Quantum Networks with Atomic Ensembles

Size: px
Start display at page:

Download "Quantum Networks with Atomic Ensembles"

Transcription

1 Quantum Networks with Atomic Ensembles Daniel Felinto* C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento de Física, UFPE XI Escola de Verão Jorge André Swieca São Paulo, Fevereiro 21, 2008

2 «Quantum Networking» Fundamental scientific questions and Diverse experimental challenges Quantum node generate, process, store quantum information Quantum channel transport / distribute quantum entanglement Goal : develop the ressources that A enable quantum repeaters, thereby allowing entanglement-based communication tasks on distance Theoretical issues scales larger than set by the Does it work capabilities beyond attenuation any classical length system of fibers Quantum computation, communication, & metrology Experimental implementation Physical processes for reliable generation, processing, & transport of quantum states A quantum interface between matter and light B

3 Quantum Repeaters : Principles 1) Divide into segments and. generate.. entanglement... L 0 L 0 L 0 L Fidelity close to 1, long distance But time exponentially large with the distance F< F~1 2) Purify the entanglement Entanglement (often) and purification (always) are probabilistic : each step ends at different times ) Connect the pairs

4 Quantum Repeaters : Principles 1) Divide into segments and. generate.. entanglement... L 0 L 0 L 0 L Fidelity close to 1, long distance But time exponentially large with the distance F< F~1 2) Purify the entanglement ) Connect the pairs Entanglement (often) and purification (always) are probabilistic : each step ends at different times. «Scalability» : requires the storage of heralded entanglement : Quantum Memories

5 One Approach : «DLCZ» Atomic ensembles in the single excitation regime

6 Capabilities Enabled by DLCZ Roadmap Entanglement-based cryptography Quantum teleportation Beyond the original protocols of DLCZ Implementation of quantum memory Realization of fully controllable source for single photons A source for entangled photon pairs Universal quantum computation via the protocol of Knill, LaFlamme, Milburn Scalable long-distance quantum communication via quantum repeater architecture Distribution of entanglement over quantum networks Entanglement of two ensembles Entanglement connection

7 Outline «DLCZ building block» : writing, reading, memory time Synchronization of two single photon source Number-state entanglement between two ensembles Polarization entanglement between two nodes (4 ensembles)

8 «Building Block» (DLCZ) Large ensemble of atoms Witha Λ-type level configuration Duan, Lukin, Cirac and Zoller, Long-distance quantum communication with atomic ensembles and linear optics, Nature 414, 413 (2001)

9 Creating a Single Atomic Excitation Nonclassical correlations between field 1 and the ensemble Write Field 1 : the excitation probability Write Field 1 Collective atomic state

10 Retrieving the Single Excitation Nonclassical correlations between field 1 and the ensemble Field 2 Read read Read Field 2 Nonclassical correlations between fields 1 and 2

11 Experimental Setup Counter-propagating and off-axis configuration H Field 2 Read V Write H Field 1 V Si APD 30 ns, Very weak 200 µm

12 Conditional Field-2? Field 2 Read q c Suppression of the two-photon component Retrieval efficiency of the stored excitation Multi-excitations Coherent state limit Plateau : Single excitation Sub-Poissonian q c ~ 50% α = 0.7 ± 0.3% Background noise J. Laurat et al., Efficient retrieval of a single excitation stored in an atomic ensemble, Opt. Express 14, 6912 (2006)

13 Memory Source of Decoherence Quadrupole Magnetic Field σ I σ I σ + σ σ + : Magnetic field σ + : Laser beams ( M, N) Each atom sees a different field : Inhomogeneous broadening of the ground states

14 Source of Decoherence Quadrupole Magnetic Field t at large t

15 Decoherence control: turning off the magnetic field Cancelation of the magnetic field: Raman Spectroscopy + Measurements of optical depth g times increase of coherence time g 1,2 = 2 classical limit storage time [μs] Felinto et.al., PRA 72, (2005)

16 Generation of polarization entangled photons F =4 (unpolarized atoms) F=4 F=3 m F Writing Ideal state for Field 1 and 2 π + π + ψ12 = vac + p cos( η ) σ 1, σ 2 + sin( η ) σ 1, σ 4 4 Experimental setup F =4 F=4 F=3 m F Fiber T 2 Reading η is given by Clebsch-Gordan coefficients. For Cs : η =0.86 Write σ + λ/2 λ/4 PBS 4 2 Field 2 R 2 Atoms Field 1 filter Level Scheme λ/2 λ/4 R 1 PBS Read σ - Fiber T 1 Matsukevich et al., PRL 95, (2005)

