STAR: Space-Time Asymmetry Research

Size: px
Start display at page:

Download "STAR: Space-Time Asymmetry Research"

Transcription

1 STAR: Space-Time Asymmetry Research Testing Lorentz invariance in Low-earth orbit Shally Saraf for the Stanford STAR team October 14,

2 STAR Concept Science 1) Lorentz Invariance Violations 2) Velocity boost c dependence Kennedy-Thorndike Experiment 3) >100x state of the art Lipa, et. al. Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit arxiv: v1[gr-qc] Science & Technology on Small Satellites Education driven International collaborations Education 1) Graduate & Undergraduate 2) 3-5 year projects 3) Student led tasks Technology 1) Capable small satellite bus 180 kg, 185 W, secondary payload 2) Advanced frequency standards 3) Precision thermal control 2

3 STAR Collaboration Collaborating Institutions Main Contributions ALL Science and EP&O Ames Research Center PM, SE, I&T, and SM&A KACST Spacecraft and Launch Stanford University PI and Instruments to TRL 4 German Space Agency et al Instruments, Flight Clock JILA Instruments to TRL 4 Industrial Partner Flight Instrument Germany German Aerospace Center (DLR) ZARM & Bremen University Humboldt University, Berlin University of Konstanz Kingdom of Saudi Arabia King Abdulaziz City for Science and Technology (KACST) United States NASA Ames Research Center (ARC) Stanford University Joint Institute for Laboratory Astrophysics (JILA) University of California-Davis Industrial partner 3

4 STAR Quad Chart SCIENCE What is the nature of space-time? Is space isotropic? Is the speed of light isotropic? If not, what is its direction and location dependency? Payload to Optical cavities K enclosure I 2 clocks 2 Laser-based comparator BATC is payload consultant Mission design Circular sun-synchronous 650 km circular orbit 180 kg,150 W Launch year lifetime Class D Mission Management NASA Ames: PM, SE, SMA, Mission Operations Stanford: Science and Payload KACST: Spacecraft and Launch DLR: Payload Design & I 2 Clock ALL: Science & EPO 4

5 STAR Technology Advanced frequency standards Optical cavities Molecular clocks f f Hz nano Kelvin thermal control Thermal shields Control algorithms Optical thermometry T F T Inner shield Outer shield F Inner shield Outer shield STAR requires exquisite frequency standards and environmental control, order of magnitude better than current state-of-the-art 5

6 Measuring LIV HOW DOES ONE MEASURE CHANGES IN c? (1) By comparing the length of a rod (measured by light beam) to the rate of a ticking clock rod clock KT coefficient (function v INSTR ) (2) By comparing the length of two rods perpendicular to one another (both measured with a light beam) rod 1 rod 2 MM coefficient (function INSTR ) 6

7 STAR Conceptual Diagram 7

8 Why Measure c Invariance? Colladay and Kostelecky (1997) The natural scale for a fundamental theory including gravity is governed by the Planck mass M P, which is about 17 orders of magnitude greater than the electroweak scale m W associated with the standard model. This suggests that observable experimental signals from a fundamental theory might be expected to be suppressed by some power of the ratio: r m M W P ~ The STAR sensitivity could close the gap! 8

9 Kinematic approach to LIV Considers only light beams and ideal rods, clocks: If a laboratory is assumed to be moving at a velocity v relative to a preferred frame, the speed of light as a function of the angle relative to the velocity vector is given by c( )/c = 1 + (1/2 - b + )(v/c) 2 sin 2 + (b - a - 1) (v/c) 2 where a is the time dilation parameter, b is the Lorentz contraction parameter, and tests for transverse contraction. (SR: a = -1/2; b = 1/2; = 0) Michelson-Morley : -dependent term Kennedy-Thorndike : -independent term - Mansouri and Sexl (1977) Simple but incomplete! 9

10 Lorentz violations in the SME Subset of Lorentz and CPT violating Standard Model Extension (SME) - Colladay and Kostelecky Considers small violations that are potential remnants of Planck-scale physics - subset considers Lorentz-violating quantum electrodynamics - restricting to photon sector and renormalizable terms - reduces to Maxwell equations plus two Lorentz-violating terms: - one term CPT-odd(breaking), the other CPT-even(preserving) - CPT-odd term known to be very small from radio galaxy polarization data - CPT-even term less well-known Model has analogy with electrodynamics in a homogeneous anisotropic medium - has links to Mansouri and Sexl kinematics, and relates to THεμ -19 free parameters, 10 constrained by astrophysical observations - Optical cavities sensitive to other 9 parameters - Kostelecky and Mewes, 2002 Extended: Kostelecky & Mewes,

