITS CONTROLLING THREE ATOMIC QUBITS H. HÄFFNER1,2, M. RIEBE 1, F. SCHMIDT-KALER 1, W. HÄNSEL1, C. ROOS 1, M. CHWALLA 1, J. BENHELM 1, T. KÖRBER1, G. LANCASTER 1, C. BECHER 1, D.F.V. JAMES 3 AND R. BLATT 1,2

More information

arxiv:quant-ph/ Mar 2006

arxiv:quant-ph/ Mar 2006 Scalable multi-particle entanglement of trapped ions H. Häffner 1,2, W. Hänsel 1, C. F. Roos 1,2, J. Benhelm 1,2, D. Chek al kar 1, M. Chwalla 1, T. Körber 1,2, U. D. Rapol 1,2, M. Riebe 1, P. O. Schmidt

More information

Quantum information processing with trapped Ca+ ions

Quantum information processing with trapped Ca+ ions r[ THE ROYAL 10.1098/rsta.2003.1206 *Je. SOCIETY Quantum information processing with trapped Ca+ ions BY S. GULDE1, H. HAFFNER1, M. RIEBE1, G. LANCASTER1, C. BECHER1, J. ESCHNER1, F. SCHMIDT-KALER1, I.

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Tunable Ion-Photon Entanglement in an Optical Cavity

Tunable Ion-Photon Entanglement in an Optical Cavity Europe PMC Funders Group Author Manuscript Published in final edited form as: Nature. ; 485(7399): 482 485. doi:10.1038/nature11120. Tunable Ion-Photon Entanglement in an Optical Cavity A. Stute 1, B.

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Quantum teleportation with atoms: quantum process tomography

Quantum teleportation with atoms: quantum process tomography Quantum teleportation with atoms: quantum process tomography M Riebe 1, M Chwalla 1, J Benhelm 1, H Häffner 1,, W Hänsel 1, C F Roos 1, and R Blatt 1, 1 Institut für Experimental Physik, Universität Innsbruck,

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

ENTANGLEMENT OF TRAPPED IONS

ENTANGLEMENT OF TRAPPED IONS ENTANGLEMENT OF TRAPPED IONS C. BECHER, J. BENHELM, D. CHEK-AL-KAR, M. CHWALLA, H. HÄFFNER,2, W. HÄNSEL, T. KÖRBER, A. KREUTER, G.P.T. LANCASTER, T. MONZ, E.S. PHILLIPS, U.D. RAPOL, M. RIEBE, C.F. ROOS,2,

More information

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01.

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01. Europe PMC Funders Group Author Manuscript Published in final edited form as: Nat Photonics. 2013 March ; 7(3): 219 222. doi:10.1038/nphoton.2012.358. Quantum-state transfer from an ion to a photon A.

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

arxiv: v1 [quant-ph] 14 Aug 2013

arxiv: v1 [quant-ph] 14 Aug 2013 A quantum information processor with trapped ions arxiv:1308.3096v1 [quant-ph] 14 Aug 2013 Contents Philipp Schindler 1, Daniel Nigg 1, Thomas Monz 1, Julio T. Barreiro 1, Esteban Martinez 1, Shannon X.

More information

A central problem in cryptography: the key distribution problem.

A central problem in cryptography: the key distribution problem. Scientific American 314, 48-55 (2016) A central problem in cryptography: the key distribution problem. Mathematics solution: public key cryptography. Public-key cryptography relies on the computational

More information

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap H. C. Nägerl,* Ch. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner,

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University Ion Traps for Quantum Computing Ann Arbor Garching Innsbruck Boulder SQuInT summer school June, 2003 Brian King Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/king_b_h.html

More information

Zero-point cooling and low heating of trapped 111 Cd + ions

Zero-point cooling and low heating of trapped 111 Cd + ions PHYSICAL REVIEW A 70, 043408 (2004) Zero-point cooling and low heating of trapped 111 Cd + ions L. Deslauriers, P. C. Haljan, P. J. Lee, K-A. Brickman, B. B. Blinov, M. J. Madsen, and C. Monroe FOCUS Center,

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Quantum computation with trapped ions Jürgen Eschner ICFO - Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona), Spain Summary. The development, status, and challenges of ion trap quantum

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Cold Ions and their Applications for Quantum Computing and Frequency Standards Cold Ions and their Applications for Quantum Computing and Frequency Standards Trapping Ions Cooling Ions Superposition and Entanglement Ferdinand Schmidt-Kaler Institute for Quantum Information Processing