17 Violation of CHSH inequality vs g12 S = E(θ 1,θ 2 ) + E(θ 1,θ 2 ) + E(θ 1,θ 2 ) + E(θ 1,θ 2 ) de Riedmatten et.al., PRL 97, (2006)

18 Outline «DLCZ building block» : writing, reading, memory time Syncronization of two single photon sources Polarization entanglement between two nodes (4 ensembles) Towards entaglement swapping D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, & H. J. Kimble, Nature Physics 2, 844 (2006)

19 Real-time control of Two Memories D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, & H. J. Kimble, Nature Physics 2, 844 (2006)

20 First Application : HOM L R Two independent sources of single photons Field 2 Field 2 λ/2 BS V=0.77±0.06 (Integrated data) 28-fold increase in p 1122! (N=23, 12µs) D. Felinto et al., Conditional control of the quantum states of remote atomic memories for Q. networking, Nature Physics 2, 844 (2006)

21 Narrowband, close-to to-transform-limited wavepacket D. Felinto et al., Conditional control of the quantum states of remote atomic memories for Q. networking, Nature Physics 2, 844 (2006)

22 Outline «DLCZ building block» : writing, reading, memory time Syncronization of two single photon sources Number-state entanglement between two ensembles C.W. Chou, H. de Riedmatten, D. Felinto, S.V. Polyakov, S. van Enk, H.J. Kimble, Measurement-induced entanglement for excitation stored in remote atomic ensembles, Nature 438, 828 (2005)

23 Entanglement between Two Ensembles Atoms entangled Light 50/50 Beam splitter Light Atoms entangled

24 Entanglement between Two Ensembles 1 photon detected 1 atom transferred 50/50 Beam splitter

25 Entanglement between Two Ensembles 1 photon detected 1 atom transferred L here Entangled General (and ideal) case there R where = here + there

26 Entangling 2 Remote Ensembles C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) L 1 L phase shifter Phase controller 1064 nm Write Fiber BS w 2.8 m Atoms filter Fiber BS nm filters D 1a R 1 R D 1b Atoms filter Data acquisition Write Field 1 Ideal case Entanglement is stored in the ensembles for 1 µs.

27 The Hard Part : Operational Verification C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) Field 2 Read L 2 L atoms L ρ L, R entangled? Map matter state ρ to field state 2 L,2R Field 2 Read R atoms R 2 R Quantum-state tomography on the density matrix for the fields 2,2 L R ρ 2,2 L R

28 A Robust,, Model-Independent Protocol C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) L 2 L Quantum-state tomography ρ L, R atoms L ρ 2,2 L R Black entangled? Box R atoms R 2 R where 2 L 2 L Coherence d Photon statistics p ij 2 R 2 R Concurrence / C > 0 Entanglement of formation E > 0 W. K. Wootters, Phys. Rev. Lett. 80, 2245(1998)

29 ρ L, R L entangled? atoms L What are the issues? C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) ρ 2,2 L R Map matter state to field state 2 L Coherence? Necessary but not sufficient R 2 R atoms R Black Box Consider the unentangled conditional state ( 0 a 1 L) ( 0 a 1 L) unen tan gled Φ 2,2 = + L R L L R R = Ψ entangled 2,2 L R + a L, where ( 1 ) entangled Ψ 2,2 = + a L R L R 2L R L R L 2 R Critically, the distinction between unentangled and entangled states involves higher-order photon statistics

30 Diagonal Elements C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) L 2 L 1064 nm Atoms filter D 2a Read BS R R Atoms filter 2 R 1064 nm filters D 2b Data acquisition Field 2 Read

31 Diagonal Elements C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) Conditional Conditioned on Conditioned on <1, suppression of 2-photon events relative to single-excitation events For non-conditioned events, 0.30 ± ± 0.04

32 Off-Diagonal element d C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) L 2 L Phase shifter controlling ϕ Phase controller 1064 nm Atoms filter D 2a Read BS R BS nm filters R 2 R D 2b Atoms filter Data acquisition Field 2 Read

33 Entanglement creation L 1 L Off-Diagonal element d C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) Atomsfilter BS 1 D 1a R Atoms filter L 1 R Entanglement verification ϕ 2 L D 1b Data acquisition ϕ Atomsfilter BS 2 D 2a R Atoms 2 R filter D 2b Data acquisition

