Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Size: px
Start display at page:

Download "Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates"

Transcription

1 Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland In collaboration with: Alessio Recati Serena Fagnocchi and Roberto Balbinot Alessandro Fabbri Nicolas Pavloff ( BEC CNR-INFM, Trento, Italy ( Università di Bologna, Italy ( IFIC - Univ. de Valencia and CSIC, Spain ( Université Paris-Sud, Orsay, France

2 The main experimental challenges horizon region Sub-sonic flow c1 > v0 Super-sonic flow v0>c2 v0 σx Numerical simulation of BEC dynamics using Wigner-MC method start from uniform condensate in motion at v0 switch on horizon at a given time t=0 and go to black-hole regime c1 > v0 > c2 + minimize deterministic disturbances, e.g. Landau processes (in super-sonic region and soliton shedding during and after switch-on concentrate on effect of quantum fluctuations + isolate (thermal Hawking emission from background phonons (also thermal

3 (i How to create a clean black hole? From: W. Guerin et al., PRL 97, (2006 Out-coupled atom laser beam: uniform density and velocity v0 Atom-atom interaction constant initially uniform and equal to g1 Within σt around t=0: modulation g1 g2 and V1 V2 in x>0 region only via: Feshbach resonance (g depends on applied B or modify transverse confinement Step in nonlinear coupling constant g step in sound speed. Black-hole formed if c1>v0>c2, thickness σx of crossover region determines surface gravity Chemical potential jump to be compensated by external potential V1+ ng1=v2+ ng2 allows to avoid Cerenkov-Landau phonon emission, soliton shedding

4 (ii How to detect Hawking radiation? Density-density correlation function: ': n0 x1 n 0 x ' 1:( G 0 x, x ' 1= ' n0 x1( ' n0 x ' 1( 021 Prediction of gravitational analogy: entanglement in Hawking pairs gives peculiar Hawking signal in G(2 long-range in/out density correlations G20 x, x ' 1 = 1 $ 16 4 c 1 c 2 [0 c1 c 2 x x' $2 k cosh, 2 c 1 $v v$c 2. n c1$v 10v$c 21 k 2 R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, IC, PRA 78, ( ]

5 (2 Experimental measurements of G (x,x' Fully coherent BEC: G(2(x,x' = 1 Atomic HB-T: positive correlation due to thermal Bose atoms (negative for fermions Quantum correlations after collision of two BECs revealed Noise correlations in TOF picture after expansion from lattice Correlations in products of molecular dissociation from molecular BEC Bose Fermi Jeltes et al., Nature 445, 402 (2007 Single-shot image Spatial correlation of noise Rom et al., Nature 444, 733 (2006

6 Atom counting at the single atom level Thermal atom beam Coherent atom laser beam Poissonian statistics A. Öttl, et al. Phys. Rev. Lett. 95, (2005

7 The numerical method: Wigner-Monte Carlo At t=0, homogeneous system: Condensate wavefunction in plane-wave state Quantum + thermal fluctuations in plane wave Bogoliubov modes Gaussian αk, variance < αk 2 > = [2 tanh(ek / 2kBT]-1 ½ for T x,t=01=e i k0 x [. n0,# 0 uk e i k x 2 k,v k e$i k x 2 *k 1 k ] At later times: evolution under GPE!2 2 2 i! "t 50 x1=$ "x 50 x1,v 0 x 150 x1, g 0 x1 %50 x1% 50 x 1 2m Expectation values of observables: Average over noise provides symmetrically-ordered observables 1 / / x ' 1,50 / x'1 5 / 0 x 1( Q '5 * 0 x 1 50 x ' 1(W = ' 5 0 x Equivalent to Bogoliubov, but can explore longer-time dynamics A. Sinatra, C. Lobo, Y. Castin, J. Phys. B 35, 3599 (2002

