CMB tests of Lorentz invariance

Size: px
Start display at page:

Download "CMB tests of Lorentz invariance"

Transcription

1 CMB tests of Lorentz invariance Matthew Mewes Marquette University Kostelecký & Mewes, in preparation Outline: motivation Standard-Model Extension (SME) Lorentz violation in photons non-minimal SME CMB and LV results and conclusions

2 Why break Lorentz symmetry? possible signal of Planck-scale physics (Kostelecký & Samuel 89, Kostelecký & Potting 9, 96) accessible to current technology E. & M., Newton s Laws Atoms, Molecules,... Cosmology, Astrophysics,... Newtonian Gravity Standard Model General Relativity Quantum Mechanics Lorentz Symmetry Curved Spacetime Theory of Everything

3 Why break Lorentz symmetry? possible signal of Planck-scale physics (Kostelecký & Samuel 89, Kostelecký & Potting 9, 96) accessible to current technology Theory of Everything Quantum Mechanics Lorentz Symmetry Curved Spacetime Standard Model General Relativity Newton s Laws E. & M., Atoms, Molecules,... Cosmology, Astrophysics,... Newtonian Gravity Standard Model General Relativity Newton s Laws E. & M., Atoms, Molecules,... Cosmology, Astrophysics,... Newtonian Gravity

4 Why framework: break Standard-Model Lorentz symmetry? Extension (SME) possible describes signalgeneral of Planck-scale Lorentz violation physics accessible to current technology (Kostelecký Colladay & Samuel & Kostelecký 89, Kostelecký 97, 98, & Potting Kostelecký 9, 96) 4 see also Colladay & Altschul, this meeting Newton s Laws Newton s Laws E. & M., E. & M., Atoms, Atoms, Molecules,... Molecules,... Standard Model Standard Model Cosmology, Cosmology, Astrophysics,... Astrophysics,... Newtonian Gravity Newtonian Gravity General Relativity General Relativity Quantum Mechanics Lorentz Symmetry Curved Spacetime Theory of Everything

5 SME construction: L LV = (coefficient) (standard tensor operator) example: QED extension L = 2 i ψγ µ D µ ψ m ψψ 4 F µν F µν + c µν 2 i ψγ µ D ν ψ + d µν 2 i ψγ 5 γ µ D ν ψ + advantages/features: quantum field theory, spin statistics, locality, microcausality, conservation principles, observer independence, systematic, very general disadvantages: systematic, very general (infinite # of violations)

6 minimal SME preserve: - power-counting renormalizability (finite # of violations) break: - usual gauge invariance charge conservation - usual invariance under spacetime translations energy-momentum conservation - Lorentz invariance minimal photon sector L = 4 F µν F µν 4 (k F ) αβµν F αβ F µν (conventional) (CPT-even) + 2 (k AF ) α ɛ αβµν A β F µν (CPT-odd)

7 SME experimentation neutrino oscillations K,D,B oscillations Katori et al. 6, LSND 5 BaBar 6, FOCUS 3, KTeV, BELLE, OPAL 97 clock-comparison tests Wolf et al. 6, Cané et al. 4 Humphrey et al. 4, Bear et al. muons Deile et al. 2, Hughes et al. Penning traps Dehmelt et al. 99, Mittleman et al. 99, Gabrielse et al. 99 spin-polarized pendulum Heckel et al. 6, Hou et al. EM-resonators Stanwix et al. 6, Antonini et al. 5, Tobar et al. 5, Herrmann et al. 5 vacuum birefringence Feng et al. 6, Kosteleck ý & Mewes 6, 2,, Nodland & Ralston 97, Carroll et al. 9

8 types of signals velocity dependences boost violations orientation dependences rotation violations example: EM-resonators used to test CPT-even violations look for changes in resonant frequency with orientation/velocity Müller et al. oscillations neutral-meson oscillations neutrino oscillations photon birefringence

9 example: neutrino oscillations Kostelecký & Mewes 4 h eff = E mass term (seesaw) ( 2 m2 3 2 ( m2 ) 6 ) E Lorentz-violating term ( Λνν Λ ν ν Λ νν 3 6 Λ ν ν ) 3 6 basis: ν e ν µ ν τ ν e ν µ C A ν τ

10 birefringence breakdown of usual degeneracy in polarization causes rotation of polarization as light propagates RH circular polarization ellipse linear s = Stokes vector s s 2 s 3 = Q U V LH circular

11 birefringence rotation of Stokes vector by δφ δv L CPT-odd case CPT-even case rotation axis ς bigger L bigger effect higher E bigger effect (for CPT-even violations)

12 CPT-even case

13 birefringence tests CPT-odd Carroll, Field, & Jackiw 9 Feng et al. 6 galaxies (radio) (k AF ) < 42 GeV CMB (k AF ) 6 43 GeV CPT-even Kostelecký & Mewes 2, Kostelecký & Mewes 6 galaxies (near-optical) components of k F < 32 GRB s 4 components of k F < 37