More information

arxiv: v1 [quant-ph] 25 Sep 2008

arxiv: v1 [quant-ph] 25 Sep 2008 Quantum computing with trapped ions H. Häffner a,b,c,d C. F. Roos a,b R. Blatt a,b arxiv:0809.4368v1 [quant-ph] 25 Sep 2008 a Institut für Quantenoptik und Quanteninformation, Österreichische Akademie

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Scheme for teleportation of unknown states of trapped ion

Scheme for teleportation of unknown states of trapped ion Vol 17 No, February 008 c 008 Chin. Phys. Soc. 1674-1056/008/17(0/0451-05 Chinese Physics B and IOP Publishing Ltd Scheme for teleportation of unknown states of trapped ion Chen Mei-Feng( and Ma Song-She(

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum computation with trapped ions and atoms

Quantum computation with trapped ions and atoms Quantum computation with trapped ions and atoms F. Rohde (1), J. Eschner (1,2) (1) ICFO Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona), Spain (2) Experimentalphysik,

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

arxiv:quant-ph/ v1 29 Apr 2003

arxiv:quant-ph/ v1 29 Apr 2003 Atomic Qubit Manipulations with an Electro-Optic Modulator P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. arxiv:quant-ph/0304188v1 29 Apr 2003 Miller, D. L. Moehring, D. Stick,

More information

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR International Journal of Modern Physics B c World Scientific Publishing Company A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR PAUL BLACKBURN MIGUEL ORSZAG Facultad de Física, Pontificia Universidad Católica

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin «Demonstration of a small programmable quantum computer» Philip Rhyner, Colin Kälin 14.05.2018 Introduction PART 1: Trapped ion quantum computers Ion trap States, Initialization and Measurement One- and

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1208001/dc1 Supporting Online Material for Universal Digital Quantum Simulation with Trapped Ions B. P. Lanyon,* C. Hempel, D. Nigg, M. Müller, R. Gerritsma,

More information

One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser

One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser Commun. Theor. Phys. 56 (2011) 263 267 Vol. 56, No. 2, August 15, 2011 One-Step Generation of Scalable Multiparticle Entanglement for Hot ons Driven by a Standing-Wave Laser YANG Wen-Xing ( ), 1, and CHEN

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Entangled states of trapped atomic ions Rainer Blatt 1,2 & David Wineland 3

Entangled states of trapped atomic ions Rainer Blatt 1,2 & David Wineland 3 INSIGHT REVIEW NATURE Vol 453 19 June 28 doi:1.138/nature7125 Entangled states of trapped atomic ions Rainer Blatt 1,2 & David Wineland 3 To process information using quantum-mechanical principles, the

More information

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω Dynamics of a Quantum System: QM postulate: The time evolution of a state ψ> of a closed quantum system is described by the Schrödinger equation where H is the hermitian operator known as the Hamiltonian

More information

Manipulating Single Atoms

Manipulating Single Atoms Manipulating Single Atoms MESUMA 2004 Dresden, 14.10.2004, 09:45 Universität Bonn D. Meschede Institut für Angewandte Physik Overview 1. A Deterministic Source of Single Neutral Atoms 2. Inverting MRI

More information

Trapped ion quantum control. Jonathan Home IDEAS league school,

Trapped ion quantum control. Jonathan Home  IDEAS league school, Trapped ion quantum control Jonathan Home www.tiqi.ethz.ch IDEAS league school, 11.09.2015 Lectures Ken Brown, IDEAS League school, Sweden 1) Basics (review). Measurement, Preparation, Coherent control

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

Teleporting an Unknown Quantum State Via Dual Classical and Einstein Podolsky Rosen Channels 1

Teleporting an Unknown Quantum State Via Dual Classical and Einstein Podolsky Rosen Channels 1 Teleporting an Unknown Quantum State Via Dual Classical and Einstein Podolsky Rosen Channels Charles H. Bennet, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters Team

More information

Quantum Computing with Trapped Ion Hyperfine Qubits

Quantum Computing with Trapped Ion Hyperfine Qubits Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Quantum Computing with Trapped Ion Hyperfine Qubits B. B. Blinov, 1,3 D. Leibfried, 2 C. Monroe, 1 and D. J. Wineland 2 Received January

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria Experimental state and process reconstruction Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria What do we want to do? Debug and characterize a quantum

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

arxiv:quant-ph/ v1 19 Dec 2003

arxiv:quant-ph/ v1 19 Dec 2003 e-mail: ferdinand.schmidt-kaler@uibk.ac.at, FAX: +4355795 Key words Quantum computing, quantum bits, entanglement, single ions arxiv:quant-ph/36v 9 Dec 3 Appl.Phys.B manuscript No. (will be inserted by

