Ion trap quantum processor

Size: px
Start display at page:

Download "Ion trap quantum processor"

Transcription

1 Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s motion A CCD camera reads out the ion`s quantum state

2 Experimental setup Fluorescence detection by CCD camera photomultiplier atomic beam Photo multiplier CCD camera oven Laser beams for: Vacuum pump photoionization cooling quantum state manipulation fluorescence excitation

3 Quantum jumps: spectroscopy with quantized fluorescence P D monitor metastable level weak transition absorption and emission cause fluorescence steps (digital quantum jump signal) S S Quantum jump technique Electron shelving technique Observation of quantum jumps: D Nagourney et al., PRL 56,2797 (1986), Sauter et al., PRL 57,1696 (1986), Bergquist et al., PRL 57,1699 (1986)

4 Electron shelving for quantum state detection P1/2 1. Initialization in a pure quantum state D5/2 τ =1s Quantum state Fluorescence manipulation detection 40 SS1/21/2 Ca+ 2. Quantum state manipulation on S1/2 D5/2 transition 3. Quantum state measurement by fluorescence detection One ion : Fluorescence histogram 8 7 D5/2 state S1/2 state 6 50 experiments / s 5 4 Repeat experiments times counts per 2 ms

5 Electron shelving for quantum state detection P1/2 D5/2 Fluorescence detection S1/2 Two ions: Spatially resolved detection with CCD camera: 1. Initialization in a pure quantum state 2. Quantum state manipulation on S1/2 D5/2 transition 3. Quantum state measurement by fluorescence detection 5µm 50 experiments / s Repeat experiments times

6 Quantum harmonical oscillator Extension of the ground state: Size of the wave packet << wavelength of visible light Energy scale of interest: harmonic trap

7 Laser ion interactions harmonic trap... 2 level atom e joint energy levels e,1 e,0 e,2 g,2 g,1 g g,0 Approximations: Ion: Trap: Electronic structure of the ion approximated by two level system (laser is (near ) resonant and couples only two levels) Only a single harmonic oscillator taken into account

8 External degree of freedom: ion motion harmonic trap... 2 level atom joint energy levels

9 A closer look at the excitation spectrum (3 ions) (red / lower) motional sidebands carrier transition (blue / upper) motional sidebands Laser detuning at 729 nm (MHz)

10

11 Sideband absorption spectra % g r o u n d s ta t e p o p u la t io n a fte r D o p p le r c o o lin g 0.8 n z = 1.7 a fte r s id e b a n d c o o lin g D P P D D e tu n in g δ ω ( M H z ) red sideband D e tu n in g δ ω ( M H z ) blue sideband

12 Coherent excitation on the sideband Blue sideband pulses: coupled system D,n 1 D,n... D,n 1... S,n 1 S,n S,n 1 Entanglement between internal and motional state! D state population

13 Single qubit operations Arbitrary qubit rotations: Laser slightly detuned from carrier resonance or: (z rotations by off resonant laser beam creating ac Stark shifts) Concatenation of two pulses with rotation axis in equatorial plane Gate time : 1 10 µs D state population Coherence time : 2 3 ms limited by magnetic field fluctuations laser frequency fluctuations (laser linewidth δν<100 Hz)

14 Addressing the qubits Paul trap 0.6 Excitation coherent manipulation of qubits electro optic deflector dichroic beamsplitter Fluorescence detection CCD Deflector Voltage (V) 8 10 inter ion distance: ~ 4 µm addressing waist: ~ 2 µm < 0.1% intensity on neighbouring ions

15 Pulse sequence: Generation of Bell states

16 Generation of Bell states Pulse sequence: Ion 1: π/2, blue sideband

17 Generation of Bell states Pulse sequence: Ion 1: π/2, blue sideband Ion 2: π, carrier

18 Generation of Bell states Pulse sequence: Ion 1: π/2, blue sideband Ion 2: π, carrier Ion 2: π, blue sideband

19 Bell state analysis Fluorescence detection with CCD camera: Coherent superposition or incoherent mixture? What is the relative phase of the superposition? Ψ+ Measurement of the density matrix: SS SD DS DD DD DS SD SS

20 Obtaining a single qubits density matrix (a naïve persons point of view) A measurement yields the z component of the Bloch vector => Diagonal of the density matrix Rotation around the x or the y axis prior to the measurement yields the phase information of the qubit. => coherences of the density matrix

21 Bell state reconstruction F=0.91 SS SD DS DD SD SS DS DD SS SD DS DD SD SS DS DD

22 Phase gate CNOT Both, the phase gate as well the CNOT gate can be converted into each other with single qubit operations. Together with the three single qubit gates, we can implement any unitary operation!