11 MM and KT as subsets of the SME highly simplified example (K&M 2009): rods and clocks have effective metrics with Lorentz violating parameters: c clock, c rod obtain b + - 1/2 = 7/12(c rod ) 00 a - b +1 = - 7/12(c rod ) 00-5/12 (c clock ) 00 (MM style) KT style) => KT measurements don t reduce to MM measurements except in special cases => MM and KT relate to the fermion sector (?) 11

12 LV species-dependent fields (experiments need to specify species involved) Turns out, precision length control of cavities is very hard and bulky. Can we use two narrow transitions and do KT? 12

13 First modern MM experiment Brillet and Hall, PRL

14 Improved MM experiment Crossed-cavity MM experiment Peters,

15 The problem with g What about Horizontal Accelerations? Horizontal expect a reduction but Observed Sensitivity ~ 1 x (Tilt effect linear in angle) Better? Airy Points? Vertical Max Sensitivity but Symmetry reduction ~200 x (Tilt effects only quadratic) There may be better cavity support ideas? 15

16 Frequency/acceleration sensitivity 10 MHz/ ms -2 a = 0.11 * L khz/ms khz/ms -2 a = 0.577* L a L 16

17 STAR mission characteristics ESPA compatible secondary payload on an EELV launch Circular sun-synchronous ~ 650 km orbit Launch year mission lifetime 17 17

18 Orbital Motion Sun Earth Sun-synchronous orbital motion of STAR instruments 18

19 STAR KT-Style measurement 19

20 Modern KT style test configuration clock based on length standard clock based on atomic transition beat measurement with varying laboratory velocity 20

21 Why KT in Space? Kennedy-Thorndike signal enhancement Signal modulated at satellite orbital variation ~1.5 hr Signal modulated at orbital velocity differences 7 km/s Diurnal Earth rotation signal < hr Yearly Earth orbital motion signal at hr Disturbance reduction Microgravity Seismic quietness Relaxed stress due to self weight Far away from time dependent gravity gradient noises KT Improvement in Space: Faster signal modulation 4 ( 16) Higher velocity modulation 20 to 30 Other considerations ~ 1 to 3 Net Overall Advantage

22 KT History KT coefficient History of KT measurements R.J. Kennedy E.M. Thorndike STAR Year 22

23 STAR schedule, cost and status Schedule Cost Three-year development Two-year operations Payload: ~ $ 50M Total Mission: ~ $140M Concept first proposed as a MOO 2008 SMEX Second proposal submitted in Review pointed out some weaknesses Science, TRL levels Current efforts: Bring instrument to TRL 5 Using internal resources Contributions from partners Mitigate weaknesses of 2011 proposal 23

24 STAR Optical Setup & Noise Budget Error Source KT MM Optical Cavity thermal expansion (0.1microK temp. stability, 10 9 CTE) Optical Cavity mirror thermal noise (loss < 10 6 ) Optical Cavity residual gas pressure Optical Cavity shot noise (locking) Optical Cavity satellite spin rate stability (Δω/ω < 0.025) Optical Cavity satellite pointing knowledge (0.5 deg) Total Molecular Clock N/A Frequency Shifter (comparator) Total Error at measurement frequency with 2 clocks Total Random Error after 2 year integration time (Δc/c) MARGIN 30% 70% 24

25 Optical cavity Key optical cavity parameters: L/L < at orbit and harmonics with 2 years of data L/L < at twice spin period with 2 years of data ULE cavity block (4 cavities@ 45 deg) Derived requirements: Expansion coefficient: < 10-9 per K Operating temperature: within 1 mk of expansion null (~ 15 C nom) External strain attenuation: > Stiffness: L/L < 10-9 per g, 3-axis Implied material: ULE glass Optical couplers Support structure Thermo- Mechanical isolators 25

26 Iodine Reference Vortrag > Autor > Dokumentname > Datum 26

27 Atomic reference Next steps: set up of a compact Iodine standard multi-pass cell baseplate made of Zerodur (for space- qualification and pointing stability) Using s.q. AI-Technology (HTWG Konstanz / EADS Astrium) Investigate resonantly enhanced interaction in a short cell (Stanford) Vortrag > Autor > Dokumentname > Datum 27

