Cristaux dopés terres rares pour les mémoires quantiques

Size: px
Start display at page:

Download "Cristaux dopés terres rares pour les mémoires quantiques"

Transcription

1 Cristaux dopés terres rares pour les mémoires quantiques A. Ferrier, M. Lovric, Ph. Goldner D. Suter M.F. Pascual-Winter, R. Cristopher Tongning, Th. Chanelière et J.-L. Le Gouët

2 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N 1> Classical system 0> Or 1> Quantum system 0> a 0> + b 1>

3 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

4 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Optical coherence Lambda system e> g> g'> Ground state Nuclear spin states

5 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

6 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> Hyperfine coherence g> g'> Ground state Nuclear spin states

7 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

8 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

9 Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) Quantum memory requirement: High Efficiency (>90%) Lambda system Long storage time (ms) = long coherence time Multimode (increase transmission rate) Large bandwidth (~100 MHz) 69 % Sellars et al. Nature (2011) 3s Sellars PRL 95, (2005) 1060 modes 1GHz Best results : T. Chanelière New Journal of Physics 13 (2011)

10 Why Quantum Memory? Quantum Repeaters 1000 km Transmission in telecom fibers = EDFA will not preserve quantum states cannot be used with quantum information Quantum Repeaters : extend the maximum distance for secure communication Quantum Memory Bell Measurement Quantum Memory Spontaneous Parametric Down Conversion Entangled Photon pair source Beam splitter Entangled Photon pair source N. Sangourd et al. Rev. Modern Physics

11 Quantum Repeaters Bob Alice QM QM QM QM QM QM S S S S S S Bob Alice Quantum channel

12 Rare Earth Doped Crystals Rare earth ions provide a quantum light matter interface through optical transitions Weak interaction with crystal enviroment Long optical coherence times (T < 4K) 10 µs Energy (cm -1 ) µs - 1 ms Long hyperfine coherence times (T < 4K) 100 µs 100 µs - 10 ms Hyperfine levels qubit

13 Absorption Rare Earth Doped Crystals Rare earth ions provide a quantum light matter interface through optical transitions Weak interaction with crystal enviroment Long optical coherence times (T < 4K) 10 µs Long hyperfine coherence times (T < 4K) 100 µs Large inhomogeneous broadening 100 MHz 10 GHz GHz Y 2 SiO 5 : 0.1 Eu % 1.7 GHz (0.019 nm) Frequency

14 Rare Earth Doped Crystals Rare earth ions provide a quantum light matter interface through optical transitions Weak interaction with crystal enviroment Long optical coherence times (T < 4K) 10 µs Long hyperfine coherence times (T < 4K) 100 µs Large inhomogeneous broadening 100 MHz 10 GHz Several systems l (nm) = Y 2 SiO 5 YVO 4 Y 2 SiO 5 Y 2 SiO 5 Y 3 Al 5 O 12 Y 2 SiO 5 La 2 (WO 4 ) 3 Y 3 Al 5 O 12 LiNbO 3 :Ti

15 How to extend the hyperfine T 2? Dynamical decoupling in Pr:LaWO

16 Two Pulse Photon Echo Excitation of an inhomogeneously broadened line Rephasing Echo : coherent collective emission separated from laser pulses T 2 determination Basic storage scheme /2 1> z z z Time z z y /2 y y y 0> x x x x

17 Why µs range for the hyperfine T 2? Pr : LaWO Fluctuation of the spin bath = Relaxation c n x c c : correlation time of fluctuation : standard deviation

18 How to extend the hyperfine T 2? Pr : LaWO Fluctuation of the spin bath c n x c c : correlation time of fluctuation : standard deviation Control of the decoherence : Application of an external magnetic field Dynamical decoupling 1s storage with EIT (Longdell PRL 2005 )

19 How to extend the hyperfine T 2? /2 Dynamical Decoupling : Bang Bang Phase Time Time

20 How to extend the hyperfine T 2? Dynamical Decoupling : Bang Bang /2 Phase Time Time

21 How to extend the hyperfine T 2? Dynamical Decoupling : Bang Bang /2 Phase Time Phase cor Time Time

22 How to extend the hyperfine T 2? /2 Phase Dynamical Decoupling : Bang Bang Time Phase cor Time Phase Time Time

23 How to extend the hyperfine T 2? Dynamical Decoupling : Bang Bang /2 Phase Time Time A sequence of -pulses refocuses the coupling to the environment. What happens with photon echo based protocols and larger bandwidths? Optimal RF sequence?