23 Quantum gate proposals with trapped ions...allows the realization of a universal quantum computer! Some other gate proposals by: Cirac & Zoller Mølmer & Sørensen, Milburn Jonathan, Plenio & Knight Geometric phases Leibfried & Wineland

24 Cirac Zoller two ion phase gate 1 2 D, 0 S, 0 ion 1 motion ion 2 S,D 0 S,D SWAP D,1 S,1 0

25 Cirac Zoller two ion phase gate 1 2 Phase gate using the motion and the target bit. ion 1 motion ion 2 S,D 0 S,D SWAP 0 Z

26 Cirac Zoller two ion phase gate 1 2 D, 0 S, 0 ion 1 motion ion 2 S,D 0 S,D SWAP SWAP Z D,1 S,1 0

27 Cirac Zoller two ion phase gate 1 2 Phase gate using the motion and the target bit. ion 1 motion ion 2 S,D 0 S,D 0 Z

28 Cirac Zoller phase gate: the key step D,1 D,0 S,1 S,0 A 2π pulse is applied to only one of ion (crystal)s states => only one states acquires a phase factor of 1. An additional Zeeman level can be used as the auxilary state. => gate is sensitive to magnetic field fluctuations!

29 How do you do with just a two level system??

30 Phase gate Composite 2π rotation:

31 A phase gate with 4 pulses (2π rotation) R(, ) R1, 2 R1 2,0 R1, 2 R on S, 0 2,0 D,1

32 A single ion composite phase gate: Experiment state preparation S,0, then application of phase gate pulse sequence π / 2 π / 2 π φ=π /2 ϕ=0 φ=0 ϕ=0 φ=0 π φ=π /2 ϕ=π / D5/2 excitation Time (µs)

33 Population of S,1> D,2> remains unaffected R(, ) R1 2, 2 R1,0 R1 2, 2 R1,

34 Testing the phase of the phase gate 0,S> π Phase gate 2 1 π (5) % 0.9 D5/2 excitation Time (µs)

35 Phase gate with starting in D,1> π π Blue Phase gate 2 π 2 1 D5/2 excitation Time (µs)

36 Cirac Zoller two ion controlled NOT operation ion 1 motion ion 2 S,D 0 S,D pulse sequence: ion 1 ion 2 SWAP SWAP control qubit 0 target qubit

37 Cirac Zoller CNOT gate operation SS SS DS DD SD SD DD DS

38 Measured truth table of Cirac Zoller CNOT operation input output

39 Superposition as input to CNOT gate prepare gate output detect

40 Error budget for Cirac Zoller CNOT Error source Magnitude Population loss Laser frequency noise (Phase coherence) ~ 100 Hz (FWHM) ~ 10 %!!! <n>bus < 0.02 <n>spec = 6 2% 0.4 % Laser intensity noise 1 % peak to peak 0.1 % Addressing error (can be corrected for partially) 5 % in Rabi frequency (at neighbouring ion) 3% Off resonant excitations for tgate = 600 µs 4% Laser detuning error ~ 500 Hz (FWHM) ~2% Total November 2002 ~ 20 % Residual thermal excitation

41 Error budget for Cirac Zoller CNOT Error source Magnitude Population loss Laser frequency noise (Phase coherence) ~ 100 Hz (FWHM) ~ 10 %!!! <n>bus < 0.02 <n>spec = 6 2% 0.4 % Laser intensity noise 1 % peak to peak 0.1 % Addressing error (can be corrected for partially) 5 % in Rabi frequency (at neighbouring ion) 3% Off resonant excitations for tgate = 600 µs 4% Laser detuning error ~ 500 Hz (FWHM) ~2% Total November 2002 ~ 20 % Residual thermal excitation

42 Testing the phase of the phase gate 0,S> π Phase gate 2 1 π (5) % 0.9 D5/2 excitation Time (µs)

43 Ramsey experiment Time Quantum algorithms can be viewed as generalized Ramsey experiments! Laser detuning (khz)

44 Phase coherence Gaussian modell yields a coherence time of 0.9 ms Now (in 2005) 2 ms are more typical.

45 Test of the motional coherence 0,S 1,S 1,D 0,D 1,S 0,S π/2 1,D 0,D uv light 0,D 1,D π 1,S 0,S π π/2 0,D 0,S 1,D 1,S ±π/2 Excitation to D5/2 state Time (ms) Time (ms) After 60 ms still 50 % contrast!