34 Off-Diagonal element d C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) L 1 L Atomsfilter BS 1 D 1a R Atoms L 1 R filter 2 L ϕ D 1b Data acquisition Atomsfilter BS 2 D 2a R Atoms 2 R filter D 2b Data acquisition

35 Off-Diagonal element d C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) L 1 L Atomsfilter BS 1 D 1a R Atoms L 1 R filter 2 L ϕ D 1b Data acquisition Atomsfilter BS 2 D 2a R Atoms 2 R filter D 2b Data acquisition

36 Concurrence Estimation C.-W. Chou, H. de Riedmatten, D. Felinto, S. Polyakov, S. Van Enk, H. J. Kimble Nature 438, 828 (2005) / Fields 2 L and 2 R C > 0 entanglement of formation E > 0 Fields 2 L and 2 R are entangled Ensembles L and R are entangled Local operations at L, R cannot increase entanglement. C (atomic state) > C (field state)>0 Low concurrence because : - Loss+ low retrieval efficiency (q c ~ 10%) (limits the ability to infer the entanglement in the atoms) ( - No post-selection)

37 Field Entanglement along the Pathway from Ensembles to Detections Retrieval efficiency q c ~ 10% High concurrence C between ensembles

38 Back to entanglement between Two Ensembles 50/50 Beam splitter Now 2 ensembles in the same MOT just 1 mm apart

39 Experimental Density Matrix Populations 2 L 2 R Coherence 2 L 2 R D1c D1b <1, suppression of 2-photon events relative to single-excitation events p= Hz preparation rate J. Laurat et al., Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling, arxiv:

40 Outline «DLCZ building block» : writing, reading, memory time Syncronization of two single photon sources Number-state entanglement between two ensembles Polarization entanglement between two nodes (4 ensembles) C.W. Chou, J. Laurat, H. Deng, K.S. Choi, H. de Riematten, D. Felinto, H.J. Kimble, Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks, Science 316, 1316 (2007)

41 How Having one Click on Each Side? 3 m Node L Entangled! Node R ϕ L 2 LU 2 RU ϕ R D La BS 2 LD LU Entangled! RU 2 RD BS D Ra D Lb LD RD D Rb Effective state giving one click on each side

42 Polarization Entanglement Node L 3 m Node R 2 L 2 LU 2 RU 2 R 2 LD LU LD RU RD 2 RD Effective state giving one click on each side

43 Results : Preparation and Bell Violation C.W. Chou, J. Laurat, H. Deng, K.S. Choi, H. de Riematten, D. Felinto, H.J. Kimble, Functional Quantum Nodes for Entanglement Distribution over a Scalable Quantum Networks, Science 316, 1316 (2007) Preparation x 35 Asynchronous Preparation p 11 : Probability of both pairs are prepared in an entangled state Duration that the first entanged pair is stored before retrieval

44 Results : Preparation and Bell Violation C.W. Chou, J. Laurat, H. Deng, K.S. Choi, H. de Riematten, D. Felinto, H.J. Kimble, Functional Quantum Nodes for Entanglement Distribution over a Scalable Quantum Networks, Science 316, 1316 (2007) Asynchronous Preparation Preparation x 35 Final state x 20 Duration that the first entanged pair is stored before retrieval D. Felinto, C.W. Chou, J. Laurat, H. de Riedmatten, H. Kimble, Conditional control of the quantum states of remote atomic memories for Q. networking, Nature Physics 2, 844 (2006)

45 Results : Preparation and Bell Violation Asynchronous Preparation Preparation x 35 Final state x 20 Bell Violation (CHSH) Large violation : quantum key distribution with security at minimum against individual attacks C.W. Chou, J. Laurat, H. Deng, K.S. Choi, H. de Riematten, D. Felinto, H.J. Kimble, Functional Quantum Nodes for Entanglement Distribution over a Scalable Quantum Networks, Science 316, 1316 (2007) Duration that the first entanged pair is stored before retrieval

46 C.W. Chou, J. Laurat, H. Deng, K.S. Choi, H. de Riematten, D. Felinto, H.J. Kimble, Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks, Science 316, 1316 (2007) 2 nodes separated by 3m 2 ensembles per node Asynchronous preparation (memory) of 2 parallel number-state entangled pairs Polarization coding and passive phase stability Polarization entanglement distribution, violating Bell, in a scalable fashion