28 State of the art: Iodine vs. cavity Thermal noise floor of cavities STAR Orbital period Vortrag > Autor > Dokumentname > Datum 28

29 Thermal enclosure Main Requirements: Thermal stability Stress attenuation Launch and space compatible Thermal performance: Cavity L/L < (2 yr data) at: - orbital period and harmonics - twice spin period Derived requirements (2 yr average): Thermal stability of 10-8 K at orbit Thermal gradient ~ 10-9 K/cm at orbit Maintain cavities temperature to 1 mk Multi-can structure 29

30 Thermal modeling of enclosure 30

31 Strain attenuation model - FEA Estimated strain attenuation: > 10 3 per can Extrapolating to entire enclosure: > Exceeds requirement by x

32 Fundamental frequencies The first mode of the assembly was found to be 77 Hz First lateral mode: 77.6 Hz First axial mode: 93.9 Hz 32

33 Optical Coupling System Laser, Optical Bench Absolute Reference Length Reference Optical Fiber Function Box Laser, Optical Bench Absolute Reference Thermally Stabilized Fiber Conduit Control Electronics 33

34 STAR mission characteristics ESPA compatible secondary payload on an EELV launch Circular sun-synchronous ~ 650 km orbit Launch year mission lifetime 34

35 Optical cavity work at Stanford 1550nm 1064nm 35

36 Vibration insensitive optical cavities STRAIN DISTRIBUTION Zero relative displacement at the ends of the optics axis Static Load applied at the points marked on the perimeter 36

37 Iodine MTS setup at Stanford Arie & Byer, line R(56)32-0 is interesting Lock laser to the a 10 HFS Sub-doppler detection Modulation Transfer Spectroscopy (MTS) Natural Linewidth ~ 400KHz Broadened line < 1MHz Investigate narrower lines at ~516nm 37

38 Iodine setup at Stanford 38

39 CUBESAT concept for technology testing Motherboard, CPU, Radio 3U cube sat chassis PDH, counter boards Thermal enclosure for optics Spherical optical cavity Thermal enclosures for cavity Electrical power system w/ batteries (30 W hr) AOM x2 Cobolt nm laser Circulator Iodine cell (2cm long) Optical bench 39

40 ATOMIC REFERENCES FOR KT nominally isotropic systems: I 2, CO, C 2 H 2 etc very narrow linewidths -> excellent frequency stability relaxed environmental control relative to cavities access various LIV coefficients in fermion sector technical issue is making a beat note between two systems Femtosecond frequency combs could bridge the gap. - But to fly a frequency comb on a satellite is still a challenge.. 40

41 Lorentz Symmetry & Lorentz Violations STAR: Search for a Lorentz violation at the level of to A factor of 100 to 300 better than ground experiments Both orientation & velocity dependent violations LORENTZ SYMMETRY & LORENTZ VIOLATIONS Time dilation: equal clocks tick at different rates Length contraction: equal rods have different lengths Lorentz violations would exist outside of a universal preferred reference frame, the only frame in which c is truly isotropic 41

42 Questions? Other possibilities for violations: Birefringence of pulsed light Cosmic rays Spectroscopy of anti-matter Gamma ray dispersion Neutrino oscillations Spin dependent effects Kostelecky, Scientific American,

Lorentz invariance violations: Kostelecky, 2002

Lorentz invariance violations: Kostelecky, 2002 Lorentz invariance violations: Kostelecky, 2002 2 Kinematic approach to Lorentz invariance violations: Considers only light beams and ideal rods, clocks: If a laboratory is assumed to be moving at a velocity

More information

mstar: Space-Time Asymmetry Research

mstar: Space-Time Asymmetry Research mstar: Space-Time Asymmetry Research Testing Lorentz Invariance in Low-Earth Orbit Abdulaziz Alhussien for the mstar team November 15 th, 2013 1 Kinematic Approach to LIV Is the CMB a preferred frame?