46 Error budget for Cirac Zoller CNOT Error source Magnitude Population loss Laser frequency noise (Phase coherence) ~ 100 Hz (FWHM) ~ 10 %!!! <n>bus < 0.02 <n>spec = 6 2% 0.4 % Laser intensity noise 1 % peak to peak 0.1 % Addressing error (can be corrected for partially) 5 % in Rabi frequency (at neighbouring ion) 3% Off resonant excitations for tgate = 600 µs 4% Laser detuning error ~ 500 Hz (FWHM) ~2% Total November 2002 ~ 20 % Residual thermal excitation

47 Intensity noise => Laser intensity noise: 0.03

48 Error budget for Cirac Zoller CNOT Error source Magnitude Population loss Laser frequency noise (Phase coherence) ~ 100 Hz (FWHM) ~ 10 %!!! <n>bus < 0.02 <n>spec = 6 2% 0.4 % Laser intensity noise 1 % peak to peak 0.1 % Addressing error (can be corrected for partially) 5 % in Rabi frequency (at neighbouring ion) 3% Off resonant excitations for tgate = 600 µs 4% Laser detuning error ~ 500 Hz (FWHM) ~2% Total November 2002 ~ 20 % Residual thermal excitation

49 Qubit Rotations with two ions Pulse sequence: carrier pulse error = Ineighbour neighbour = target Itarget θ, φ=0 adressing error 5% 2 excitation 1 0 typical adressing errors are in the range of 3 5% 0 4π 8π 12π rotation angle θ 16π 20π

50 Error budget for Cirac Zoller CNOT Error source Magnitude Population loss Laser frequency noise (Phase coherence) ~ 100 Hz (FWHM) ~ 10 %!!! <n>bus < 0.02 <n>spec = 6 2% 0.4 % Laser intensity noise 1 % peak to peak 0.1 % Addressing error (can be corrected for partially) 5 % in Rabi frequency (at neighbouring ion) 3% Off resonant excitations for tgate = 600 µs 4% Laser detuning error ~ 500 Hz (FWHM) ~2% Total November 2002 ~ 20 % Residual thermal excitation

51 Off resonant carrier excitation D,0 S,0 Problem: D,1 S,1 S D e x c ita t io n p r o b a b ilit y ω z = 2π 1.8 MHz carrier = 2π 1.09 MHz AC Stark shifts off resonant (carrier) excitation (spectator modes) in te r a c tio n t im e ( µ s ) A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt Kaler, R. Blatt, Phys. Rev. A 62, (2000)

52 Computation method 0,D 1,D Solve master equation! Schrödinger equation for 1 ion: 0,S 0,D 0,S 1,S 1,D iη 0 C1 C1 0 Δ iη 0 0 C2 d C2 i = dt C 3 0 iη 0 ωt 1 η 2 0 C 3 C4 C4 iη η2 0 Δ ωt η 0.03: Lamb-Dicke-parameter Δ: Laser detuning / 1,S 0,S 0,D 1,S 1,D n: Number of phonons / ωt : Trap frequency Hilbert space: 0,1,2 S,D,Daux 1 S,D,Daux 2 (27 dimensions)

53 Error budget for Cirac Zoller CNOT Error source Magnitude Population loss Laser frequency noise (Phase coherence) ~ 100 Hz (FWHM) ~ 10 %!!! <n>bus < 0.02 <n>spec = 6 2% 0.4 % Laser intensity noise 1 % peak to peak 0.1 % Addressing error (can be corrected for partially) 5 % in Rabi frequency (at neighbouring ion) 3% Off resonant excitations for tgate = 600 µs 4% Laser detuning error ~ 500 Hz (FWHM) ~2% Total November 2002 ~ 20 % Residual thermal excitation

54 Summary of the complications of the Cirac Zoller approach the gate is slow (off resonant excitations) => sensitive to frequency fluctuations / deviations. the gate requires addressing => trap frequency needs to reduced Use other gate types which do not require addressing. the gate is sensitive to motional heating Not really a problem yet.

55 Scaling of this approach? Problems : Coupling strength between internal and motional states of a N ion string decreases as (momentum transfer from photon to ion string becomes more difficult) > Gate operation speed slows down More vibrational modes increase risk of spurious excitation of unwanted modes Distance between neighbouring ions decreases > addressing more difficult > Use flexible trap potentials to split long ion string into smaller segments and perform operations on these smaller strings

56 Scaling ion trap quantum computers Easy to have thousands of ions in a trap and to manipulate them individually but it is hard to control their interaction! The solutions: solution: Kielpinski, Monroe, Wineland Cirac, Zoller, Kimble, Mabuchi Tian, Blatt, Zoller

57 Idea #1: move the ions around D. Wineland, Boulder, USA Kieplinski et al, Nature 417, 709 (2002) accumulator control qubit target qubit