14 going beyond the minimal SME drop renormalizability keep gauge invariance keep translation invariance Why? leading-order (renormalizable?) remnants 7 known physics SM + GR = TOE higher-order nonrenormalizable remnants

15 construction (photon sector) ) write general action contribution with dimension d operator δs (d) = d 4 x K α α 2 α 3...α d (d) 2) decompose into irreducible representations A α α3... αd A α2 K α α 2 α 3...α d (d) 3) eliminate gauge-violating terms K α α 2 α 3...α d (d) { CPT-even CPT-odd

16 nonrenormalizable E&M L = 4 F µνf µν + 2 ɛκλµν A λ (ˆk AF ) κ F µν 4 F κλ(ˆk F ) κλµν F µν (ˆk AF ) κ = d=odd (ˆk F ) κλµν = d=even (k (d) AF ) κα...α (d 3) α... α(d 3) (k (d) F )κλµνα...α (d 4) α... α(d 4) for birefringence tests make tensor-spherical-harmonic decomposition (k (d) AF ) α...α (d 3) κ k (d) (V )lm (k (d) F )κλµνα...α (d 4) k (d) (E)lm, k(d) (B)lm

17 Stokes rotation axis ς = depends on direction depends on photon energy ς ς 2 ς 3 C A CPT-odd rotations about poles ς 3 = P dlm Ed 4 Y lm k (d) (V )lm CPT-even rotations about line through equator ς iς 2 = P dlm Ed 4 ±2Y lm (k (d) (E)lm ± ik(d) (B)lm )

18 CMB radiation temperature T = P lm a (T )lm Y lm polarization NASA/WMAP s is 2 = P lm (a (E)lm ± ia (B)lm ) ±2 Y lm s 3 = P lm a (V )lm Y lm correlations NASA/WMAP C X X 2 l = 2l+ P m a (X )l m a (X2 )l 2 m 2

19 conventional picture small E modes much smaller B component no V (circular) component correlation between T and E only effects of LV Lorentz violation causes a change in polarization as light propagates. mixes E, B, and V modes. potential signals B modes V modes (CPT-even case only) correlations TB, TV, EB,...

20 example: k (3) (V ) = 2 42 GeV C l XX l(l + )/2π (µk 2 ) EE BB V V T E T B T V EB EV BV l angular size

21 example: k (4) (E)2 = 2 29 C l XX l(l + )/2π (µk 2 ) EE BB V V T E T B T V EB EV BV l angular size

22 search look for birefringence in BOOMERANG data Why BOOMERANG? high frequencies higher sensitivity narrow frequency band angular size T E of cmb from Boomerang 3 Thomas E. Montroy et al., astro-ph/5754 Fig.. The T E power spectrum band powers for the NA (filled circles) and IT (open circles) pipelines. The upper part of the plot reports data with errorbars, the fiducial model (ΛCDM model fit to WMAP (year ), Acbar, and CBI) as a black curve and the binned fiducial model as histogram. The middle and bottom plots are the results of two different consistency tests, obtained splitting the data in channels (WX-YZ) and in time (half 2 - half ) respectively. In the low-l part of the plot is evident the effect of a different weighting scheme between IT and NA, while at large multipoles the result is dominated by the same instrumental performances. (hereafter deep region), a shallow observation on a region of covering the.8% of the sky (including the deep region) centered in the same coordinates (hereafter shal- F. Piacentini et al., astro-ph/5757 Fig. 2. The T B power spectrum band powers for the NA (filled circles) and IT (open circles) pipelines. The upper part of the plot reports the T B data with error-bars. The middle and bottom plots are the results of two different consistency tests, obtained splitting the data in channels (WX-YZ) and in time (half 2 - half ) respectively.

23 likelihood (for a sample of 2 L.V. parameters) k (3) (V ) ( 43 GeV) k (3) (V ) ( 43 GeV) k (3) (V ) ( 43 GeV) relative likelihood k (4) (E)2 ( 3 ) k (4) (B)2 ( 3 ) k (5) (V ) ( 2 GeV ) k (5) (V ) ( 2 GeV ) k (5) (V )2 ( 2 GeV ) k (5) (V )3 ( 2 GeV ) k (6) (E)2 ( GeV 2 ) k (6) (E)3 ( GeV 2 ) k (6) (E)4 ( GeV 2 ) consistent with zero L.V. at 2σ (light blue) consistent with nonzero L.V. at σ (dark blue) agrees with Feng et al. result (includes WMAP): k (3) (V ) 6 43 GeV

24 results lots of possible nonrenormalizable violations σ signal in the CMB best bounds on some coefficients for LV first bounds on many coefficients for LV things to do determine robustness of signal incorporate CAPMAP, CBI, DASI, WMAP incorporate foregrounds, lensing, reionization things to look forward to Planck experiment

arxiv: v1 [hep-ph] 16 Aug 2012

arxiv: v1 [hep-ph] 16 Aug 2012 Low Energy Tests of Lorentz and CPT Violation Don Colladay 5800 Bay Shore Road, New College of Florida arxiv:1208.3474v1 [hep-ph] 16 Aug 2012 Abstract. An overview of the theoretical framework of the Standard