More information

New Optical Tests of Relativity on Earth and in Space

New Optical Tests of Relativity on Earth and in Space New Optical Tests of Relativity on Earth and in Space Achim Peters 38th Recontres de Moriond, March 2003, Les Arcs, France Contents Motivation A modern Michelson-Morley experiment using cryogenic optical

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

Optical Cavity Tests of Lorentz Invariance

Optical Cavity Tests of Lorentz Invariance Light driven Nuclear-Particle physics and Cosmology 2017 (Pacifico Yokohama) April 20, 2017 Optical Cavity Tests of Lorentz Invariance Yuta Michimura Department of Physics, University of Tokyo H. Takeda,

More information

Space Time Asymmetry Research (STAR)

Space Time Asymmetry Research (STAR) Astro 2010 White Paper Space Time Asymmetry Research (STAR) Robert Byer, Sasha Buchman, John Lipa, and Ke-Xun Sun Stanford University John Hall JILA, NIST Abstract Special and General Relativity and the

More information

A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS

A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS S. HERRMANN, A. SENGER, K. MÖHLE, E. V. KOVALCHUK, A. PETERS Institut für Physik, Humboldt-Universität zu Berlin Hausvogteiplatz

More information

Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit

Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit J. A. Lipa, S. Buchman, S. Saraf, J. Zhou, A. Alfauwaz, J. Conklin, G. D. Cutler and R. L. Byer, Hansen Experimental Physics Laboratory,

More information

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth Towards a test of time dilation: Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth.07.008 /3 Outline Introduction: test theories for SRT Tools for modern test of time

More information

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

arxiv: v1 [hep-ph] 16 Aug 2012

arxiv: v1 [hep-ph] 16 Aug 2012 Low Energy Tests of Lorentz and CPT Violation Don Colladay 5800 Bay Shore Road, New College of Florida arxiv:1208.3474v1 [hep-ph] 16 Aug 2012 Abstract. An overview of the theoretical framework of the Standard

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

Clock based on nuclear spin precession spin-clock

Clock based on nuclear spin precession spin-clock Clock based on nuclear spin precession spin-clock signal (a.u.) detector t exp - T (G. D. Cates, et al., Phys. Rev. A 37, 877) T T T, field T, field 4 4R 75D B, z B, y B, x R 4 p B (ms ) T 00h Long T :

More information

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University Atomic magnetometers: new twists to the old story Michael Romalis Princeton University Outline K magnetometer Elimination of spin-exchange relaxation Experimental setup Magnetometer performance Theoretical

More information

Test of constancy of speed of light with rotating cryogenic optical resonators

Test of constancy of speed of light with rotating cryogenic optical resonators Test of constancy of speed of light with rotating cryogenic optical resonators P. Antonini, M. Okhapkin, E. Göklü,* and S. Schiller Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf,

More information

Space Flight Considerations for Precision Optical Instruments

Space Flight Considerations for Precision Optical Instruments Space Flight Considerations for Precision Optical Instruments M. Shao KISS workshop on Optical Freq Combs in Space Nov 2, 2015 2015 California Institute of Technology. Government sponsorship acknowledged

More information

HOLGER MÜLLER BIOGRAPHY. Research Area(s): Atomic, Molecular and Optical Physics ASSOCIATE PROFESSOR. Office: 301C LeConte

HOLGER MÜLLER BIOGRAPHY. Research Area(s): Atomic, Molecular and Optical Physics ASSOCIATE PROFESSOR. Office: 301C LeConte HOLGER MÜLLER ASSOCIATE PROFESSOR Office: 301C LeConte hm@berkeley.edu Main: (510) 664-4298 The Müller Group Back to Directory Research Area(s): Atomic, Molecular and Optical Physics BIOGRAPHY Holger Müller

More information

GG studies at TAS-I: state of the art

GG studies at TAS-I: state of the art GG studies at TAS-I: state of the art A. Anselmi INRIM, 24-10-2014 83230350-DOC-TAS-EN-002 GG@ThalesAleniaSpace! 1996 Early experiment concept presented to ESA HQ! Industrial support on satellite & drag-free

More information

Progress towards a high dimensional stability telescope for gravitational wave detection

Progress towards a high dimensional stability telescope for gravitational wave detection Progress towards a high dimensional stability telescope for gravitational wave detection Shannon Sankar shannon.r.sankar@nasa.gov USRA/CRESST/GSFC Jeffrey Livas (PI), Peter Blake, Joseph Howard, Garrett

More information

The 2015 Data Tables for Lorentz and CPT Violation

The 2015 Data Tables for Lorentz and CPT Violation The 2015 Data Tables for Lorentz and CPT Violation Reviews of Modern Physics 83, 11 (2011) update: arxiv:0801.0287v8 (January 2015) Kostelecký, NR Second IUCSS Summer School on the Lorentz- and CPT-violating