58 Segmented ion traps as scalable trap architecture (ideas pioneered by D. Wineland, NIST, and C. Monroe, Univ. Michigan) Segmented trap electrode allow to transport ions and to split ion strings State of the art: Transport of ions 1 mm within 50 µs no motional heating Splitting of two ion crystal tseparation 200 µs small heating n 1 Architecture for a large scale ion trap quantum computer, D. Kielpinski et al, Nature 417, 709 (2002) Transport of quantum states, M. Rowe et al, quant ph/

59 or use a head ion I. Cirac und P. Zoller, Nature 404, 579 (2000) quantum optics and nano technology: scalability m o tio n head ta rg e t p u s h in g la s e r

60 Idea #2: coupling via photons P3/2 y vit Ca D5/2 S1/2 Transfer quantum state of the ion to cavity photon: qubit interface π/2 Create superposition photon state (STIRAP) Detect cavity output and ion state Choose coupling g by STIRAP detuning qubit 1 photonic channel J. I. Cirac et al., PRL 78, 3221 (1997) A. Kuhn et al., PRL 89, (2002) Controlled ion cavity interaction qubit 2

61 Idea #3: coupling via image charges

62 Idea #3: coupling via image charges + +

63 Idea #3: coupling via image charges + + Coupling in the khz range requires small traps (~20 µm) Very small currents can be measured => non invasive probe for conductors (superconductors) Connect to solid state qubits

64 Quantum information processing: Which ion is best? Ions with optical transition to metastable level: 40Ca+,88Sr+,172Yb+ P1/2 D5/2 τ 1 s τ =1s Sideband cooling 40 + Doppler cooling Qubit levels: S1/2, D5/2 Qubit transition: Quadrupole transition S1/2 D5/2 Ca SS1/21/2 Ions with hyperfine structure: 9Be+, 43Ca+,111Cd+, F +1 P1/2 S1/2 F F F Qubit levels: Hyperfine levels of ground state S1/2 Qubit transition: Raman transition between hyperfine levels

65 Disadvantage of optical quantum bits Ions with optical transition to metastable level: 40Ca+,88Sr+,172Yb+ P1/2 e> Doppler detection cooling SS1/2 g> 1/2 optical qubit metastable D5/2 τ =1s optical Sideband transition cooling 40 + Ca stable qubit manipulation requires ultrastable laser Coherence time limited by laser linewidth Ions with hyperfine structure: 9Be+, 43Ca+,111Cd+, hyperfine qubit detection e> g> hyperfine ground states qubit manipulation with microwaves or lasers

66 Hyperfine qubit + microwaves Single qubit manipulation with microwaves: detection hyperfine ground states well established technique (NMR), long coherence times Problems: Addressing of single qubit in ion string difficult Coupling between internal and motional states: Coupling constant neglegible!

67 Hyperfine qubit + microwaves + magn. field gradient? (F. Mintert, C. Wunderlich, PRL 87, (2001)) Apply magnetic field gradient to obtain state dependent potential: Coupling constant: (x0: size of ground state) Example: requires strong field gradients

68 Hyperfine qubit + Raman transitions Coupling between hyperfine states by Raman transition detection hyperfine ground states If both Raman beams are derived from the same laser, the laser line width ΓL is not important as long as ΓL <<. f1 f2 (acousto opt. modulators) Raman beam generation

69 Raman transitions: Three level system Laser frequencies Rabi frequencies Detuning from upper state After adiabatic elimination of upper level: Coupling between ground states Rabi frequency of Raman process

70 Raman transitions: Further effects Laser frequencies Rabi frequencies Detuning from upper state 2. The energies of states 1>, 2> are light shifted because of the interaction with 3> by In case of unequal light shifts, the transition frequency between 1> and 2> depends on the laser intensity. (laser intensity noise > decoherence) 3. Population in state 3> : photon scattering rate choose large detuning

71 200 GHz Raman transitions in real ions Be+ (used in Wineland group, Boulder) 1.25 GHz 313 nm 9 Raman beams tuned to frequency within P1/2 fine structure << fine structure: Constructive interference between P1/2 and P3/2virtual levels strong Raman coupling >> fine structure: Destructive interference between P1/2 and P3/2virtual levels weak Raman coupling, but longer hyperfine coherence times (only Raman scattering destroys hyperfine coherence, R. Ozeri et al, PRL 95, (2005))

72 Raman transitions in real ions 111 Cd+ Monroe group Univ. Michigan simple level structure (Raman beam generation technically challenging) P.Lee et al, Opt. Lett. 28, 1582 (2003) 43 Ca+ Steane group Oxford many levels more convenient laser wave lengths A. Steane, Appl. Phys. B 64, 623 (1997) Innsbruck see also: D. Wineland et al. Phil. Trans. R. Soc. Lond. A 361, 1349 (2003)