47 In a Nutshell Q. Repeaters, DLCZ et Building Block Photon pair : α<1% Efficient retrieval : 50% Memory time ~ 10 µs Entanglement Heralded Without postselection, C~0.1 Write Writing Field 1 Reading Field 2 Read Conditional Control Asynchronous preparation Polarisation Entanglement 2 nodes, 4 ensembles Bell violation Node L 3m Node R 2 L 2 R LU LD RU RD

48 The End

Quantum Communication with Atomic Ensembles

Quantum Communication with Atomic Ensembles Quantum Communication with Atomic Ensembles Julien Laurat jlaurat@caltech.edu C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble Caltech Quantum Optics FRISNO 2007, February 12, 2007

More information

Functional quantum nodes for entanglement distribution

Functional quantum nodes for entanglement distribution 61 Chapter 4 Functional quantum nodes for entanglement distribution This chapter is largely based on ref. 36. Reference 36 refers to the then current literature in 2007 at the time of publication. 4.1

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Towards a Quantum Network with Atomic Ensembles

Towards a Quantum Network with Atomic Ensembles Towards a Quantum Network with Atomic Ensembles Thesis by Chin-wen Chou In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California

More information

ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES

ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES ADVANCES IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, VOL. 55 ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES 11 L.-M. DUAN and C. MONROE 14 FOCUS, MCTP, and

More information

arxiv: v2 [quant-ph] 5 Mar 2018

arxiv: v2 [quant-ph] 5 Mar 2018 Experimental Fock-State Superradiance L. Ortiz-Gutiérrez 1, L. F. Muñoz-Martínez 1, D. F. Barros, J. E. O. Morales 1, R. S. N. Moreira 1, N. D. Alves 1, A. F. G. Tieco 1, P. L. Saldanha, and D. Felinto

More information

Storage and retrieval of single photons transmitted between remote quantum. memories

Storage and retrieval of single photons transmitted between remote quantum. memories Storage and retrieval of single photons transmitted between remote quantum memories T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T.A.B. Kennedy, and A. Kuzmich (Dated: February 1, 28 An

More information

Chapter 26. Long Distance Quantum Communication with Atomic Ensembles

Chapter 26. Long Distance Quantum Communication with Atomic Ensembles Chapter 26 Long Distance Quantum Communication with Atomic Ensembles C. W. Chou, S. V. Polyakov, D. Felinto, H. de Riedmatten, S. J. van Enkt and H. J. Kimble Norman Bridge Laboratory of Physics California

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices Quantum computing and quantum communication with atoms L.-M. Duan 1,2, W. Dür 1,3, J.I. Cirac 1,3 D. Jaksch 1, G. Vidal 1,2, P. Zoller 1 1 Institute for Theoretical Physics, University of Innsbruck, A-6020

More information

Memory-built-in quantum teleportation with photonic and

Memory-built-in quantum teleportation with photonic and Memory-built-in quantum teleportation with photonic and atomic qubits Yu-Ao Chen,2, Shuai Chen, Zhen-Sheng Yuan,2, Bo Zhao, Chih-Sung Chuu, Jörg Schmiedmayer 3 & Jian-Wei Pan,2 Physikalisches Institut,

More information

Holographic Storage of Biphoton Entanglement

Holographic Storage of Biphoton Entanglement Holographic Storage of Biphoton Entanglement Here we report an experimental demonstration of holoarxiv:1204.1532v1 [quant-ph] 6 Apr 2012 Han-Ning Dai*, 1 Han Zhang*, 1 Sheng-Jun Yang, 1 Tian-Ming Zhao,

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

Supplemental Information for Single-photon bus connecting spin-wave quantum memories

Supplemental Information for Single-photon bus connecting spin-wave quantum memories NPHYS-007-05-0053 Supplemental Information for Single-photon bus connecting spin-wave quantum memories Jonathan Simon, 1, Haruka Tanji, 1, Saikat Ghosh, and Vladan Vuletić 1 Department of Physics, Harvard

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES

More information

Quantum Repeaters and Memories

Quantum Repeaters and Memories Quantum Repeaters and Memories Nicolas Gisin and Mikael Afzelius Group of Applied Physics Geneva University, Switzerland Quantum Repeaters Quantum memories 1 click Quantum Entanglement 1 QKD over 307 km

