Quantum information processing with trapped ions

Size: px
Start display at page:

Download "Quantum information processing with trapped ions"

Transcription

1 Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle entanglement 4. Implementation of a CNOT gate 5. Teleportation 6. Outlook Lectures The requirements for quantum information processing D. P. DiVincenzo, Quant. Inf. Comp. 1 (Special), 1 (2001) I. Scalable physical system, well characterized qubits II. III. IV. Ability to initialize the state of the qubits Long relevant coherence times, much longer than gate operation time Universal set of quantum gates V. Qubit-specific measurement capability 1

2 Experimental Setup P 1/2 D 5/2 quantum bit S 1/2 Important energy levels The important energy levels are shown on the next slides; a fast transition is used to detect ion fluorescence and for Doppler cooling, while the narrow D5/2 quadrupole transition has a lifetime of 1 second and is used for coherent manipulation and represents out quantum bit. Of course a specific set of Zeeman states is used to actually implement our qubit. The presence of other sublevels give us additional possibilities for doing coherent operations. 2

3 Ca+: Important energy levels = 7 ns S 1/2 D 5/2 : quadrupole transition P 1/2 = 1 s D 5/2 397 nm 729 nm S 1/2 Ca+: Important energy levels = 7 ns P 1/2 D 5/2 S 1/2 qubit quoctet (sp?) 3

4 Qubits with trapped ions Encoding of quantum information requires long-lived atomic states: optical transitions Ca +, Sr +, Ba +, Ra +, Yb +, Hg + etc. microwave transitions 9 Be +, 25 Mg +, 43 Ca +, 87 Sr +, 137 Ba +, 111 Cd +, 171 Yb + P 1/2 D 5/2 P 3/2 S 1/2 qubit S 1/2 qubit Linear RF Paul trap Positive ion RF electrode High dc potential control electrode Low dc voltage control electrode Slides from :R. Ozeri Drive freq ~ MHz RF amp ~ V Secular freq Radial ~ 15 MHz Axial ~ 4 MHz 4

5 Multi-zone ion trap rf filter board view along axis: rf control segmented linear trapping region control rf Gold on alumina construction RF quadrupole realized in two layers Six trapping zones Both loading and experimental zones One narrow separation zone Closest electrode ~140 m from ion Ion transport 100 m separation zone 6-zone alumina/gold trap (Murray Barrett, Tobias Schaetz et al.) 200 m Ions can be moved between traps. Electrode potentials varied with time Ions can be separated efficiently in sep. zone Small electrode s potential raised Motion (relatively) fast Shuttling: several 10 s Separating: few 100 s 5

6 Innsbruck segmented trap (2004) String of Ca+ ions in Paul trap row of qubits in a linear Paul trap forms a quantum register 6

7 String of Ca+ ions in linear Paul trap row of qubits in a linear Paul trap forms a quantum register z x, y MHz MHz 50 µm String of Ca+ ions in linear Paul trap row of qubits in a linear Paul trap forms a quantum register z x, y MHz MHz 50 µm 7

8 Addressing of individual ions 0.8 electrooptic deflector coherent manipulation of qubits Paul trap Excitation Deflector Voltage (V) dichroic beamsplitter Fluorescence detection CCD inter ion distance: ~ 4 µm addressing waist: ~ 2.5 µm < 0.1% intensity on neighbouring ions Ion addressing The ions can be addressed individually on the qubit transition with an EO deflector which can quickly move the focus of the 729 light from one ion to another, using the same optical path as the fluorescence detection via the CCD camera. How well the addressing works is shown on the previous slide: The graph shows the excitation of the indiviual ions as the deflector is scanned across the crystal. 8

9 External degree of freedom: ion motion Notes for next slides: Now let's have a look at the qubit transition in the presence of the motional degrees of freedom. If we focus on just one motional mode, we just get a ladder of harmonic oscillator levels. The joint (motion + electronic energy level) system shows a double ladder structure. With the narrow laser we can selectively excite the carrier transition, where the motional state remains unchanged... Or use the blue sideband and red sideband transitions, where we can change the motional state. We can walk down the double ladder by exciting the red sideband and returning the ion dissipatively to the grounsstate. With this we can prepare the ions in the motional ground state with high probability, thereby initializing our quantum register. External degree of freedom: ion motion harmonic trap 9