More information

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC LISA mission design Guido Mueller University of Florida APS April Meeting, Jan 30th, 2017, Washington DC 1 L3 from ESA s perspective 2013: Selection of L3 Science Theme by ESA The Gravitational Universe

More information

Astrophysics & Gravitational Physics with the LISA Mission

Astrophysics & Gravitational Physics with the LISA Mission Astrophysics & Gravitational Physics with the LISA Mission Peter L. Bender JILA, University of Colorado, and NIST Workshop on Robotic Science from the Moon Boulder, CO 5-6 October, 2010 LISA Overview The

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

Unit- 1 Theory of Relativity

Unit- 1 Theory of Relativity Unit- 1 Theory of Relativity Frame of Reference The Michelson-Morley Experiment Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Experimental

More information

Advanced accelerometer/gradiometer concepts based on atom interferometry

Advanced accelerometer/gradiometer concepts based on atom interferometry Advanced accelerometer/gradiometer concepts based on atom interferometry Malte Schmidt, Alexander Senger, Matthias Hauth, Sebastian Grede, Christian Freier, Achim Peters Humboldt-Universität zu Berlin

More information

The Continuing Relevance of Lorentz Ether Theory in the Age of Relativity

The Continuing Relevance of Lorentz Ether Theory in the Age of Relativity The Continuing Relevance of Lorentz Ether Theory in the Age of Relativity Doug Marett M.Sc. Presentation to the NPA-18 Conference, College Park, MD July 6 th, 2011 On line simulators and other information

More information

Precision measurements and fundamental physics: some recent results and new approaches

Precision measurements and fundamental physics: some recent results and new approaches Precision measurements and fundamental physics: some recent results and new approaches (at Harvard-Smithsonian Maser Lab) Ronald Walsworth Harvard-Smithsonian Center for Astrophysics Harvard University,

More information

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University Atom Interferometry for Detection of Gravitational Waves Mark Kasevich Stanford University kasevich@stanford.edu Atom-based Gravitational Wave Detection Why consider atoms? 1) Neutral atoms are excellent

More information

Compensation of gravity gradients and rotations in precision atom interferometry

Compensation of gravity gradients and rotations in precision atom interferometry Compensation of gravity gradients and rotations in precision atom interferometry Albert Roura partly based on Phys. Rev. Lett. 118, 160401 (2017) Vienna, 11 April 2018 Motivation Tests of universality

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

What We Really Know About Neutrino Speeds

What We Really Know About Neutrino Speeds What We Really Know About Neutrino Speeds Brett Altschul University of South Carolina March 22, 2013 In particle physics, the standard model has been incredibly successful. If the Higgs boson discovered

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

arxiv:gr-qc/ v2 16 Feb 2006

arxiv:gr-qc/ v2 16 Feb 2006 Acceleration disturbances due to local gravity gradients in ASTROD I arxiv:gr-qc/0510045v2 16 Feb 2006 Sachie Shiomi Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 R.O.C. E-mail:

More information

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration KAGAYA studio Status of DECIGO Shuichi Sato Hosei University For the DECIGO and the DPF collaboration Title Outline v DECIGO v DECIGO pathfinder v Mission status Idea of DECIGO v DECi-hertz Interferometer

More information

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Transportable optical clocks: Towards gravimetry based on the gravitational redshift Transportable optical clocks: Towards gravimetry based on the gravitational redshift A.A. Görlitz, P. Lemonde, C. Salomon, B.S. Schiller, U. Sterr and G. Tino C.Towards a Roadmap for Future Satellite Gravity

More information

HYPER. ψ t. h r r. r r. δφ = One scientific objective of HYPER: Test of Universality of Free Fall for quantum matter Schrödinger equation

HYPER. ψ t. h r r. r r. δφ = One scientific objective of HYPER: Test of Universality of Free Fall for quantum matter Schrödinger equation HYPER One scientific objective of HYPER: Test of Universality of Free Fall for quantum matter Schrödinger equation ih ψ t Coresponding phase shift (exact result) δφ = m m Universality of Free Fall g i

More information

Searches for Local Lorentz Violation

Searches for Local Lorentz Violation Searches for Local Lorentz Violation Jay D. Tasson St. Olaf College outline background motivation SME gravity theory pure-gravity sector matter-gravity couplings experiments & observations motivation E