73 Raman transitions: motional sidebands Same Hamiltonian as for two level system, with Raman Rabi frequency Raman detuning from hyperfine transition difference of Raman laser phases effective Lamb Dicke parameter

74 Raman transitions: motional sidebands effective Lamb Dicke parameter copropagating Raman beams for excitation of carrier transitions (no sideband transitions) counterpropagating Raman beams for efficient excitation of sideband transitions or beams from different directions

75 Decoherence issues hyperfine (Raman) qubit optical qubit relative laser path length fluctuations (stable setup, insensitive gate operations) Raman photons scattered from virtual level (choose ion with big fine structure) laser frequency noise (ultrastable laser) decay of metastable state (long lived state) magnetic field fluctuations (screen magnetic fields, use field independent transition) fluctuations of control parameters

76 Entangling interactions: controlled phase gate Use Raman beams that couple the motional states (but not internal states) Raman beams form (moving) standing wave: spatial light shifts E P3/2 F P1/2 x F F = 2 F n=3 n=3 State dependent optical dipole force n=0 n=0 S1/2

77 Stretch mode excitation no differential force differential force differential force no differential force

78 Controlled phase gate Time evolution operator: Choose α(t ) such that

79 Phase space picture Boulder group : Gate fidelity: Gate time: 97% 7 µs (ca. 25/νCOM) D. Leibfried et al., Nature 422, 414 (2003) Theory: Milburn, Fortschr. Phys. 48, 9(2000) Sørensen&Mølmer

80 Geometric phase gate 1) coherent displacement along closed path will shift phase of the quantum state, phase independent of details like speed of traversal, etc. 2) the sign and magnitude of coherent displacements can be made internal state dependent (see e.g. Science 272, 1131 (1996)) no ground state cooling no individual addressing robust against small deformations of the path relative phase of successive displacements irrelevant G. J. Milburn et al., Fortschr. Physik 48, 801 (2000). X. Wang et al., Phys. Rev. Lett. 86, 3907 (2001).

81 D. Wineland (NIST) : Alumina / gold trap

82 C. Monroe (Michigan) : GaAs GaAlAs trap

83 Ideal Cirac Zoller phase gate ( J. I. Cirac und P. Zoller, PRL (1995)) 0, SD aux 0, DS 0, SS qubits , DS 0, SD π 1, SS 0, SS red sideband π pulse on ion #1 0,SS 0,SD 0,DS 0,DD 1, SD aux 2π 1, SD 1, SS 0, DS 0, SS red sideband 2π pulse on ion #2 0,SS 0,SD i 1,SS i 1,SD 0,SS 0,SD i 1, SS i 1,SD 1, DS π 1, SS red sideband π pulse on ion #1 0, SS 0, SD 0, DS 0,DD

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert Which technology? 000 001 010 011 Quantum processor 100 011 110 011 Cavity QED NMR Superconducting qubits Quantum dots Trapped atoms/ions A. Ekert Which technology? 000 001 010 011 Quantum processor 100

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Towards Quantum Computation with Trapped Ions

Towards Quantum Computation with Trapped Ions Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Quantum information processing with trapped atoms

Quantum information processing with trapped atoms Quantum information processing with trapped atoms Introduction Fundamentals: ion iontraps, quantum bits, bits, quantum gates Implementations: 2-qubit gates, teleportation, More recent, more advanced, Jürgen

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Dietrich Leibfried Time and Frequency Division National Institute of Standards and Technology Boulder, CO USA The remaining QIP challenge DiVincenzo requirements:

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Quantum teleportation

Quantum teleportation Quantum teleportation "Deterministic quantum teleportation with atoms", M. Riebe et al., Nature 429, 734 (2004). "Deterministic quantum teleportation of atomic qubits", M. D. Barrett et al., Nature 429,

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum information processing and cavity QED experiments with trapped Ca + ions Quantum information processing and cavity QED experiments with trapped Ca + ions S. Gulde, H. Häffner, M. Riebe, G. Lancaster, A. Mundt, A. Kreuter, C. Russo, C. Becher, J. Eschner, F. Schmidt-Kaler, I.