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

A Multiplexed Quantum Memory

A Multiplexed Quantum Memory A Multiplexed Quantum Memory S.-Y. Lan 1, A. G. Radnaev 1, O. A. Collins 1, D. N. Matsukevich 2,T.A. B. Kennedy 1 and A. Kuzmich 1 1 School of Phycs, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

More information

A millisecond quantum memory for scalable quantum networks

A millisecond quantum memory for scalable quantum networks PUBLISHED ONLINE: 7 DECEMBER 28 DOI: 1.138/NPHYS113 A millisecond quantum memory for scalable quantum networks Bo Zhao 1 *, Yu-Ao Chen 1,2 *, Xiao-Hui Bao 1,2, Thorsten Strassel 1, Chih-Sung Chuu 1, Xian-Min

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Quantum networking with atomic ensembles. Dzmitry Matsukevich

Quantum networking with atomic ensembles. Dzmitry Matsukevich Quantum networking with atomic ensembles A Thesis Presented to The Academic Faculty by Dzmitry Matsukevich In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy School of Physics

More information

Generation and classification of robust remote symmetric Dicke states

Generation and classification of robust remote symmetric Dicke states Vol 17 No 10, October 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(10)/3739-05 Chinese Physics B and IOP Publishing Ltd Generation and classification of robust remote symmetric Dicke states Zhu Yan-Wu(

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Quantum Repeaters. Hugues de Riedmatten

Quantum Repeaters. Hugues de Riedmatten Quantum Repeaters Hugues de Riedmatten ICFO-The Institute of Photonic Sciences ICREA- Catalan Institute for Research and Advanced studies Tutorial, QCRYPT 2015, Tokyo ICFO-The Institute of Photonic Sciences

More information

arxiv:quant-ph/ v2 23 Jan 2007

arxiv:quant-ph/ v2 23 Jan 2007 Multiplexed Memory-Insensitive Quantum Repeaters O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (Dated: August

More information

Atomic vapor quantum memory for a photonic polarization qubit

Atomic vapor quantum memory for a photonic polarization qubit Atomic vapor quantum memory for a photonic polarization qubit Young-Wook Cho 1,2 and Yoon-Ho Kim 1,3 1 Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

arxiv:quant-ph/ v3 12 Jul 2007

arxiv:quant-ph/ v3 12 Jul 2007 Fault-tolerant quantum repeater with atomic ensembles and linear optics arxiv:quant-ph/0609151v3 1 Jul 007 Zeng-Bing Chen, 1 Bo Zhao, Yu-Ao Chen, Jörg Schmiedmayer, 3 and Jian-Wei Pan 1, 1 Hefei National

More information

Entanglement distillation between solid-state quantum network nodes

Entanglement distillation between solid-state quantum network nodes Entanglement distillation between solid-state quantum network nodes Norbert Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen,

More information

Theory of Light Atomic Ensemble Interactions: Entanglement, Storage, and Retrieval. Stewart D. Jenkins

Theory of Light Atomic Ensemble Interactions: Entanglement, Storage, and Retrieval. Stewart D. Jenkins Theory of Light Atomic Ensemble Interactions: Entanglement, Storage, and Retrieval A Thesis Presented to The Academic Faculty by Stewart D. Jenkins In Partial Fulfillment of the Requirements for the Degree

More information

arxiv:quant-ph/ v1 5 Aug 2004

arxiv:quant-ph/ v1 5 Aug 2004 1 Generation of polarization entangled photon pairs and violation of Bell s inequality using spontaneous four-wave mixing in fiber loop Hiroki Takesue and Kyo Inoue arxiv:quant-ph/0408032v1 5 Aug 2004

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Deterministic Generation of Single Photons from One Atom Trapped in a Cavity

Deterministic Generation of Single Photons from One Atom Trapped in a Cavity Deterministic Generation of Single Photons from One Atom Trapped in a Cavity J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, H. J. Kimble* Norman Bridge Laboratory of Physics 12-33,

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Jian-Wei Pan

Jian-Wei Pan Lecture Note 6 11.06.2008 open system dynamics 0 E 0 U ( t) ( t) 0 E ( t) E U 1 E ( t) 1 1 System Environment U() t ( ) 0 + 1 E 0 E ( t) + 1 E ( t) 0 1 0 0 1 1 2 * 0 01 E1 E0 q() t = TrEq+ E = * 2 1 0