8 The movie!!!

9 Density plot of : (n ξ1 * [ G(2(x,x' 1 ] Density plot of : (n ξ1 * [ G(2 (x,x' 1 ] (2 Density plot of : (n ξ1 * [ G (x,x' 1 ] IC, S.Fagnocchi, A.Recati, R.Balbinot, A.Fabbri, New J. Phys. 10, (2008

10 The numerical observations (ii Dynamical Casimir emission Density plot of : (n ξ1 * [ G(2(x,x' 1 ] (i Many-body antibunching (iii Hawking in / out (iv Hawking in / in IC, S.Fagnocchi, A.Recati, R.Balbinot, A.Fabbri, New J. Phys. 10, (2008

11 Feature (i : Many-body antibunching present at all times due to repulsive interactions almost unaffected by flow See e.g.: M. Naraschewski and R. J. Glauber, PRA 59, 4595 (1999

12 Feature (ii: Dynamical Casimir emission of phonons Fringes parallel to main diagonal intensity depends on speed of switch-on only in x>0 region, move away in time do not depend on flow pattern, also present in homogeneous system Physical explanation: in x>0 region g1 g2 within short time σt : non-adiabatic time modulation of Bogoliubov vacuum phonon pair emission at t=0, from all points x>0 fringes depend on x-x' : quantum correlations in counter-propagating pairs correlations propagate away at speed 2cs See also: M. Kramer et al. PRA 71, (R (2005; K. Staliunas el al., PRL 89, (2002.

13 Feature (iii : The Hawking signal Negative correlation tongue extending from the horizon x=x'=0 long-range in/out density correlation which disappears if both c1,2<v0 length grows linearly in t peak height, FWHM constant in t slope v 0 $c 2 v 0$c1 agrees with theory + pairs emitted at all t from horizon + propagate at sound speed length cuts of G(2(x,x' - 1 peak FWHM growing time t

14 Quantitative analysis Prediction of QFT in curved space-time Proportional to emission temperature Proportional to surface gravity Analog model prediction quantitatively correct in hydrodynamic limit ξ1 / σx «1

15 Features (iii,iv : More on the Hawking signal Two parametric Hawking processes: in/out: vacuum α + β (feature iii in/in: vacuum β + γ (feature iv Energy conserved only if sub/super-sonic Momentum provided by horizon Slope of tongues v 0 $c 2 &$1 v 0 $c 1, v 0$c 2 1 & v 0,c 2 5

16 Effect of an initial T>0 Hawking signal remains visible also for initial T comparable to TH Stimulated Hawking emission Extra tongues (v due to partial scattering of thermal phonons on horizon distinguishable from Hawking emission by different slope with Black Hole 0v 0 $c1 1 0v 0,c2 1 without Black Hole

17 How I physically understand Hawking radiation Bogoliubov dispersion on sub- and super-sonic sides Incident Reflected Transmitted Anomalous ransmitted Incident plane wave reflected, transmitted and anomalous transmitted Anomalous transmitted wavepacket only exists if black hole c1 > v0 > c2 Similar phenomenology to classical hydrodynamics experiments

18 (Classical wavepacket dynamics

19 Hawking radiation : parametric emission of phonon pairs Inc Inc2 Refl Input-output formalism of quantum optics An. inc. Tr An. tr a refl ainc atr =M ainc2 aan.tr aan.inc. aan.inc., aan.tr. creation operators for Bogoliubov ghost branch zero-point fluctuations in incident beam becomes real transmitted particles ' a an.tr. aan.tr. (=%M 3,3%2 ' aan.inc. a an.inc. (,- energy conserved thanks to super-sonic flow; momentum provided by horizon See also: Leonhardt & Philbin, cond-mat/arxiv: and Macher-Parentani's talks.