24 How to extend the hyperfine T 2? Dynamical decoupling in Pr:LaWO

25 La 2 (WO4) 3 :Pr 3+ I=5/2 (100 % abundance) Low site symmetry Ground state hyperfine transitions: T1 = 16 s T2 (hyperfin) = 250 µs EIT, Spin Hamiltonian, ZEFOZ effect shown/determined P. Goldner et al. PRB 2007, 2009, 2011, PRA 2009, J.Phys. B

26 Photon Echo Memory Extending storage time in the ms range Excitation pulse Rephasing pulse Photon echo Excitation pulse Transfer pulses Time Rephasing pulse Photon echo Dynamical decoupling Time RF rephasing pulses 26

27 RF Sequences? Compensate for slow changes in the environment z z z Series of π pulses CP sequence y y y Pulse errors x x z z z x Series of π-δ pulses loss of coherence y y y x x x z z z Series of ±(π-δ) pulses coherence preserved CPMG2 sequence y y y x x x 27

28 Studied RF Sequences 2 RF pulses sequence: τ/2 - π - τ - π - τ/2 CP sequence: [τ/2 - π - τ - π - τ/2] N CPMG2 sequence: [τ/2 - π - τ - (-π) - τ/2] N Preserving arbitrary initial phases KDD sequence: [KDD 0 KDD π/2 - KDD 0 - KDD π/2 ] N KDD φ = [τ/2 - π π/6+ φ - τ - π φ - τ - π π/2+φ - τ - π φ - τ - π π/6+ φ - τ/2 ] 28 Souza et al, PRL 2011

29 Optical to Spin Transfer in Pr 3+ :La2(WO4)3 Input: 500 ns Transfer: 1 µs RF pulses: 5 µs Rephasing RF pulses Output Rephasing Input Transfer Transfer Detection gate 29

30 Storage Times 30 µs Retrieval efficiency Storage time CPMG2 T2 = 8.8 ms KDD T2 = 1.3 ms 2 RF T2 = 250 µs Storage time (ms)

31 Coherent Raman Scattering Initial coherence created by a RF pulse 31

32 Relative Optical Phase 1 CP 3ms 1 a 1 b T T T RF rephasing pulses Time 32 M. Lovric et al arxiv:

33 Relative Optical Phase 1 1 a +2 b 2 CP 3ms 2 1b a T T T Time RF rephasing pulses 33 M. Lovric et al arxiv:

34 Relative Optical Phase 1 1 a +2 b 2 CP 3ms 2 1b a T T T Time RF rephasing pulses Relative optical phase (degrees) 34 M. Lovric et al arxiv:

35 Conclusion Extension of hyperfine T 2 by Dynamical Decoupling on two different systems Tm : YAG (B 0) Dynamical decoupling increase spin coherence lifetime from 1.1ms up to 230 ms nearly 220 times Model with good agreement with experiment Pr: LAWO (B=0) 20 ms storage time achieved on a 2 MHz absorption line Dynamical decoupling increases storage time by nearly 40 times Relative optical phases preserved 35

36 Thank you for your attention! LAC LCMCP Funding: ANR (RAMACO), EU (QUREP, CIPRIS) 36

37

38

39 QM QM QM QM QM QM S S S S S S

40 Quantum Memories Requirements High fidelity released photon quantum state identical to stored one decoherence, added noise High efficiency probability of releasing a photon after storage 1 reabsorption Long storage time 1 10 ms (only secret key transmission: 1 b/s) Large bandwidth high rate photon pair sources (100 MHz) Multimode storage storing and measuring many photons improves data rate