More information

Precision measurements with atomic co-magnetometer at the South Pole. Michael Romalis Princeton University

Precision measurements with atomic co-magnetometer at the South Pole. Michael Romalis Princeton University Precision measurements with atomic co-magnetometer at the South Pole Michael Romalis Princeton University Outline Alkali metal - noble gas co-magnetometer Rotating co-magnetometer at the South Pole New

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

THE SPACE OPTICAL CLOCKS PROJECT

THE SPACE OPTICAL CLOCKS PROJECT THE SPACE OPTICAL CLOCKS PROJECT S. Schiller (1), G. M. Tino (2), P. Lemonde (3), U. Sterr (4), A. Görlitz (1), N. Poli (2), A. Nevsky (1), C. Salomon (5) and the SOC team (1,2,3,4) (1) Heinrich-Heine-Universität

More information

Technology demonstration and prototype LPI test

Technology demonstration and prototype LPI test Frequency Comb on a Souding Rocket Technology demonstration and prototype LPI test Ronald Holzwarth Menlo Systems GmbH Martinsried And Max-Planck-Institut für Quantenoptik Garching 2013 STE-QUEST Workshop

More information

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications Como, 3. -7. 10. 2011 STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle):

More information

RACE: Rubidium Atomic Clock Experiment

RACE: Rubidium Atomic Clock Experiment RACE RACE: Rubidium Atomic Clock Experiment Cold collision frequency shift & 87 clocks Juggling clocks Precision short range atomic force measurements Penn State Russ Hart Ruoxin Li Chad Fertig Ron Legere

More information

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 6 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 14, 2017 General Relativity Chapter 2 Special Relativity

More information

The Minimal Lorentz-Violating Standard Model Extension

The Minimal Lorentz-Violating Standard Model Extension The Minimal Lorentz-Violating Standard Model Extension Brett Altschul University of South Carolina June 17, 2018 We have been testing relativity experimentally for a long time. The first good test was

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Ives-Stilwell Time Dilation Li + ESR Darmstadt Experiment and Neo-Lorentz Relativity

Ives-Stilwell Time Dilation Li + ESR Darmstadt Experiment and Neo-Lorentz Relativity Ives-tilwell Time Dilation Li + ER Darmstadt Experiment and Neo-Lorentz Relativity Reginald T. Cahill chool of Chemical and Physical ciences, Flinders University, Adelaide 5001, Australia reg.cahill@flinders.edu.au

More information

Towards compact transportable atom-interferometric inertial sensors

Towards compact transportable atom-interferometric inertial sensors Towards compact transportable atom-interferometric inertial sensors G. Stern (SYRTE/LCFIO) Increasing the interrogation time T is often the limiting parameter for the sensitivity. Different solutions:

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status ATOMIC CLOCK ENSEMBLE IN SPACE Mission status Luigi Cacciapuoti on behalf of the ACES team 30/03/2017 Rencontres de Moriond 2017 - Gravitation, La Thuile ACES Luigi Cacciapuoti 30/03/2017 Slide 2 The Columbus

More information

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005 Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes Irwin Shapiro 21 October 2005 Translation of Title (a.k.a Outline) Tests of the (Weak) Equivalence Principle

More information

Testing parity violation with the CMB

Testing parity violation with the CMB Testing parity violation with the CMB Paolo Natoli Università di Ferrara (thanks to Alessandro Gruppuso)! ISSS L Aquila 24 April 2014 Introduction The aim is to use observed properties of CMB pattern to

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Testing Einstein s special relativity with clocks moving near the speed of light. G. Gwinner University of Manitoba

Testing Einstein s special relativity with clocks moving near the speed of light. G. Gwinner University of Manitoba Testing Einstein s special relativity with clocks moving near the speed of light Making our way (really slowly) to the Planck scale G. Gwinner University of Manitoba Planck satellite (ESA) microwave survey

More information

Precision Attitude and Translation Control Design and Optimization

Precision Attitude and Translation Control Design and Optimization Precision Attitude and Translation Control Design and Optimization John Mester and Saps Buchman Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. Abstract Future

More information

Atom interferometry applications in gravimetry

Atom interferometry applications in gravimetry Prof. Achim Peters, Ph.D. Atom interferometry applications in gravimetry and some thoughts on current sensitivity limitations and concepts for future improvements International Workshop on Gravitational