10 External degree of freedom: ion motion 2-level-atom harmonic trap joint energy levels External degree of freedom: ion motion 2-level-atom harmonic trap joint energy levels Laser cooling to the motional ground state: Cooling time: 5-10 ms > 99% in motional ground state 10

11 Coherent manipulation 2-level-atom harmonic trap joint energy levels Interaction with a resonant laser beam : : Rabi frequency : phase of laser field Laser beam switched on for duration : : rotation angle If we resonantly shine in light pulse at the carrier transition, the system evolves for a time tau with this Hamiltonian, where the coupling strength Omega depends on the sqroot of the intensity, and phi is the phase of the laser field with respect to the atomic polarization. Coherent manipulation Let's now begin to look at the coherent state manipulation. If we resonantly shine the light pulse at the carrier transition, the system evolves for a time with this Hamiltonian, where the coupling strength depends on the square root of the intensity, and is the phase of the laser field with respect to the atomic polarization. The effect of such a pulse is a rotation of the state vector on the Bloch sphere, where the poles represent the two states and the equator represents superposition states with different relative phases. The roation axis is determined by the laser frequency and phase. The important message is here that we can position the state vector anywhere on the Bloch sphere, which is a way of saying that we can create arbitrary superposition states. The same game works for sideband pulses. With a /2 pulse, for example, we entangle the internal and the motional state! Since the motional state is shared by all ions, we can use the motional state as a kind of bus to mediate entanglement between different qubits in the ion chain. 11

12 Coherent excitation: Rabi oscillations Carrier pulses: Bloch sphere representation D state population Coherent excitation on the sideband Blue sideband pulses: coupled system Entanglement between internal and motional state! D state population 12

13 Experimental procedure P 1/2 D 5/2 =1s Doppler Quantum state Fluorescence cooling manipulation detection Sideband cooling S 1/2 40 Ca + S 1/2 One ion : Fluorescence histogram 8 D 7 5/2 state S 1/2 state counts per 2 ms 1. Initialization in a pure quantum state: laser cooling,optical pumping 2. Quantum state manipulation on S 1/2 D 5/2 qubit transition 3. Quantum state measurement by fluorescence detection 50 experiments / s Repeat experiments times Experimental procedure P 1/2 D 5/2 =1s Doppler Quantum state Fluorescence cooling manipulation detection Sideband cooling S 1/2 40 Ca + S 1/2 1. Initialization in a pure quantum state: Laser sideband cooling 2. Quantum state manipulation on S 1/2 D 5/2 transition 3. Quantum state measurement by fluorescence detection Multiple ions: Spatially resolved detection with CCD camera: 50 experiments / s Repeat experiments times 13

14 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle entanglement 4. Implementation of a CNOT gate 5. Teleportation 6. Outlook Creation of Bell state Pulse sequence: 14

15 Generation Creation of of Bell Bell states Pulse sequence: Ion 1: /2, blue sideband Creation of Bell states Pulse sequence: Ion 1: /2, blue sideband Ion 2:, carrier 15

16 Creation of Bell states Pulse sequence: Ion 1: /2, blue sideband Ion 2:, carrier Ion 2:, blue sideband Analysis of Bell states Fluorescence detection with CCD camera: Coherent superposition or incoherent mixture? What is the relative phase of the superposition? Measurement of the density matrix: SS SDDS DD SS DDDS SD 16

17 Reconstruction of a density matrix Representation of as a sum of orthogonal observables A i : is completely detemined by the expectation values <A i > : Finally: maximum likelihood estimation (Hradil 97, Banaszek 99) For a two-ion system : Joint measurements of all spin components Preparation and tomography of Bell states Fidelity: F = 0.91 SS SDDS SS SDDS DD SS SD DD DS DD SS SD DD DS Entanglement of formation: E( exp ) = 0.79 SS SDDS SS SDDS Violation of Bell inequality: DD SS SD DD DS DD SS SD DD DS S( exp ) = 2.52(6) > 2 C. Roos et al., Phys. Rev. Lett. 92, (2004) 17