41 Spectral Tailoring Long population lifetimes for hyperfine levels (16 s) "permanent" structure Signal absorption 2 MHz 41

42 Transfer efficiency OTSS 97.5% compared to TPPE OTSS 0.45 % compared to input pulse 42

43

44

45 Storage Times 30 µs Storage time CPMG2 T2 = 8.8 ms CP T2 = 8.8 ms KDD T2 = 1.3 ms 2 RF T2 = 250 µs 45

46

47 Dynamical Decoupling, Theory Vs Experiment CPMG

48 Minimize ihn? Magnetic Field M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (2012) Spin sublevel splitting per Tesla Maximum or minimum?

49 Minimize ihn? Magnetic Field Spin sublevel splitting Rabi frequency Vs B [100] =54.8 et =45

50 Minimize ihn? Magnetic Field =54.8 et =45 Bext = 1T Expected : Γ Inh spin ~15kHz Γ Inh spin ~100kHz

51 c c Transmission I max 50 % I max 0 t M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (2012)

52 c c Transmission Pompage optique I max 50 % I max 0 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (2012)

53 c c Transmission I max 50 % I max Pulse RF 0 /2 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (201

54 c c Transmission I max 50 % I max Pulse RF 0 /2 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (201

55 c c Transmission Population probe I max 50 % I max 0 Pulse RF /2 /2 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (201

56 Dynamical decoupling in Tm:YAG 3 H 4 (0) m I =1/2 m I =-1/2 Large oscillator strength Well known crystal growth 793 nm 27 Al 3+ nuclear spin H 6 (0) B=0 B 0 m I =1/2 m I =-1/2 large anisotropy of magnetic gyromagnetic tensor xx = zz =20 MHz/T yy = 400Mhz/T Γ Inh spin ~500kHz M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (2012)

57 Spin echo RF Pulse /2 /2 Theoritical model c t >> c c = 172 µs = 3 khz T 2 =1.01ms

58 How to extend the hyperfine T 2? Dynamical decoupling in Pr:LaWO Dynamical decoupling in Tm:YAG

59 Dynamical decoupling in Tm:YAG M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, (2012) CPMG T 2 =230 ms 220 time increase T 2 =1.01 ms

60 Long optical storage in a rare earth doped crystal using dynamical decoupling Marko Lovrić 1, Dieter Suter 1, Alban Ferrier 2, Philippe Goldner 2 1 Technische Universität Dortmund Fachbereich Physik Dortmund, Germany 2 Condensed Matter Chemistry Laboratory Chimie-Paristech CNRS UPMC Paris, France LPHYS 2012, July 2012, Calgary, Canada

61 Rare Earth Doped Crystals Energy (cm -1 ) µs - 1 ms 100 µs - 10 ms Hyperfine levels Rare earth ions provide a quantum light matter interface through optical transitions Optical coherence can be transferred to nuclear spins (I 0 - hyperfine levels) Hyperfine T2 longer Long storage time for quantum memories 61

62 Storage times of Optical Memories Pr 3+ :Y2SiO5 EIT: several seconds!! (Longdell et al, PRL 2005, G. Heinze et al. CIPRIS meeting 2012: 7.5 s) Hyperfine T2: 500 µs Spins decoupled by magnetic field (static) + RF pulses (dynamic) Low bandwidth (10 khz) AFC: 20 µs (M. Afzelius et al. PRL 2010) No hyperfine rephasing Larger bandwidth (2 MHz) What happens with photon echo based protocols allowing larger bandwidths? Optimal dynamical decoupling? 62

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin QuReP Quantum Repeaters for Long Distance Fibre-Based Quantum Communication Rob Thew Coordinator: Nicolas Gisin 1. Direct transmission Photon source Alice 2. Entanglement distribution: α Goal is to distribute