More information

Kenneth Brown, Georgia Tech

Kenneth Brown, Georgia Tech Kenneth Brown, Georgia Tech Choice of Bits 100 BC 1949 AD 1949 AD 1822 (1991) AD 2013 AD Hearing Aid Images from www.hearingaidmuseum.com Choices of Qubits Waterloo Bristol Wisconsin NMR Photons Neutral

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

arxiv: v1 [quant-ph] 14 Mar 2014

arxiv: v1 [quant-ph] 14 Mar 2014 Modular Entanglement of Atomic Qubits using both Photons and Phonons D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe Joint Quantum Institute, University of Maryland

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Brussels 26.03.2013 The R-ION Consortium Ferdinand Schmidt-Kaler University of Mainz/Germany Trapped ions Experiment Jochen

More information

Implementing Quantum walks

Implementing Quantum walks Implementing Quantum walks P. Xue, B. C. Sanders, A. Blais, K. Lalumière, D. Leibfried IQIS, University of Calgary University of Sherbrooke NIST, Boulder 1 Reminder: quantum walk Quantum walk (discrete)

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Quantum computing hardware

Quantum computing hardware Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576 Class format 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Three-Dimensional Quantum State Transferring Between Two Remote Atoms by Adiabatic Passage under Dissipation

Three-Dimensional Quantum State Transferring Between Two Remote Atoms by Adiabatic Passage under Dissipation Commun. Theor. Phys. (Beijing, China) 54 (2010) pp. 107 111 c Chinese Physical Society and IOP Publishing Ltd Vol. 54, No. 1, July 15, 2010 Three-Dimensional Quantum State Transferring Between Two Remote

More information

Quantum communications

Quantum communications 06.0.05 Quantum communications Quantum teleportation Trapping of single atoms Atom-photon entanglement Entanglement of remote single atoms Elementary quantum network Telecommunication today Secure communication

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Atom-photon entanglement generation and distribution

Atom-photon entanglement generation and distribution PHYSICAL REVIEW A 69, 042316 (2004) Atom-photon entanglement generation and distribution B. Sun, M. S. Chapman, and L. You School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

More information

Quantum computing with cavity QED

Quantum computing with cavity QED Quantum computing with cavity QED Ch. J. Schwarz Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE Albuquerque, New Mexico 87106 Physics & Astronomy, University of

More information

arxiv:quant-ph/ v1 16 Mar 2007

arxiv:quant-ph/ v1 16 Mar 2007 Deterministic loading of individual atoms to a high-finesse optical cavity Kevin M. Fortier, Soo Y. Kim, Michael J. Gibbons, Peyman Ahmadi, and Michael S. Chapman 1 1 School of Physics, Georgia Institute

More information

Scalable creation of multi-particle entanglement

Scalable creation of multi-particle entanglement Scalable creation of multi-particle entanglement Status quantum processor F. Schmidt-Kaler Spin-qubits in single ions, and www.quantenbit.de Quantum register reconfigurations Quantum-enhanced magnetometry

More information

arxiv:quant-ph/ v1 17 Aug 2000

arxiv:quant-ph/ v1 17 Aug 2000 Wave Packet Echoes in the Motion of Trapped Atoms F.B.J. Buchkremer, R. Dumke, H. Levsen, G. Birkl, and W. Ertmer Institut für Quantenoptik, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

More information

Ion-trap quantum information processing: experimental status

Ion-trap quantum information processing: experimental status Ion-trap quantum information processing: experimental status Author Kielpinski, David Published 2008 Journal Title Frontiers of Physics in China DOI https://doi.org/10.1007/s11467-008-0034-y Copyright

More information

arxiv: v2 [quant-ph] 18 Mar 2011

arxiv: v2 [quant-ph] 18 Mar 2011 Phase-coherent detection of an optical dipole force by Doppler velocimetry arxiv:1103.3334v2 [quant-ph] 18 Mar 2011 M. J. Biercuk 1,2, H. Uys 1,3, J. W. Britton 1, A. P. VanDevender 1, and J. J. Bollinger

More information

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices Quantum computing and quantum communication with atoms L.-M. Duan 1,2, W. Dür 1,3, J.I. Cirac 1,3 D. Jaksch 1, G. Vidal 1,2, P. Zoller 1 1 Institute for Theoretical Physics, University of Innsbruck, A-6020

More information

arxiv: v1 [quant-ph] 24 Aug 2007

arxiv: v1 [quant-ph] 24 Aug 2007 1 arxiv:0708.395v1 [quant-ph] 4 Aug 007 Recent progress on the manipulation of single atoms in optical tweezers for quantum computing A. Browaeys, J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko,

More information