18 Different decoherence porperties sensitive to: laser frequency magnetic field exc. state lifetime 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle entanglement 4. Implementation of a CNOT gate 5. Teleportation 6. Outlook 18

19 Generation of W-states Pulse sequence: Ion 2,3:, carrier Ion 1: 1, blue sideband Ion 2: 2, blue sideband Ion 3: 3, blue sideband Density matrix of W state Fidelity: 85 % experimental result theoretical expectation 19

20 Four-ion W-states DDDD DDDS SSSS DDDD SSSS Five-ion W-states DDDDD DDDDS SSSSS DDDDD SSSSS 20

21 Detection of six individual ions 5µm all ions in S> ion 1 in S> ion 6 in S> Ion detection on a CCD camera (detection time:4ms) ion 4 in S> ion 5 in S> ions 1 and 5 in S> ions 1,2,3, and 5 in S> ions 1,3 and 4 in S> Six-ion W-state F=73% preliminary result Is there 6-particle entanglement present? 6-particle W-state can be distilled from the state (O. Gühne) 6-particle entanglement present, unresolved issues with error bars settings, measurement time >30 min. 21

22 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle entanglement 4. Implementation of a CNOT gate 5. Teleportation 6. Outlook control target Cirac-Zoller two-ion controlled-not operation...allows the realization of a universal quantum computer! control target other gate proposals include: Cirac & Zoller Mølmer & Sørensen, Milburn Jonathan & Plenio & Knight Geometric phases Leibfried & Wineland control target 22

23 Cirac-Zoller two-ion controlled-not operation 1 2 ion 1 motion ion 2 SWAP control qubit target qubit First we swap the quantum states of the control qubit and the motional qubit Cirac-Zoller two-ion controlled-not operation 1 2 ion 1 control qubit motion ion 2 target qubit Next we perform a CNOT gate between the motional qubit and ion 2 and 23

24 Cirac - Zoller two-ion controlled-not operation 1 2 Finally we reverse the SWAP operation, we have used the motional qubit as a quantum messenger between the two ions. ion 1 motion ion 2 SWAP -1 control qubit target qubit F. Schmidt-Kaler et al., Nature 422, 408 (2003) Cirac - Zoller two-ion controlled-not operation ion 1 motion SWAP SWAP -1 control qubit ion 2 target qubit pulse sequence: Ion 1 laser frequency pulse length optical phase Ion 2 Phase gate 24

25 Experimental fidelity of Cirac-Zoller CNOT operation F. Schmidt-Kaler et al., Nature 422, 408 (2003) input output Protecting qubits (from being measured) 25

26 Selective read-out of an atom in a W-state Threshold ion #1 in D> ion #1 in S> Tomography after the measurement result is available! 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle entanglement 4. Implementation of a CNOT gate 5. Teleportation 6. Outlook 26

27 Quantum state teleportation Phys. Rev. Lett. 70, 1895 (1993) Is it possible to transfer an unknown quantum state from Alice to Bob by classical communication? Yes, No : if Alice Infinite and amount Bob share of information a pair of entangled needed to particles specify! Measurement on yields just one bit of information unknown state EPR pair Alice A classical communication Two bits Bob B Teleportation protocol Ion 1 Alice classical communication Ion 2 Ion 3 Bell state initialize #1, #2, #3 Bob CNOT -- Bell basis Selective read out conditional rotations recovered on ion #3 27

28 Teleportation protocol, details Ion 1 B B B B C C P conditional rotations using electronic logic, triggered by PM signal Ion 2 C B B B C P U P Ion 3 B P U C P U C C C B C blue sideband pulses carrier pulses spin echo sequence full sequence: 26 pulses + 2 measurements 28

29 Teleportation procedure, analysis Initial Input state Output state Final TP U U -1 Fidelities Quantum teleportation with atoms: results 83 % class.: 67 % no cond. op. 50 % 29

30 How to build a large-scale quantum computer with trapped ions Linear crystal of 20 confined atomic 171 Yb+ ions laser cooled to be nearly at rest C. Monroe, and J. Kim Science 2013;339:

31 Harnessing ion-trap qubits David P. DiVincenzo Science 2011;334:50-51 Schematic of the sequence of operations implemented in a single processing region for building up a computation in the architecture Jonathan P. Home et al. Science 2009;325:

32 Separating memory and processor zones Scientific American (August 2008), 299, Ion trap structure for the shuttling of ions through a junction C. Monroe, and J. Kim Science 2013;339:

33 Concept of a quantum CCD trap Image credit: National Institute of Standards and Technology C. Monroe, and J. Kim Science 2013;339: Version 2: Photonics coupling of trapped ions qubits Energy levels of trapped ion excited with a fast laser pulse (blue upward arrow) that produces single photon whose color, represented by the state or, is entangled with the resultant qubit state. C. Monroe, and J. Kim Science 2013;339:

34 Version 2: Photonics coupling of trapped ions qubits Two "communication qubit" ions, immersed in separate crystals of other ions, each produce single photons when driven by laser pulses (blue). With some probability, the photons arrive at the 50/50 beamsplitter and then interfere. If the photons are indistinguishable (in polarization and color), then they always leave the beamsplitter along the same path. The simultaneous detection of photons at the two output detectors means that the photons were different colors, this coincidence detection heralds the entanglement of the trapped ion qubits. Scientific American (2008), 299,

35 Scientific American (2008), 299, Elementary logic unit (ELU) Phys. Rev. A 89, (2013) 35

36 Modular distributed quantum computer Several elementary logic units (ELU)s are connected through a photonic network by using an optical crossconnect switch, inline fiber beamsplitters, and a photon-counting imager. C. Monroe, and J. Kim Science 2013;339: Application to quantum communication Trapped ion quantum repeater node made up of communication qubit ions (such as Ba + ) and memory qubit ions (such as Yb + ), with two optical interfaces per node. Multiple communication qubits are used per optical interface to inject photons into the optical channel, while the results for successful entanglement generation at the detectors are reported back to this node. Only qubits corresponding to successful events will be transported to the memory qubit region for use in quantum repeater protocol. C. Monroe, and J. Kim Science 2013;339:

37 Long-distance quantum communication A chain of quantum repeater nodes can distribute quantum entanglement over macroscopic distances. The photons generated by the ions must be converted to telecommunication wavelengths for long-distance transport, which can be achieved by nonlinear optical processes. C. Monroe, and J. Kim Science 2013;339:

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

A central problem in cryptography: the key distribution problem.

A central problem in cryptography: the key distribution problem. Scientific American 314, 48-55 (2016) A central problem in cryptography: the key distribution problem. Mathematics solution: public key cryptography. Public-key cryptography relies on the computational

More information

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert Which technology? 000 001 010 011 Quantum processor 100 011 110 011 Cavity QED NMR Superconducting qubits Quantum dots Trapped atoms/ions A. Ekert Which technology? 000 001 010 011 Quantum processor 100

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s

More information

Towards Quantum Computation with Trapped Ions

Towards Quantum Computation with Trapped Ions Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

The trapped-ion qubit tool box. Roee Ozeri

The trapped-ion qubit tool box. Roee Ozeri The trapped-ion qubit tool box Contemporary Physics, 5, 531-550 (011) Roee Ozeri Weizmann Institute of Science Rehovot, 76100, Israel ozeri@weizmann.ac.il Physical Implementation of a quantum computer

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Quantum information processing with trapped atoms

Quantum information processing with trapped atoms Quantum information processing with trapped atoms Introduction Fundamentals: ion iontraps, quantum bits, bits, quantum gates Implementations: 2-qubit gates, teleportation, More recent, more advanced, Jürgen

More information

Quantum teleportation

Quantum teleportation Quantum teleportation "Deterministic quantum teleportation with atoms", M. Riebe et al., Nature 429, 734 (2004). "Deterministic quantum teleportation of atomic qubits", M. D. Barrett et al., Nature 429,

More information

Zero-point cooling and low heating of trapped 111 Cd + ions

Zero-point cooling and low heating of trapped 111 Cd + ions PHYSICAL REVIEW A 70, 043408 (2004) Zero-point cooling and low heating of trapped 111 Cd + ions L. Deslauriers, P. C. Haljan, P. J. Lee, K-A. Brickman, B. B. Blinov, M. J. Madsen, and C. Monroe FOCUS Center,

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Dietrich Leibfried Time and Frequency Division National Institute of Standards and Technology Boulder, CO USA The remaining QIP challenge DiVincenzo requirements:

More information

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum information processing and cavity QED experiments with trapped Ca + ions Quantum information processing and cavity QED experiments with trapped Ca + ions S. Gulde, H. Häffner, M. Riebe, G. Lancaster, A. Mundt, A. Kreuter, C. Russo, C. Becher, J. Eschner, F. Schmidt-Kaler, I.