More information

Lorentz-violating energy shift for hydrogen in the presence of a weak magnetic field

Lorentz-violating energy shift for hydrogen in the presence of a weak magnetic field Lorentz-violating energy shift for hydrogen in the presence of a weak magnetic field δε = j A j0 (nfjl) Fm F j0 Fm F Clebsch-Gordan coefficients n principal quantum number n F hydrogen total angular momentum

More information

LISA Technology: A Status Report

LISA Technology: A Status Report LISA Technology: A Status Report Guido Mueller University of Florida Minnesota 2010 1 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2 LISA Concept

More information

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Ed Daw - University of Sheffield On behalf of the LIGO Scientific Collaboration and the Virgo collaboration

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

Picometre metrology. The Gaia mission will create an ultra-precise three-dimensional map of about one billion stars

Picometre metrology. The Gaia mission will create an ultra-precise three-dimensional map of about one billion stars Picometre metrology in space The Gaia mission will create an ultra-precise three-dimensional map of about one billion stars in our Galaxy. Part of ESA s Cosmic Vision program, the Gaia spacecraft is being

More information

Special. Relativity. Todd Huffman. Steve

Special. Relativity. Todd Huffman. Steve Special Steve Relativity Todd Huffman Einstein s Two Postulates of Special Relativity: I. The laws of physics are identical in all inertial frames II. Light propagates in vacuum rectilinearly, with the

More information

Clocks and Gravity. Claus Lämmerzahl and Hansjörg Dittus. Airlie From Quantum to Cosmos, May

Clocks and Gravity. Claus Lämmerzahl and Hansjörg Dittus. Airlie From Quantum to Cosmos, May Clocks and Gravity Claus Lämmerzahl and Hansjörg Dittus Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation Center for Applied Space Technology and Microgravity (ZARM) University of Bremen

More information

X-ray polarimetry and new prospects in high-energy astrophysics

X-ray polarimetry and new prospects in high-energy astrophysics X-ray polarimetry and new prospects in high-energy astrophysics Carmelo Sgrò INFN Pisa carmelo.sgro@pi.infn.it Frascati, March 31, 2016 A new exploration window: X-Ray polarimetry Spectroscopy, imaging

More information

CMB tests of Lorentz invariance

CMB tests of Lorentz invariance CMB tests of Lorentz invariance Matthew Mewes Marquette University Kostelecký & Mewes, in preparation Outline: motivation Standard-Model Extension (SME) Lorentz violation in photons non-minimal SME CMB

More information

The first results of the 3-D experiment for investigating a dependence of spatial light dragging in a rotating medium on speed of rotation

The first results of the 3-D experiment for investigating a dependence of spatial light dragging in a rotating medium on speed of rotation The first results of the 3-D experiment for investigating a dependence of spatial light dragging in a rotating medium on speed of rotation V.O.Gladyshev, T.M.Gladysheva, M.Dashko, N.Trofimov, Ye.A.Sharandin

More information

Atom-based Frequency Metrology: Real World Applications

Atom-based Frequency Metrology: Real World Applications Atom-based Frequency Metrology: Real World Applications Anne Curtis National Physical Laboratory Teddington, UK Outline Introduction to atom-based frequency metrology Practical Uses - Tests of fundamental

More information

National Physical Laboratory, UK

National Physical Laboratory, UK Patrick Gill Geoff Barwood, Hugh Klein, Kazu Hosaka, Guilong Huang, Stephen Lea, Helen Margolis, Krzysztof Szymaniec, Stephen Webster, Adrian Stannard & Barney Walton National Physical Laboratory, UK Advances

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

ATHENA Mission Design and ESA Status. David Lumb ESA Study Scientist MPE Jan 13 th 2012

ATHENA Mission Design and ESA Status. David Lumb ESA Study Scientist MPE Jan 13 th 2012 ATHENA Mission Design and ESA Status David Lumb ESA Study Scientist MPE Jan 13 th 2012 Topics covered ESA L class mission reformulation Current status & programmatics Athena Mission Design Spacecraft Optics

More information

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer (+ other application) Michael Romalis Princeton University Tests of Fundamental Symmetries Parity violation weak interactions CP violation

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu Drag free concept and applications

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

Technology Readiness Level:

Technology Readiness Level: Technology Readiness Level: We plan to raise the TRL of the model with an acceleration noise performance requirement of < 10-12 m sec -2 Hz -1/2 at frequencies between 1 mhz and 1 Hz, from TRL 3 to TRL