More information

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS 1 QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS C. F. ROOS, M. CHWALLA, T. MONZ, P. SCHINDLER, K. KIM, M. RIEBE, and R. BLATT Institut für Experimentalphysik, Universität Innsbruck,

More information

Zero-point cooling and low heating of trapped 111 Cd + ions

Zero-point cooling and low heating of trapped 111 Cd + ions PHYSICAL REVIEW A 70, 043408 (2004) Zero-point cooling and low heating of trapped 111 Cd + ions L. Deslauriers, P. C. Haljan, P. J. Lee, K-A. Brickman, B. B. Blinov, M. J. Madsen, and C. Monroe FOCUS Center,

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

arxiv:quant-ph/ v1 29 Apr 2003

arxiv:quant-ph/ v1 29 Apr 2003 Atomic Qubit Manipulations with an Electro-Optic Modulator P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. arxiv:quant-ph/0304188v1 29 Apr 2003 Miller, D. L. Moehring, D. Stick,

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR International Journal of Modern Physics B c World Scientific Publishing Company A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR PAUL BLACKBURN MIGUEL ORSZAG Facultad de Física, Pontificia Universidad Católica

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Quantum information processing with trapped Ca+ ions

Quantum information processing with trapped Ca+ ions r[ THE ROYAL 10.1098/rsta.2003.1206 *Je. SOCIETY Quantum information processing with trapped Ca+ ions BY S. GULDE1, H. HAFFNER1, M. RIEBE1, G. LANCASTER1, C. BECHER1, J. ESCHNER1, F. SCHMIDT-KALER1, I.

More information

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap H. C. Nägerl,* Ch. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner,

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

The trapped-ion qubit tool box. Roee Ozeri

The trapped-ion qubit tool box. Roee Ozeri The trapped-ion qubit tool box Contemporary Physics, 5, 531-550 (011) Roee Ozeri Weizmann Institute of Science Rehovot, 76100, Israel ozeri@weizmann.ac.il Physical Implementation of a quantum computer

More information

Trapped ion quantum control. Jonathan Home IDEAS league school,

Trapped ion quantum control. Jonathan Home  IDEAS league school, Trapped ion quantum control Jonathan Home www.tiqi.ethz.ch IDEAS league school, 11.09.2015 Lectures Ken Brown, IDEAS League school, Sweden 1) Basics (review). Measurement, Preparation, Coherent control

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Cold Ions and their Applications for Quantum Computing and Frequency Standards Cold Ions and their Applications for Quantum Computing and Frequency Standards Trapping Ions Cooling Ions Superposition and Entanglement Ferdinand Schmidt-Kaler Institute for Quantum Information Processing

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University Ion Traps for Quantum Computing Ann Arbor Garching Innsbruck Boulder SQuInT summer school June, 2003 Brian King Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/king_b_h.html

More information

arxiv: v1 [quant-ph] 14 Aug 2013

arxiv: v1 [quant-ph] 14 Aug 2013 A quantum information processor with trapped ions arxiv:1308.3096v1 [quant-ph] 14 Aug 2013 Contents Philipp Schindler 1, Daniel Nigg 1, Thomas Monz 1, Julio T. Barreiro 1, Esteban Martinez 1, Shannon X.

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin «Demonstration of a small programmable quantum computer» Philip Rhyner, Colin Kälin 14.05.2018 Introduction PART 1: Trapped ion quantum computers Ion trap States, Initialization and Measurement One- and

More information

Kenneth Brown, Georgia Tech

Kenneth Brown, Georgia Tech Kenneth Brown, Georgia Tech Choice of Bits 100 BC 1949 AD 1949 AD 1822 (1991) AD 2013 AD Hearing Aid Images from www.hearingaidmuseum.com Choices of Qubits Waterloo Bristol Wisconsin NMR Photons Neutral

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

arxiv: v2 [quant-ph] 9 Jan 2009

arxiv: v2 [quant-ph] 9 Jan 2009 Large Scale Quantum Computation in an Anharmonic Linear Ion Trap G.-D. Lin 1, S.-L. Zhu 2,1, R. Islam 3, K. Kim 3, M.-S. Chang 3, S. Korenblit 3, C. Monroe 3, and L.-M. Duan 1 1 FOCUS Center and MCTP,

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Quantum gates in rare-earth-ion doped crystals

Quantum gates in rare-earth-ion doped crystals Quantum gates in rare-earth-ion doped crystals Atia Amari, Brian Julsgaard Stefan Kröll, Lars Rippe Andreas Walther, Yan Ying Knut och Alice Wallenbergs Stiftelse Outline Rare-earth-ion doped crystals

More information

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And Operation of the Trapped

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Rydberg atoms: excitation, interactions, trapping

Rydberg atoms: excitation, interactions, trapping Rydberg atoms: excitation, interactions, trapping Mark Saffman I: Coherent excitation of Rydberg states II: Rydberg atom interactions III: Coherence properties of ground and Rydberg atom traps 1: Coherent

More information

A central problem in cryptography: the key distribution problem.