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS 1 QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS C. F. ROOS, M. CHWALLA, T. MONZ, P. SCHINDLER, K. KIM, M. RIEBE, and R. BLATT Institut für Experimentalphysik, Universität Innsbruck,

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin «Demonstration of a small programmable quantum computer» Philip Rhyner, Colin Kälin 14.05.2018 Introduction PART 1: Trapped ion quantum computers Ion trap States, Initialization and Measurement One- and

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01.

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01. Europe PMC Funders Group Author Manuscript Published in final edited form as: Nat Photonics. 2013 March ; 7(3): 219 222. doi:10.1038/nphoton.2012.358. Quantum-state transfer from an ion to a photon A.

More information

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And Operation of the Trapped

More information

Quantum information processing with trapped Ca+ ions

Quantum information processing with trapped Ca+ ions r[ THE ROYAL 10.1098/rsta.2003.1206 *Je. SOCIETY Quantum information processing with trapped Ca+ ions BY S. GULDE1, H. HAFFNER1, M. RIEBE1, G. LANCASTER1, C. BECHER1, J. ESCHNER1, F. SCHMIDT-KALER1, I.

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Kenneth Brown, Georgia Tech

Kenneth Brown, Georgia Tech Kenneth Brown, Georgia Tech Choice of Bits 100 BC 1949 AD 1949 AD 1822 (1991) AD 2013 AD Hearing Aid Images from www.hearingaidmuseum.com Choices of Qubits Waterloo Bristol Wisconsin NMR Photons Neutral

More information

arxiv: v1 [quant-ph] 14 Aug 2013

arxiv: v1 [quant-ph] 14 Aug 2013 A quantum information processor with trapped ions arxiv:1308.3096v1 [quant-ph] 14 Aug 2013 Contents Philipp Schindler 1, Daniel Nigg 1, Thomas Monz 1, Julio T. Barreiro 1, Esteban Martinez 1, Shannon X.

More information

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Cold Ions and their Applications for Quantum Computing and Frequency Standards Cold Ions and their Applications for Quantum Computing and Frequency Standards Trapping Ions Cooling Ions Superposition and Entanglement Ferdinand Schmidt-Kaler Institute for Quantum Information Processing

More information

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap H. C. Nägerl,* Ch. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner,

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps QuAMP 2013 Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps Kim Lake University of Sussex Talk Outline Ion Trapping and Ytterbium

More information

Trapped ion quantum control. Jonathan Home IDEAS league school,

Trapped ion quantum control. Jonathan Home  IDEAS league school, Trapped ion quantum control Jonathan Home www.tiqi.ethz.ch IDEAS league school, 11.09.2015 Lectures Ken Brown, IDEAS League school, Sweden 1) Basics (review). Measurement, Preparation, Coherent control

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω Dynamics of a Quantum System: QM postulate: The time evolution of a state ψ> of a closed quantum system is described by the Schrödinger equation where H is the hermitian operator known as the Hamiltonian

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University Ion Traps for Quantum Computing Ann Arbor Garching Innsbruck Boulder SQuInT summer school June, 2003 Brian King Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/king_b_h.html

More information

Quantum Dense Coding and Quantum Teleportation

Quantum Dense Coding and Quantum Teleportation Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88

More information

Scalable creation of multi-particle entanglement

Scalable creation of multi-particle entanglement Scalable creation of multi-particle entanglement Status quantum processor F. Schmidt-Kaler Spin-qubits in single ions, and www.quantenbit.de Quantum register reconfigurations Quantum-enhanced magnetometry

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

arxiv:quant-ph/ Mar 2006

arxiv:quant-ph/ Mar 2006 Scalable multi-particle entanglement of trapped ions H. Häffner 1,2, W. Hänsel 1, C. F. Roos 1,2, J. Benhelm 1,2, D. Chek al kar 1, M. Chwalla 1, T. Körber 1,2, U. D. Rapol 1,2, M. Riebe 1, P. O. Schmidt