More information

Applications of Atomic Ensembles In Distributed Quantum Computing

Applications of Atomic Ensembles In Distributed Quantum Computing Applications of Atomic Ensembles In Distributed Quantum Computing Author Zwierz, Marcin, Kok, Pieter Published 2010 Journal Title International Journal of Quantum Information DOI https://doi.org/10.1142/s0219749910006046

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

Quantum information processing using linear optics

Quantum information processing using linear optics Quantum information processing using linear optics Karel Lemr Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic web: http://jointlab.upol.cz/lemr

More information

arxiv: v1 [quant-ph] 13 Sep 2016

arxiv: v1 [quant-ph] 13 Sep 2016 Noname manuscript No. will be inserted by the editor) Quantum repeater based on cavity-qed evolutions and coherent light Denis Gonţa, Peter van Loock arxiv:1609.04067v1 [quant-ph] 13 Sep 016 Institute

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.13.355 A quantum memory for orbital angular momentum photonic qubits - Supplementary Information - A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, J. Laurat Laboratoire Kastler

More information

quantum error-rejection

quantum error-rejection Lecture Note 7 Decoherence-free sub-space space and quantum error-rejection rejection.06.006 open system dynamics ψ = α 0 + α 0 Decoherence System Environment 0 E 0 U ( t) ( t) 0 E ( t) E U E ( t) U()

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Quantum communications

Quantum communications 06.0.05 Quantum communications Quantum teleportation Trapping of single atoms Atom-photon entanglement Entanglement of remote single atoms Elementary quantum network Telecommunication today Secure communication

More information

Article. Reference. Quantum repeaters with entangled coherent states. SANGOUARD, Nicolas, et al.

Article. Reference. Quantum repeaters with entangled coherent states. SANGOUARD, Nicolas, et al. Article Quantum repeaters with entangled coherent states SANGOUARD, Nicolas, et al. Abstract We perform quantum key distribution QKD) over a single fibre in the presence of four classical channels in a

More information

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Cristaux dopés terres rares pour les mémoires quantiques

Cristaux dopés terres rares pour les mémoires quantiques Cristaux dopés terres rares pour les mémoires quantiques A. Ferrier, M. Lovric, Ph. Goldner D. Suter M.F. Pascual-Winter, R. Cristopher Tongning, Th. Chanelière et J.-L. Le Gouët Quantum Memory? Storage

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Quantum teleportation across a metropolitan fibre network Raju Valivarthi 1, Marcel.li Grimau Puigibert 1, Qiang Zhou 1, Gabriel H. Aguilar 1, Varun B. Verma 3, Francesco Marsili

More information

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu SPIE F&N 23 May 2007 Statue

More information

Preparing multi-partite entanglement of photons and matter qubits

Preparing multi-partite entanglement of photons and matter qubits Preparing multi-partite entanglement of photons and matter qubits Pieter Kok, Sean D. Barrett, Timothy P. Spiller Trusted Systems Laboratory HP Laboratories Bristol HPL-2005-199 November 23, 2005* state

More information

High-fidelity atomic-state teleportation protocol with non-maximally-entangled states

High-fidelity atomic-state teleportation protocol with non-maximally-entangled states High-fidelity atomic-state teleportation protocol with non-maximally-entangled states Grzegorz Chimczak and Ryszard Tanaś Department of Physics, Nonlinear Optics Division, Adam Mickiewicz University, 61-614

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Tunable Ion-Photon Entanglement in an Optical Cavity

Tunable Ion-Photon Entanglement in an Optical Cavity Europe PMC Funders Group Author Manuscript Published in final edited form as: Nature. ; 485(7399): 482 485. doi:10.1038/nature11120. Tunable Ion-Photon Entanglement in an Optical Cavity A. Stute 1, B.

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

arxiv: v1 [quant-ph] 14 Mar 2014

arxiv: v1 [quant-ph] 14 Mar 2014 Modular Entanglement of Atomic Qubits using both Photons and Phonons D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe Joint Quantum Institute, University of Maryland

More information

arxiv: v1 [quant-ph] 25 Jun 2008

arxiv: v1 [quant-ph] 25 Jun 2008 The Quantum Internet H. J. Kimble Norman Bridge Laboratory of Physics 12-33 California Institute of Technology Pasadena, California 91125, USA (Dated: June 25, 2008) arxiv:0806.4195v1 [quant-ph] 25 Jun