A central problem in cryptography: the key distribution problem. Scientific American 314, 48-55 (2016) A central problem in cryptography: the key distribution problem. Mathematics solution: public key cryptography. Public-key cryptography relies on the computational

More information

Simultaneous cooling of axial vibrational modes in a linear ion trap

Simultaneous cooling of axial vibrational modes in a linear ion trap Simultaneous cooling of axial vibrational modes in a linear ion trap Christof Wunderlich* National University of Ireland, Maynooth, Maynooth Co. Kildare, Ireland Giovanna Morigi Abteilung Quantenphysik,

More information

arxiv: v1 [quant-ph] 25 Sep 2008

arxiv: v1 [quant-ph] 25 Sep 2008 Quantum computing with trapped ions H. Häffner a,b,c,d C. F. Roos a,b R. Blatt a,b arxiv:0809.4368v1 [quant-ph] 25 Sep 2008 a Institut für Quantenoptik und Quanteninformation, Österreichische Akademie

More information

One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser

One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser Commun. Theor. Phys. 56 (2011) 263 267 Vol. 56, No. 2, August 15, 2011 One-Step Generation of Scalable Multiparticle Entanglement for Hot ons Driven by a Standing-Wave Laser YANG Wen-Xing ( ), 1, and CHEN

More information

Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO

Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO NIST- Boulder ions: J. Amini (PostDoc, Berkeley) J. C. Bergquist (NIST) S. Bickman (PostDoc, Yale) & M. Biercuk

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Errors in trapped-ion quantum gates due to spontaneous photon scattering

Errors in trapped-ion quantum gates due to spontaneous photon scattering Errors in trapped-ion quantum gates due to spontaneous photon scattering R. Ozeri,* W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin,

More information

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps QuAMP 2013 Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps Kim Lake University of Sussex Talk Outline Ion Trapping and Ytterbium

More information

Scalable creation of multi-particle entanglement

Scalable creation of multi-particle entanglement Scalable creation of multi-particle entanglement Status quantum processor F. Schmidt-Kaler Spin-qubits in single ions, and www.quantenbit.de Quantum register reconfigurations Quantum-enhanced magnetometry

More information

Quantum Computing with Trapped Ion Hyperfine Qubits

Quantum Computing with Trapped Ion Hyperfine Qubits Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Quantum Computing with Trapped Ion Hyperfine Qubits B. B. Blinov, 1,3 D. Leibfried, 2 C. Monroe, 1 and D. J. Wineland 2 Received January

More information

arxiv:quant-ph/ v2 26 Jan 1999

arxiv:quant-ph/ v2 26 Jan 1999 Quantum computation with ions in thermal motion Anders Sørensen and Klaus Mølmer Institute of Physics and Astronomy, University of Aarhus DK-8 Århus C arxiv:quant-ph/9839v 6 Jan 999 We propose an implementation

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Manipulating Single Atoms

Manipulating Single Atoms Manipulating Single Atoms MESUMA 2004 Dresden, 14.10.2004, 09:45 Universität Bonn D. Meschede Institut für Angewandte Physik Overview 1. A Deterministic Source of Single Neutral Atoms 2. Inverting MRI

More information

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates Prof Andrew Steane April 17, 2008 Weeks 1 3 Trinity term. The 1st class will be introductory. To prepare for it, please do

More information

Precision measurements in ion traps using slowly moving standing waves

Precision measurements in ion traps using slowly moving standing waves Appl Phys B 2012) 107:1061 1067 DOI 10.1007/s00340-011-4740-8 Precision measurements in ion traps using slowly moving standing waves A. Walther U. Poschinger K. Singer F. Schmidt-Kaler Received: 3 May

More information

Limits of the separated-path Ramsey atom interferometer

Limits of the separated-path Ramsey atom interferometer J. Phys. B: At. Mol. Opt. Phys. 3 (1999) 5033 5045. Printed in the UK PII: S0953-4075(99)06844-3 Limits of the separated-path Ramsey atom interferometer R M Godun,CLWebb, P D Featonby, M B d Arcy, M K

More information

Quantum computation with trapped ions and atoms

Quantum computation with trapped ions and atoms Quantum computation with trapped ions and atoms F. Rohde (1), J. Eschner (1,2) (1) ICFO Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona), Spain (2) Experimentalphysik,

More information

Ion-trap quantum information processing: experimental status

Ion-trap quantum information processing: experimental status Ion-trap quantum information processing: experimental status Author Kielpinski, David Published 2008 Journal Title Frontiers of Physics in China DOI https://doi.org/10.1007/s11467-008-0034-y Copyright

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Generation and classification of robust remote symmetric Dicke states