More information

Optical Coatings and Thermal Noise in Precision Measurements

Optical Coatings and Thermal Noise in Precision Measurements Optical Coatings and Thermal Noise in Precision Measurements Embry-Riddle Aeronautical University Physics Colloquium October 25, 2011 Gregory Harry American University LIGO-G1101150 Thermal Noise Random

More information

Proposal for a New Michelson-Morley Experiment Using a Single Whispering Spherical Mode Resonator

Proposal for a New Michelson-Morley Experiment Using a Single Whispering Spherical Mode Resonator Proposal for a New Michelson-Morley Experiment Using a Single Whispering Spherical Mode Resonator Michael Edmund Tobar, John Gideon Hartnett and James David Anstie Abstract A new Michelson-Morley experiment

More information

Lecture 18 Vacuum, General Relativity

Lecture 18 Vacuum, General Relativity The Nature of the Physical World Lecture 18 Vacuum, General Relativity Arán García-Bellido 1 Standard Model recap Fundamental particles Fundamental Forces Quarks (u, d, c, s, t, b) fractional electric

More information

David Mattingly University of California-Davis

David Mattingly University of California-Davis David Mattingly University of California-Davis Quantum gravity in the Americas III Penn State August 26 th, 2006 What is QG phenomenology? The search for effects at low energies(

More information

Nano-JASMINE project

Nano-JASMINE project Nano-JASMINE project NAOJ Y. Kobayashi Overview nj project Plan of talk Aim of nj project Historic facts Collaboration with University of Tokyo Telescope and CCD Observation along great circle Cosmic radiation

More information

Chris Verhaaren Joint Theory Seminar 31 October With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme

Chris Verhaaren Joint Theory Seminar 31 October With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme Chris Verhaaren Joint Theory Seminar 31 October 2016 With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme It s Halloween A time for exhibiting what some find frightening And seeing that it s not so

More information

Test of special relativity using a fiber network of optical clocks

Test of special relativity using a fiber network of optical clocks Test of special relativity using a fiber network of optical clocks P. DELVA SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, LNE Journée GPhys 2017

More information

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo gravitational space mission PhD student : Pierre Gruning Thesis director : Hubert Halloin Contents gravitational Contents gravitational Contents gravitational Contents gravitational Plan gravitational

More information

0 : Einstein s postulates of Special Relativity

0 : Einstein s postulates of Special Relativity Class 2 : The Special Theory of Relativity Recap of Einstein s postulates Time dilation Length contraction Energy and momentum Causality 0 : Einstein s postulates of Special Relativity Consider a group

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200

HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200 HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200 ESTEC, Noordwijk The Netherlands 6 -th March 2003 Introduction 1 - Payload overall Architecture 2 - PST and OB design,

More information

Equivalence Principle

Equivalence Principle July 16, 2015 Universality of free fall (Galileo) Aristoteles view: the manner in which a body falls, does depend on its weight (at least plausible, if one does not abstract from air resistance etc.) Galileo

More information

Fundamental Physics with Atomic Interferometry

Fundamental Physics with Atomic Interferometry Fundamental Physics with Atomic Interferometry Peter Graham Stanford with Savas Dimopoulos Jason Hogan Mark Kasevich Surjeet Rajendran PRL 98 (2007) PRD 78 (2008) PRD 78 (2008) PLB 678 (2009) arxiv:1009.2702

More information

Scientific astrophysical payloads for pico and nano-satellites

Scientific astrophysical payloads for pico and nano-satellites Scientific astrophysical payloads for pico and nano-satellites René Hudec 1,2 1 Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2, CZ 160 00 Prague, Czech Republic 2

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo instrument commissioning & performance assessment José M. G. Merayo DTU Space, Technical University of Denmark Division Measurement & Instrumentation Systems overview Fluxgate principle Amorphous magnetic

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

Small Satellite Platform Imaging X-Ray Polarimetry Explorer (IXPE) Mission Concept and Implementation

Small Satellite Platform Imaging X-Ray Polarimetry Explorer (IXPE) Mission Concept and Implementation Small Satellite Platform Imaging X-Ray Polarimetry Explorer (IXPE) Mission Concept and Implementation 31 st Annual AIAA/USU Conference on Small Satellites Utah State University, Logan, UT, USA August 6-10,

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information