More information

Quantum teleportation between remote atomic-ensemble quantum memories. 2 ðj ia ± j i A Þ and jr=li A = 1= ffiffiffi

Quantum teleportation between remote atomic-ensemble quantum memories. 2 ðj ia ± j i A Þ and jr=li A = 1= ffiffiffi Quantum teleportation between remote atomic-ensemble quantum memories Xiao-Hui Bao a,b,c, Xiao-Fan Xu c, Che-Ming Li c,d, Zhen-Sheng Yuan a,b,c, Chao-Yang Lu a,b,1, and Jian-Wei Pan a,b,c,1 a Hefei National

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

Title Experimental long-distance quantum secure direct communication

Title Experimental long-distance quantum secure direct communication Title Experimental long-distance quantum secure direct communication The authors Feng Zhu, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua

More information

An entangled LED driven quantum relay over 1km

An entangled LED driven quantum relay over 1km An entangled LED driven quantum relay over 1km Christiana Varnava 1,2 R. Mark Stevenson 1, J. Nilsson 1, J. Skiba Szymanska 1, B. Dzurnak 1, M. Lucamarini 1, A. J. Bennett 1,M. B. Ward 1, R. V. Penty 2,I.

More information

arxiv: v2 [quant-ph] 24 Jul 2013

arxiv: v2 [quant-ph] 24 Jul 2013 Entangled state generation with an intrinsically pure single-photon source and a weak coherent source Rui-Bo Jin, 1 Ryosuke Shimizu, Fumihiro Kaneda, 1 Yasuyoshi Mitsumori, 1 Hideo Kosaka, 1 and Keiichi

More information

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin QuReP Quantum Repeaters for Long Distance Fibre-Based Quantum Communication Rob Thew Coordinator: Nicolas Gisin 1. Direct transmission Photon source Alice 2. Entanglement distribution: α Goal is to distribute

More information

Security and implementation of differential phase shift quantum key distribution systems

Security and implementation of differential phase shift quantum key distribution systems Security and implementation of differential phase shift quantum key distribution systems Eleni Diamanti University Ph.D. Oral Examination June 1 st, 2006 Classical cryptography cryptography = κρυπτός +

More information

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state XuBo Zou, K. Pahlke and W. Mathis Electromagnetic Theory Group at THT Department

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Quantum Communication. Serge Massar Université Libre de Bruxelles

Quantum Communication. Serge Massar Université Libre de Bruxelles Quantum Communication Serge Massar Université Libre de Bruxelles Plan Why Quantum Communication? Prepare and Measure schemes QKD Using Entanglement Teleportation Communication Complexity And now what?

More information

A Hybrid Quantum Memory Enabled Network at Room Temperature

A Hybrid Quantum Memory Enabled Network at Room Temperature A Hybrid Quantum Memory Enabled Network at Room Temperature Xiao-Ling Pang, 1,2 Ai-Lin Yang, 1,2 Jian-Peng Dou, 1,2 Hang Li, 1,2 Chao-Ni Zhang, 1,2 Eilon Poem, 3 Dylan J. Saunders, 3 Hao Tang, 1,2 Joshua

More information

Demonstration of an all-optical quantum controlled-not gate

Demonstration of an all-optical quantum controlled-not gate Demonstration of an all-optical quantum controlled-not gate Author O'Brien, J., Pryde, G., White, A., Ralph, T., Branning, D. Published 2003 Journal Title Nature DOI https://doi.org/10.1038/nature02054

More information

arxiv: v3 [quant-ph] 10 Nov 2010

arxiv: v3 [quant-ph] 10 Nov 2010 Quantum Storage of Photonic Entanglement in a Crystal Christoph Clausen, Imam Usmani, Félix Bussières, Nicolas Sangouard, Mikael Afzelius, Hugues de Riedmatten, and Nicolas Gisin Group of Applied Physics,

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

arxiv: v1 [quant-ph] 27 Feb 2012

arxiv: v1 [quant-ph] 27 Feb 2012 An Elementary Quantum Network of Single Atoms in Optical Cavities Stephan Ritter, Christian Nölleke, Carolin Hahn, Andreas Reiserer, Andreas Neuzner, Manuel Uphoff, Martin Mücke, Eden Figueroa, Jörg Bochmann,

More information

arxiv: v2 [quant-ph] 25 Nov 2009

arxiv: v2 [quant-ph] 25 Nov 2009 Time gating of heralded single photons for atomic memories B. Melholt Nielsen, 1 J. S. Neergaard-Nielsen, 1 and E. S. Polzik 1, arxiv:0909.0646v2 [quant-ph] 25 Nov 2009 1 Niels Bohr Institute, Danish National