Generation and classification of robust remote symmetric Dicke states Vol 17 No 10, October 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(10)/3739-05 Chinese Physics B and IOP Publishing Ltd Generation and classification of robust remote symmetric Dicke states Zhu Yan-Wu(

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

High-Fidelity Universal Gate Set for 9 Be + Ion Qubits

High-Fidelity Universal Gate Set for 9 Be + Ion Qubits High-Fidelity Universal Gate Set for 9 Be + Ion Qubits J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland National Institute

More information

Raman Sideband Cooling and Coherent Manipulation of Trapped Ions

Raman Sideband Cooling and Coherent Manipulation of Trapped Ions Raman Sideband Cooling and Coherent Manipulation of Trapped Ions A thesis submitted for the degree of Doctor of Philosophy 0.7 0.6 Fraction of ions shelved 0.5 0.4 0.3 0.2 1000 800 600 400 200 0 200 400

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

arxiv:quant-ph/ v1 7 Sep 2001

arxiv:quant-ph/ v1 7 Sep 2001 From Spectral Relaxation to Quantified Decoherence Chr. Balzer, Th. Hannemann, D. Reiß, W. Neuhauser, P.E. Toschek, and Chr. Wunderlich Institut für Laser-Physik, Universität Hamburg, Jungiusstr. 9, D-0355

More information

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01.

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01. Europe PMC Funders Group Author Manuscript Published in final edited form as: Nat Photonics. 2013 March ; 7(3): 219 222. doi:10.1038/nphoton.2012.358. Quantum-state transfer from an ion to a photon A.

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

arxiv: v1 [quant-ph] 14 Mar 2014

arxiv: v1 [quant-ph] 14 Mar 2014 Modular Entanglement of Atomic Qubits using both Photons and Phonons D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe Joint Quantum Institute, University of Maryland

More information

Controlled Coherent Excitations in a Single. Cadmium Ion with an Ultrafast Laser

Controlled Coherent Excitations in a Single. Cadmium Ion with an Ultrafast Laser Controlled Coherent Excitations in a Single Cadmium Ion with an Ultrafast Laser by Rudolph Nicolas Kohn Jr. A senior honors thesis submitted to the Department of Physics of the University of Michigan College

More information

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011 Quantum Information NV Centers in Diamond General Introduction Zlatko Minev & Nate Earnest April 2011 QIP & QM & NVD Outline Interest in Qubits. Why? Quantum Information Motivation Qubit vs Bit Sqrt(Not)

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Entanglement of Two Trapped-Ion Spin Qubits

Entanglement of Two Trapped-Ion Spin Qubits Entanglement of Two Trapped-Ion Spin Qubits A thesis submitted for the degree of Doctor of Philosophy Jonathan Home Hilary Term 26 Linacre College Oxford Abstract Entanglement of two trapped-ion spin qubits.

More information

arxiv:quant-ph/ v1 16 Mar 2007

arxiv:quant-ph/ v1 16 Mar 2007 Deterministic loading of individual atoms to a high-finesse optical cavity Kevin M. Fortier, Soo Y. Kim, Michael J. Gibbons, Peyman Ahmadi, and Michael S. Chapman 1 1 School of Physics, Georgia Institute

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Raman spectroscopy of single atoms

Raman spectroscopy of single atoms Institut für Angewandte Physik der Universität Bonn Wegelerstrasse 8 53115 Bonn Raman spectroscopy of single atoms von Igor Dotsenko Diplomarbeit in Physik angefertigt im Institut für Angewandte Physik

More information

arxiv:atom-ph/ v1 15 Mar 1996

arxiv:atom-ph/ v1 15 Mar 1996 Quantum Reservoir Engineering J.F. Poyatos, J.I. Cirac, and P. Zoller Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A 6020 Innsbruck, Austria. arxiv:atom-ph/9603002v1 15

More information

Supplemental Information for Single-photon bus connecting spin-wave quantum memories

Supplemental Information for Single-photon bus connecting spin-wave quantum memories NPHYS-007-05-0053 Supplemental Information for Single-photon bus connecting spin-wave quantum memories Jonathan Simon, 1, Haruka Tanji, 1, Saikat Ghosh, and Vladan Vuletić 1 Department of Physics, Harvard

More information

Demonstration of a Fundamental Quantum Logic Gate

Demonstration of a Fundamental Quantum Logic Gate VOLUME 75, NUMBER 5 PH YS ICAL REVIEW LETTERS 18 DECEMBER 1995 Demonstration of a Fundamental Quantum Logic Gate C. Monroe, D. M. Meekhof, B.E. King, W. M. Itano, and D. J. Wineland National Institute

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information