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Functional quantum nodes for entanglement distribution

Functional quantum nodes for entanglement distribution 61 Chapter 4 Functional quantum nodes for entanglement distribution This chapter is largely based on ref. 36. Reference 36 refers to the then current literature in 2007 at the time of publication. 4.1

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Quantum teleportation with atoms: quantum process tomography

Quantum teleportation with atoms: quantum process tomography Quantum teleportation with atoms: quantum process tomography M Riebe 1, M Chwalla 1, J Benhelm 1, H Häffner 1,, W Hänsel 1, C F Roos 1, and R Blatt 1, 1 Institut für Experimental Physik, Universität Innsbruck,

More information

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin QuReP Quantum Repeaters for Long Distance Fibre-Based Quantum Communication Rob Thew Coordinator: Nicolas Gisin 1. Direct transmission Photon source Alice 2. Entanglement distribution: α Goal is to distribute

More information

arxiv: v1 [quant-ph] 14 Mar 2014

arxiv: v1 [quant-ph] 14 Mar 2014 Modular Entanglement of Atomic Qubits using both Photons and Phonons D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe Joint Quantum Institute, University of Maryland

More information

arxiv:quant-ph/ v1 29 Apr 2003

arxiv:quant-ph/ v1 29 Apr 2003 Atomic Qubit Manipulations with an Electro-Optic Modulator P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. arxiv:quant-ph/0304188v1 29 Apr 2003 Miller, D. L. Moehring, D. Stick,

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Ion-trap quantum information processing: experimental status

Ion-trap quantum information processing: experimental status Ion-trap quantum information processing: experimental status Author Kielpinski, David Published 2008 Journal Title Frontiers of Physics in China DOI https://doi.org/10.1007/s11467-008-0034-y Copyright

More information

Quantum computation with trapped ions and atoms

Quantum computation with trapped ions and atoms Quantum computation with trapped ions and atoms F. Rohde (1), J. Eschner (1,2) (1) ICFO Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona), Spain (2) Experimentalphysik,

More information

Quantum Computer Architecture

Quantum Computer Architecture Quantum Computer Architecture Scalable and Reliable Quantum Computers Greg Byrd (ECE) CSC 801 - Feb 13, 2018 Overview 1 Sources 2 Key Concepts Quantum Computer 3 Outline 4 Ion Trap Operation The ion can

More information

Quantum Teleportation with Photons. Bouwmeester, D; Pan, J-W; Mattle, K; et al. "Experimental quantum teleportation". Nature 390, 575 (1997).

Quantum Teleportation with Photons. Bouwmeester, D; Pan, J-W; Mattle, K; et al. Experimental quantum teleportation. Nature 390, 575 (1997). Quantum Teleportation with Photons Jessica Britschgi Pascal Basler Bouwmeester, D; Pan, J-W; Mattle, K; et al. "Experimental quantum teleportation". Nature 390, 575 (1997). Outline The Concept of Quantum

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR International Journal of Modern Physics B c World Scientific Publishing Company A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR PAUL BLACKBURN MIGUEL ORSZAG Facultad de Física, Pontificia Universidad Católica

More information

Quantum gates in rare-earth-ion doped crystals

Quantum gates in rare-earth-ion doped crystals Quantum gates in rare-earth-ion doped crystals Atia Amari, Brian Julsgaard Stefan Kröll, Lars Rippe Andreas Walther, Yan Ying Knut och Alice Wallenbergs Stiftelse Outline Rare-earth-ion doped crystals

More information

High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method

High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method Boris Brkić,* Stephen Taylor, Jason F. Ralph, and Neil France Department of Electrical Engineering

More information

arxiv: v1 [quant-ph] 24 Aug 2007

arxiv: v1 [quant-ph] 24 Aug 2007 1 arxiv:0708.395v1 [quant-ph] 4 Aug 007 Recent progress on the manipulation of single atoms in optical tweezers for quantum computing A. Browaeys, J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko,