20 Why correlations? Quantum correlations in emitted pairs: 'a refl. aan.tr. (= M 1,3 M *3,3 'a an.inc. a an.inc. ( 'a tr. a an.tr. (=M 2,3 M 3,3 ' a an.inc. a an.inc. ( * two-mode squeezing, thermal statistics when looking at one component simultaneous emission at all times t at horizon position propagate from the horizon with group velocity x x' visible in density correlation function as signal peaked on lines = v g1 v g2 slopes determined by c1, v0, c2: + in-out: vg1=v0-c1, vg2=v0-c2 + in-in: vg2=v0+c2, vg2=v0-c2 v 0 $c 2 &$1 v 0 $c 1 v 0 $c 2 1 & v 0,c 2 5

21 Outlook Analog Hawking radiation of phonons from acoustic black-hole numerically observed via density correlation function microscopic simulations of condensate dynamics parametric emission of entangled phonon pairs from the horizon propagating phonons responsible for correlated density fluctuations Hawking signal easily distinguished from other processes (e.g. Landau-Cerenkov, background thermal phonons appreciable signal intensity for realistic parameters, worst enemy: atomic shot noise trans-planckian, high-k modes in horizon region under control R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, IC, PRA 78, (2008 IC, S. Fagnocchi, A. Recati, R. Balbinot, A. Fabbri, New J. Phys. 10, (2008

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

Numerical experiments of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates

Numerical experiments of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates Numerical experiments of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates Iacopo Carusotto BEC CNR INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

The exciting adventure of condensed-matter and optical analogs of gravitational systems

The exciting adventure of condensed-matter and optical analogs of gravitational systems The exciting adventure of condensed-matter and optical analogs of gravitational systems The tale of Navier and Stokes meeting Heisenberg at Hawking's place Iacopo Carusotto INO-CNR BEC Center, Trento,

More information

le LPTMS en Bretagne... photo extraite du site

le LPTMS en Bretagne... photo extraite du site le LPTMS en Bretagne... 1 photo extraite du site http://www.chateau-du-val.com le LPTMS en Bretagne... 1 2 Quantum signature of analog Hawking radiation in momentum space Nicolas Pavloff LPTMS, CNRS, Univ.

More information

NONLOCAL DENSITY CORRELATIONS AS A SIGNATURE OF HAWKING RADIATION FROM ACOUSTIC BLACK HOLES IN BOSE-EINSTEIN CONDENSATES: THE ANALOGY Part 2

NONLOCAL DENSITY CORRELATIONS AS A SIGNATURE OF HAWKING RADIATION FROM ACOUSTIC BLACK HOLES IN BOSE-EINSTEIN CONDENSATES: THE ANALOGY Part 2 NONLOCAL DENSITY CORRELATIONS AS A SIGNATURE OF HAWKING RADIATION FROM ACOUSTIC BLACK HOLES IN BOSE-EINSTEIN CONDENSATES: THE ANALOGY Part 2 Paul R. Anderson Wake Forest University Collaborators: Roberto

More information

The analog of the Hawking effect in BECs

The analog of the Hawking effect in BECs Journal of Physics: Conference Series PAPER OPEN ACCESS The analog of the Hawking effect in BECs To cite this article: Alessandro Fabbri 2015 J. Phys.: Conf. Ser. 600 012008 View the article online for

More information

The phonon dispersion relation of a Bose-Einstein condensate

The phonon dispersion relation of a Bose-Einstein condensate The phonon dispersion relation of a Bose-Einstein condensate I. Shammass, 1 S. Rinott, 2 A. Berkovitz, 2 R. Schley, 2 and J. Steinhauer 2 1 Department of Condensed Matter Physics, Weizmann Institute of

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Observation of quantum Hawking radiation and its entanglement in an analogue black hole

Observation of quantum Hawking radiation and its entanglement in an analogue black hole Observation of quantum Hawking radiation and its entanglement in an analogue black hole Jeff Steinhauer Department of Physics, Technion Israel Institute of Technology, Technion City, Haifa 32000, Israel

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

arxiv: v2 [cond-mat.other] 24 Jun 2008

arxiv: v2 [cond-mat.other] 24 Jun 2008 arxiv:0803.0507v2 [cond-mat.other] 24 Jun 2008 Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates 1. Introduction Iacopo Carusotto 1, Serena Fagnocchi