More information

Efficient storage at telecom wavelength for optical quantum memory

Efficient storage at telecom wavelength for optical quantum memory Efficient storage at telecom wavelength for optical quantum memory Julian Dajczgewand Jean-Louis Le Gouët Anne Louchet-Chauvet Thierry Chanelière Collaboration with: Philippe Goldner's group Laboratoire

More information

Quantum Repeaters and Memories

Quantum Repeaters and Memories Quantum Repeaters and Memories Nicolas Gisin and Mikael Afzelius Group of Applied Physics Geneva University, Switzerland Quantum Repeaters Quantum memories 1 click Quantum Entanglement 1 QKD over 307 km

More information

PROJECT FINAL REPORT

PROJECT FINAL REPORT PROJECT FINAL REPORT Grant Agreement number: 247743 Project acronym: QUREP Project title: Quantum Repeaters for Long Distance Fibre-Based Quantum Communication Funding Scheme: ICT-2009.3.8 Organic Photonics

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 **

S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 ** Short cycle pulse sequence for dynamical decoupling of local fields and dipole-dipole interactions S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 ** 1 Quantum Center, Kazan National Research Technical University,

More information

Quantum gates in rare-earth-ion doped crystals

Quantum gates in rare-earth-ion doped crystals Quantum gates in rare-earth-ion doped crystals Atia Amari, Brian Julsgaard Stefan Kröll, Lars Rippe Andreas Walther, Yan Ying Knut och Alice Wallenbergs Stiftelse Outline Rare-earth-ion doped crystals

More information

Quantum applications and spin off discoveries in rare earth crystals

Quantum applications and spin off discoveries in rare earth crystals Quantum applications and spin off discoveries in rare earth crystals Stefan Kröll Dept. of Physics, Lund University Knut och Alice Wallenbergs Stiftelse Funded by the European Union Rare earth doped crystals

More information

arxiv: v1 [quant-ph] 3 Oct 2008

arxiv: v1 [quant-ph] 3 Oct 2008 A solid state light-matter interface at the single photon level Hugues de Riedmatten, Mikael Afzelius, Matthias U. Staudt, Christoph Simon, and Nicolas Gisin Group of Applied Physics, University of Geneva,

More information

Quantum Repeaters. Hugues de Riedmatten

Quantum Repeaters. Hugues de Riedmatten Quantum Repeaters Hugues de Riedmatten ICFO-The Institute of Photonic Sciences ICREA- Catalan Institute for Research and Advanced studies Tutorial, QCRYPT 2015, Tokyo ICFO-The Institute of Photonic Sciences

More information

Optical Rephasing Techniques with Rare Earth Ion Dopants for Applications in Quantum Information Science

Optical Rephasing Techniques with Rare Earth Ion Dopants for Applications in Quantum Information Science Optical Rephasing Techniques with Rare Earth Ion Dopants for Applications in Quantum Information Science PATRICK MATANGARO LEDINGHAM A thesis submitted for the degree of Doctor of Philosophy at the University

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Quantum Communication

Quantum Communication Quantum Communication Nicolas Gisin, Hugo Zbinden, Mikael Afzelius Group of Applied Physics Geneva University, Switzerland Nonlocal Secret Randomness Quantum Key Distribution Quantum Memories and Repeaters

More information

Pulse techniques for decoupling qubits

Pulse techniques for decoupling qubits Pulse techniques for decoupling qubits from noise: experimental tests Steve Lyon, Princeton EE Alexei Tyryshkin, Shyam Shankar, Forrest Bradbury, Jianhua He, John Morton Bang-bang decoupling 31 P nuclear

More information

arxiv: v2 [quant-ph] 26 Apr 2018

arxiv: v2 [quant-ph] 26 Apr 2018 Coherence time of over a second in a telecom-compatible quantum memory storage material Miloš Rančić, 1, Morgan P. Hedges, Rose L. Ahlefeldt, 1 and Matthew J. Sellars 1 1 Centre for Quantum Computation