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

Coherence of an Entangled Exciton-Photon State

Coherence of an Entangled Exciton-Photon State Coherence of an Entangled Exciton-Photon State A. J. Hudson,2, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll 2, P. Atkinson 2, K. Cooper 2, D. A. Ritchie 2 and A. J. Shields. Toshiba Research

More information

LETTERS. Electromagnetically induced transparency with tunable single-photon pulses

LETTERS. Electromagnetically induced transparency with tunable single-photon pulses Vol 438 8 December 2005 doi:10.1038/nature04327 Electromagnetically induced transparency with tunable single-photon pulses M. D. Eisaman 1, A. André 1, F. Massou 1, M. Fleischhauer 1,2,3, A. S. Zibrov

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS 4th GDR - IQFA Paris 7 November 20, 2013 RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS Sylvain Ravets, Henning Labuhn, Daniel Barredo, Lucas Beguin, Aline Vernier, Florence Nogrette, Thierry Lahaye,

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

arxiv: v1 [quant-ph] 2 Mar 2015

arxiv: v1 [quant-ph] 2 Mar 2015 Stokes anti-stokes Correlations in Raman Scattering from Diamond Membranes Mark Kasperczyk, 1 Ado Jorio, 2 Elke Neu, 3 Patrick Maletinsky, 3 and Lukas Novotny 1, 1 Photonics Laboratory, ETH Zürich, 8093

More information

Quantum secure direct communication with quantum. memory

Quantum secure direct communication with quantum. memory Quantum secure direct communication with quantum memory Wei Zhang 1,3, Dong-Sheng Ding 1,3*, Yu-Bo Sheng 2, Lan Zhou 2, Bao-Sen Shi 1,3 and Guang-Can Guo 1,3 1 Key Laboratory of Quantum Information, Chinese

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Entangled State Teleportation

Entangled State Teleportation DELIVERABLE D19 (REPORT) ABSTRACT Entangled State Teleportation Prepared by Thomas Jennewein, and Anton Zeilinger EXPUNIVIE Hugues de Riedmatten, Hugo Zbinden and Nicolas Gisin GAP Optique Quantum teleportation

More information

arxiv:quant-ph/ v1 2 Oct 1997

arxiv:quant-ph/ v1 2 Oct 1997 Experimental Realization of Teleporting an nknown Pure Quantum State via Dual Classical and Einstein-Podolski-Rosen Channels arxiv:quant-ph/97003v Oct 997 D. Boschi (), S. Branca (), F. De Martini (),

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

arxiv: v1 [quant-ph] 3 Oct 2008

arxiv: v1 [quant-ph] 3 Oct 2008 A solid state light-matter interface at the single photon level Hugues de Riedmatten, Mikael Afzelius, Matthias U. Staudt, Christoph Simon, and Nicolas Gisin Group of Applied Physics, University of Geneva,

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

The experimental realization of long-lived quantum memory. Ran Zhao

The experimental realization of long-lived quantum memory. Ran Zhao The experimental realization of long-lived quantum memory A Thesis Presented to The Academic Faculty by Ran Zhao In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy School of

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni Exploring finite-dimensional Hilbert spaces by Quantum Optics PhD Candidate: PhD Supervisor: Prof. Paolo Mataloni Outline t Introduction to Quantum Optics t Entanglement and Hyperentanglement t Some Experiments

More information

Storing a single photon as a spin wave entangled with a. flying photon in telecomband

Storing a single photon as a spin wave entangled with a. flying photon in telecomband Storing a single photon as a spin wave entangled with a lying photon in telecomband Wei Zhang, Dong-Sheng Ding, Shuai Shi, Yan Li, Zhi-Yuan Zhou, Bao-Sen Shi *, Guang-Can Guo 1 Key Laboratory o Quantum

More information

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008 Cavity QED: Quantum Control with Single Atoms and Single Photons Scott Parkins 17 April 2008 Outline Quantum networks Cavity QED - Strong coupling cavity QED - Network operations enabled by cavity QED

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017 Quantum Optics exam M LOM and Nanophysique 8 November 017 Allowed documents : lecture notes and problem sets. Calculators allowed. Aux francophones (et francographes) : vous pouvez répondre en français.

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information