More information

Spacetime analogue of Bose-Einstein condensates

Spacetime analogue of Bose-Einstein condensates Spacetime analogue of Bose-Einstein condensates Bogoliubov-de Gennes formulation Hideki ISHIHARA Osaka City Univ., JAPAN Y.Kurita, M.Kobayashi, T.Morinari, M.Tsubota, and H.I., Phys. Rev. A79, 043616 (2009)

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters BEC CNR-INFM and Università di Trento,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Questioning the recent observation of quantum Hawking radiation

Questioning the recent observation of quantum Hawking radiation Questioning the recent observation of quantum Hawking radiation Ulf Leonhardt Weizmann Institute of Science, Rehovot 761001, Israel arxiv:1609.03803v3 [gr-qc] 1 Apr 2018 April 3, 2018 Abstract A recent

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

No-hair and uniqueness results for analogue black holes

No-hair and uniqueness results for analogue black holes No-hair and uniqueness results for analogue black holes LPT Orsay, France April 25, 2016 [FM, Renaud Parentani, and Robin Zegers, PRD93 065039] Outline Introduction 1 Introduction 2 3 Introduction Hawking

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève ACOUSTIC BLACK HOLES MASSIMILIANO RINALDI Université de Genève OUTLINE Prelude: GR vs QM Hawking Radiation: a primer Acoustic Black Holes Hawking Radiation in Acoustic Black Holes Acoustic Black Holes

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

The meaning of superfluidity for polariton condensates

The meaning of superfluidity for polariton condensates The meaning of superfluidity for polariton condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters EPFL, Lausanne, Switzerland Cristiano Ciuti and Simon Pigeon MPQ, Univ.

More information

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati Quantum fluid phenomena with Microcavity Polaritons Alberto Bramati Quantum Optics Team: topics Quantum fluid phenomena in polariton gases An ideal system to study out of equilibrium quantum fluids Obstacle

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Emergent Horizons in the Laboratory

Emergent Horizons in the Laboratory Emergent Horizons in the Laboratory Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Emergent Horizons in the Laboratory p.1/26 Event Horizon Collapsing matter Singularity Light cones, light

More information

Quantum correlations and atomic speckle

Quantum correlations and atomic speckle Quantum correlations and atomic speckle S. S. Hodgman R. G. Dall A. G. Manning M. T. Johnsson K. G. H. Baldwin A. G. Truscott ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Alain Aspect, Adilet Imambekov, Vladimir Gritsev, Takuya Kitagawa,

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

BOSE-EINSTEIN CONDENSATION

BOSE-EINSTEIN CONDENSATION Research Center on BOSE-EINSTEIN CONDENSATION TRENTO, ITALY The BEC Center is a joint initiative of CNR - Istituto Nazionale di Ottica and Physics Department, University of Trento It is hosted by the Physics

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Hawking Radiation in Acoustic Black-Holes on an Ion Ring

Hawking Radiation in Acoustic Black-Holes on an Ion Ring Hawking Radiation in Acoustic Black-Holes on an Ion Ring Benni Reznik In collaboration with, B. Horstman, S. Fagnocchi, J. I. Cirac Towards the Observation of Hawking Radiation in Condensed Matter Systems.

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

On the partner particles for black-hole evaporation

On the partner particles for black-hole evaporation On the partner particles for black-hole evaporation Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen On the partner particles for black-hole evaporation p.1/12 Quantum Radiation Relativistic

More information

Bogoliubov quantum dynamics at T>=0 (even without a condensate)

Bogoliubov quantum dynamics at T>=0 (even without a condensate) Bogoliubov quantum dynamics at T>=0 (even without a condensate) Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw 1. Supersonic pair creation 2. Palaiseau BEC collision experiment 3.