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps

Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps Marquette University e-publications@marquette Dissertations (29 -) Dissertations, Theses, and Professional Projects Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps Lei Wang Marquette

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Quantum information processing using linear optics

Quantum information processing using linear optics Quantum information processing using linear optics Karel Lemr Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic web: http://jointlab.upol.cz/lemr

More information

Teleportation of a two-atom entangled state via cavity decay

Teleportation of a two-atom entangled state via cavity decay Vol 16 No 6, June 007 c 007 Chin. Phys. Soc. 1009-1963/007/16(06)/1678-05 Chinese Physics and IOP Publishing Ltd Teleportation of a two-atom entangled state via cavity decay Ye Sai-Yun( ) Department of

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Quantum Information Transfer and Processing Miloslav Dušek

Quantum Information Transfer and Processing Miloslav Dušek Quantum Information Transfer and Processing Miloslav Dušek Department of Optics, Faculty of Science Palacký University, Olomouc Quantum theory Quantum theory At the beginning of 20 th century about the

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms

Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms Interns: Grad Students: Postdocs: Supervisor: Jeff Lundeen Univ. of Toronto Dept. of Physics CAP 2003 Rockson Chang,

More information

Errors in trapped-ion quantum gates due to spontaneous photon scattering

Errors in trapped-ion quantum gates due to spontaneous photon scattering Errors in trapped-ion quantum gates due to spontaneous photon scattering R. Ozeri,* W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin,

More information

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices Quantum computing and quantum communication with atoms L.-M. Duan 1,2, W. Dür 1,3, J.I. Cirac 1,3 D. Jaksch 1, G. Vidal 1,2, P. Zoller 1 1 Institute for Theoretical Physics, University of Innsbruck, A-6020

More information

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips Atom trifft Photon Rydberg blockade Michael Rips 1. Introduction Atom in Rydberg state Highly excited principal quantum number n up to 500 Diameter of atom can reach ~1μm Long life time (~µs ~ns for low

More information

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France QUANTUM COMPUTING Part II Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France QUANTUM GATES: a reminder Quantum gates: 1-qubit gates x> U U x> U is unitary in M 2 ( C

More information

Mixed Species Ion Chains for Scalable Quantum Computation

Mixed Species Ion Chains for Scalable Quantum Computation Mixed Species Ion Chains for Scalable Quantum Computation John Albert Wright A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington

More information

An introduction to Quantum Computing using Trapped cold Ions

An introduction to Quantum Computing using Trapped cold Ions An introduction to Quantum Computing using Trapped cold Ions March 10, 011 Contents 1 Introduction 1 Qubits 3 Operations in Quantum Computing 3.1 Quantum Operators.........................................

More information

arxiv: v2 [quant-ph] 22 Apr 2016

arxiv: v2 [quant-ph] 22 Apr 2016 A Quantum Repeater Node with Trapped Ions: A Realistic Case Example A. D. Pfister 1, M. Salz 1, M. Hettrich 1, U. G. Poschinger 1, F. Schmidt-Kaler 1 16.04.2016 arxiv:1508.05272v2 [quant-ph] 22 Apr 2016

More information

An entangled LED driven quantum relay over 1km

An entangled LED driven quantum relay over 1km An entangled LED driven quantum relay over 1km Christiana Varnava 1,2 R. Mark Stevenson 1, J. Nilsson 1, J. Skiba Szymanska 1, B. Dzurnak 1, M. Lucamarini 1, A. J. Bennett 1,M. B. Ward 1, R. V. Penty 2,I.

More information

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Brussels 26.03.2013 The R-ION Consortium Ferdinand Schmidt-Kaler University of Mainz/Germany Trapped ions Experiment Jochen

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Decoherence Bounds on Quantum Computation with. Trapped Ions. Richard J. Hughes, Daniel F. V. James, Emanuel H. Knill, Raymond Laamme and

Decoherence Bounds on Quantum Computation with. Trapped Ions. Richard J. Hughes, Daniel F. V. James, Emanuel H. Knill, Raymond Laamme and Decoherence Bounds on Quantum Computation with Trapped Ions Richard J. Hughes, Daniel F. V. James, Emanuel H. Knill, Raymond Laamme and Albert G. Petschek, University of California, Los Alamos National

More information