More information

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

Multimode quantum memory based on atomic frequency combs

Multimode quantum memory based on atomic frequency combs PHYSICAL REVIEW A 79, 052329 2009 Multimode quantum memory based on atomic frequency combs Mikael Afzelius,* Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin Group of Applied Physics, University

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Initial experiments concerning quantum information processing in rare-earth-ion doped crystals

Initial experiments concerning quantum information processing in rare-earth-ion doped crystals Initial experiments concerning quantum information processing in rare-earth-ion doped crystals M. Nilsson *, L. Levin, N. Ohlsson, T. Christiansson and S. Kröll Atomic Physics, Lund Institute of Technology,

More information

Ligand isotope structure of the optical 7 F 0 \ 5 D 0 transition in EuCl 3 6H 2 O

Ligand isotope structure of the optical 7 F 0 \ 5 D 0 transition in EuCl 3 6H 2 O PHYSICAL REVIEW B 8, 256 29 Ligand isotope structure of the optical 7 F \ 5 D transition in EuCl 3 6H 2 O R. L. Ahlefeldt, A. Smith, and M. J. Sellars Laser Physics Centre, Research School of Physics and

More information

Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning

Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning 1 June 1999 Ž. Optics Communications 164 1999 129 136 www.elsevier.comrlocateroptcom Full length article Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum memory development and new slow light applications in rare-earth-iondoped crystals

Quantum memory development and new slow light applications in rare-earth-iondoped crystals Quantum memory development and new slow light applications in rare-earth-iondoped crystals Li, Qian Published: 2018-01-01 Document Version Publisher's PDF, also known as Version of record Link to publication

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS Laboratoire Kastler Brossel A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) A. Dantan, E. Giacobino, M. Pinard (UPMC, Paris) NUCLEAR SPINS HAVE LONG RELAXATION

More information

arxiv: v3 [quant-ph] 10 Nov 2010

arxiv: v3 [quant-ph] 10 Nov 2010 Quantum Storage of Photonic Entanglement in a Crystal Christoph Clausen, Imam Usmani, Félix Bussières, Nicolas Sangouard, Mikael Afzelius, Hugues de Riedmatten, and Nicolas Gisin Group of Applied Physics,

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin M. Loretz, T. Rosskopf, C. L. Degen Department of Physics, ETH Zurich, Schafmattstrasse 6, 8093 Zurich,

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Quantum Communication with Atomic Ensembles

Quantum Communication with Atomic Ensembles Quantum Communication with Atomic Ensembles Julien Laurat jlaurat@caltech.edu C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble Caltech Quantum Optics FRISNO 2007, February 12, 2007

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid J.J Londell, E. Fravel, M.J. Sellars and N.B. Manson, Phys. Rev. Lett. 95 063601 (2005)

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85 Amrozia Shaheen Electromagnetically induced transparency The concept of EIT was first given by Harris et al in 1990. When a strong coupling laser

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5

Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5 Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5 S. R. Hastings-Simon, B. Lauritzen, M. U. Stau, J. L. M. van Mechelen, 2 C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin Group of Applied Physics, University

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Side resonances and metastable excited state of NV - center in diamond

Side resonances and metastable excited state of NV - center in diamond Side resonances and metastable excited state of NV - center in diamond Alexander Ivanov 1 and Alexei Ivanov 1 1 Immanuel Kant Baltic Federal University, Nevskogo 14, 236041 Kaliningrad, Russia. aivanov023@gmail.com,

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Nuclear spin control in diamond. Lily Childress Bates College

Nuclear spin control in diamond. Lily Childress Bates College Nuclear spin control in diamond Lily Childress Bates College nanomri 2010 Hyperfine structure of the NV center: Excited state? Ground state m s = ±1 m s = 0 H = S + gµ S 2 z B z r s r r + S A N I N + S

More information

NV Centers in Quantum Information Technology!