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms

Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms Laurent Sanchez-Palencia Center for Theoretical Physics Ecole Polytechnique, CNRS, Univ. Paris-Saclay F-91128 Palaiseau,

More information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics C.W. Gardiner P. Zoller Quantum Nois e A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Quantum Simulators of Fundamental Physics

Quantum Simulators of Fundamental Physics Quantum Simulators of Fundamental Physics Silke Weinfurtner The University of Nottingham Sebastian Erne The University of Nottingham Theoretical Framework Fundamental Physical Processes Quantum Field Theory

More information

Quantum atom optics with Bose-Einstein condensates

Quantum atom optics with Bose-Einstein condensates Quantum atom optics with Bose-Einstein condensates Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland With particular thanks to: Chris Westbrook, Denis Boiron, J-C Jaskula, Alain

More information

New perspectives on classical field simulations of ultracold Bose gases

New perspectives on classical field simulations of ultracold Bose gases New perspectives on classical field simulations of ultracold Bose gases Piotr Deuar Joanna Pietraszewicz Tomasz Świsłocki Igor Nowicki Karolina Borek Institute of Physics, Polish Academy of Sciences, Warsaw,

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

Hawking radiation and universal horizons

Hawking radiation and universal horizons LPT Orsay, France June 23, 2015 Florent Michel and Renaud Parentani. Black hole radiation in the presence of a universal horizon. In: Phys. Rev. D 91 (12 2015), p. 124049 Hawking radiation in Lorentz-invariant

More information

Bose-Einstein condensates (Fock states): classical or quantum?

Bose-Einstein condensates (Fock states): classical or quantum? Bose-Einstein condensates (Fock states): classical or quantum? Does the phase of Bose-Einstein condensates exist before measurement? Quantum non-locality, macroscopic superpositions (QIMDS experiments))

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Studying strongly correlated few-fermion systems with ultracold atoms

Studying strongly correlated few-fermion systems with ultracold atoms Studying strongly correlated few-fermion systems with ultracold atoms Andrea Bergschneider Group of Selim Jochim Physikalisches Institut Universität Heidelberg Strongly correlated systems Taken from: http://www.chemistryexplained.com

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Non-equilibrium quantum many-body physics with optical systems

Non-equilibrium quantum many-body physics with optical systems Non-equilibrium quantum many-body physics with optical systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Many experimental signatures of polariton BEC 1 Narrowing of the momentum distribution

More information

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate PHYSICAL REVIEW A 67, 053607 2003 Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate M. Guilleumas 1 and L. P. Pitaevskii 2,3 1 Departament d Estructura i Constituents

More information

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D Author: Navarro Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain. Advisor: Bruno Juliá Díaz Abstract: We study different solutions and their stability for a two component

More information

Quantum Ghost Imaging by Measuring Reflected Photons

Quantum Ghost Imaging by Measuring Reflected Photons Copyright c 2008 ICCES ICCES, vol.8, no.3, pp.101-106 Quantum Ghost Imaging by Measuring Reflected Photons R. E. Meyers 1 and K. S. Deacon 1 Summary A new type of imaging, Quantum ghost imaging, is described

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals

Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals Correlated atom pairs in collisions of BECs: from nonclassical states to Bell test proposals Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw Experiment Chris Westbrook (Palaiaseau):

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Dynamical phase transition to the excitonic insulator state induced by an optical pulse

Dynamical phase transition to the excitonic insulator state induced by an optical pulse Founded: 1959 Gigantic magnetoresistence Nobel prize 2007, A. Fert Liquid crystals Nobel prize 1997, P.-G. de Gennes Organic superconductivity 1980, D. Jerome Dynamical phase transition to the citonic

More information

Optical analogues of the event horizon. Title. Friedrich König. New Frontiers in Physics

Optical analogues of the event horizon. Title. Friedrich König. New Frontiers in Physics Optical analogues of the event horizon Title Friedrich König New Frontiers in Physics 2014 St Andrews Quantum effects in astrophysics? Hawking radiation of black holes Black holes and event horizons Nation

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information