NV Centers in Quantum Information Technology! NV Centers in Quantum Information Technology! De-Coherence Protection & Teleportation! Brennan MacDonald-de Neeve, Florian Ott, and Leo Spiegel! The NV Center! Point Defect in Diamond! Interesting Physics

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida Optical and Photonic Glasses : Rare Earth Doped Glasses I Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Rare-earth doped glasses The lanthanide

More information

[TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid

[TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid [TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid Byoung S. Ham, 1, Philip R. Hemmer, 2 Myung K. Kim, 3 and Selim M. Shahriar 1 1 Research

More information

arxiv: v1 [quant-ph] 7 May 2012

arxiv: v1 [quant-ph] 7 May 2012 Temporally multiplexed storage of images in a Gradient Echo Memory arxiv:1205.1495v1 [quant-ph] 7 May 2012 Quentin Glorieux*, Jeremy B. Clark, Alberto M. Marino, Zhifan Zhou, and Paul D. Lett Quantum Measurement

More information

Quantum Feedback Stabilized Solid-State Emitters

Quantum Feedback Stabilized Solid-State Emitters FOPS 2015 Breckenridge, Colorado Quantum Feedback Stabilized Solid-State Emitters Alexander Carmele, Julia Kabuss, Sven Hein, Franz Schulze, and Andreas Knorr Technische Universität Berlin August 7, 2015

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Manipulating Single Atoms

Manipulating Single Atoms Manipulating Single Atoms MESUMA 2004 Dresden, 14.10.2004, 09:45 Universität Bonn D. Meschede Institut für Angewandte Physik Overview 1. A Deterministic Source of Single Neutral Atoms 2. Inverting MRI

More information

Rydberg atoms: excitation, interactions, trapping

Rydberg atoms: excitation, interactions, trapping Rydberg atoms: excitation, interactions, trapping Mark Saffman I: Coherent excitation of Rydberg states II: Rydberg atom interactions III: Coherence properties of ground and Rydberg atom traps 1: Coherent

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko

Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko School of Electronic Engineering, Moscow Institute of Electronics and Mathematics, Higher School of Economics

More information

Microwave Control of the Interaction Between Two Optical Photons. David Szwer 09/09/ / 40

Microwave Control of the Interaction Between Two Optical Photons. David Szwer 09/09/ / 40 Microwave Control of the Interaction Between Two Optical Photons David Szwer 09/09/2013 1 / 40 Introduction Photon-photon interaction is weak David Szwer 09/09/2013 2 / 40 Introduction Photon-photon interaction

More information

Slow light using spectral hole burning in a Tm 3+ -doped yttrium-aluminum-garnet crystal

Slow light using spectral hole burning in a Tm 3+ -doped yttrium-aluminum-garnet crystal PHYSICAL REVIEW A 79, 063844 2009 Slow light using spectral hole burning in a Tm 3+ -doped yttrium-aluminum-garnet crystal R. Lauro,* T. Chanelière, and J. L. Le Gouët Laboratoire Aimé Cotton, Université

More information

Axion Detection With NMR

Axion Detection With NMR PRD 84 (2011) arxiv:1101.2691 + to appear Axion Detection With NMR Peter Graham Stanford with Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov Dark Matter Motivation two of the best candidates:

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

arxiv:quant-ph/ v3 17 Nov 2003

arxiv:quant-ph/ v3 17 Nov 2003 Stationary Pulses of Light in an Atomic Medium M. Bajcsy 1,2, A. S. Zibrov 1,3,4 and M. D. Lukin 1 1 Physics Department, Harvard University, Cambridge, MA 02138, USA 2 Division of Engineering and Applied

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

QUANTUM CONTROL OF COLD ATOMS USING MICROWAVES

QUANTUM CONTROL OF COLD ATOMS USING MICROWAVES MSc in Photonics Universitat Politècnica de Catalunya (UPC) Universitat Autònoma de Barcelona (UAB) Universitat de Barcelona (UB) Institut de Ciències Fotòniques (ICFO) PHOTONICSBCN http://www.photonicsbcn.eu

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories Jeongwan Jin 1, Joshua A. Slater 1, Erhan Saglamyurek 1, Neil Sinclair 1, Mathew George, Raimund

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information