More information

The Minimal Lorentz-Violating Standard Model Extension

The Minimal Lorentz-Violating Standard Model Extension The Minimal Lorentz-Violating Standard Model Extension Brett Altschul University of South Carolina June 17, 2018 We have been testing relativity experimentally for a long time. The first good test was

More information

Searches for Local Lorentz Violation

Searches for Local Lorentz Violation Searches for Local Lorentz Violation Jay D. Tasson St. Olaf College outline background motivation SME gravity theory pure-gravity sector matter-gravity couplings experiments & observations motivation E

More information

arxiv:hep-ph/ v1 27 Nov 2001

arxiv:hep-ph/ v1 27 Nov 2001 CONSTRAINING LORENTZ VIOLATION USING SPECTROPOLARIMETRY OF COSMOLOGICAL SOURCES arxiv:hep-ph/0111347v1 27 Nov 2001 MATTHEW MEWES Physics Department, Indiana University, Bloomington, IN 47405, U.S.A. E-mail:

More information

The 2015 Data Tables for Lorentz and CPT Violation

The 2015 Data Tables for Lorentz and CPT Violation The 2015 Data Tables for Lorentz and CPT Violation Reviews of Modern Physics 83, 11 (2011) update: arxiv:0801.0287v8 (January 2015) Kostelecký, NR Second IUCSS Summer School on the Lorentz- and CPT-violating

More information

What We Really Know About Neutrino Speeds

What We Really Know About Neutrino Speeds What We Really Know About Neutrino Speeds Brett Altschul University of South Carolina March 22, 2013 In particle physics, the standard model has been incredibly successful. If the Higgs boson discovered

More information

Physics of CMB Polarization and Its Measurement

Physics of CMB Polarization and Its Measurement Physics of CMB Polarization and Its Measurement HEP seminar at Kyoto University April 13 th, 2007 Akito KUSAKA University of Tokyo Outline Physics of CMB and its Polarization What does WMAP shed light

More information

Testing parity violation with the CMB

Testing parity violation with the CMB Testing parity violation with the CMB Paolo Natoli Università di Ferrara (thanks to Alessandro Gruppuso)! ISSS L Aquila 24 April 2014 Introduction The aim is to use observed properties of CMB pattern to

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

Microwave Background Polarization: Theoretical Perspectives

Microwave Background Polarization: Theoretical Perspectives Microwave Background Polarization: Theoretical Perspectives Department of Physics and Astronomy University of Pittsburgh CMBpol Technology Workshop Outline Tensor Perturbations and Microwave Polarization

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Neutrinos and Lorentz Invariance Violation

Neutrinos and Lorentz Invariance Violation Neutrinos and Lorentz Invariance Violation Jorge S. Diaz MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS - PARTICLE AND ASTROPARTICLE THEORY SEMINAR, 27.10.2014 KIT University of the State of Baden-Wuerttemberg

More information

Cosmic Microwave Background Introduction

Cosmic Microwave Background Introduction Cosmic Microwave Background Introduction Matt Chasse chasse@hawaii.edu Department of Physics University of Hawaii at Manoa Honolulu, HI 96816 Matt Chasse, CMB Intro, May 3, 2005 p. 1/2 Outline CMB, what

More information

Vacuum Energy and the cosmological constant puzzle

Vacuum Energy and the cosmological constant puzzle Vacuum Energy and the cosmological constant puzzle Cosmological constant puzzle: Steven Bass Accelerating Universe: believed to be driven by energy of nothing (vacuum) Positive vacuum energy = negative

More information

Finsler Structures and The Standard Model Extension

Finsler Structures and The Standard Model Extension Finsler Structures and The Standard Model Extension Don Colladay New College of Florida Talk presented at Miami 2011 work done in collaboration with Patrick McDonald Overview of Talk Modified dispersion

More information

Test for Lorentz violation in the neutrino oscillation experiments

Test for Lorentz violation in the neutrino oscillation experiments Test for Lorentz violation in the neutrino oscillation experiments Teppei Katori Massachusetts Institute of Technology KEK seminar, June 05, 09 06/05/2009 Teppei Katori, MIT 1 Test for Lorentz violation

More information

Imprint of Scalar Dark Energy on CMB polarization

Imprint of Scalar Dark Energy on CMB polarization Imprint of Scalar Dark Energy on CMB polarization Kin-Wang Ng ( 吳建宏 ) Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan Cosmology and Gravity Pre-workshop NTHU, Apr

More information

Cosmic Microwave Background polarization as a test for fundamental physics

Cosmic Microwave Background polarization as a test for fundamental physics Cosmic Microwave Background polarization as a test for fundamental physics Giulia Gubitosi Presentazione progetto di tesi - Relatore: Alessandro Melchiorri Roma 04/06/2009 Giulia Gubitosi, L. Pagano, G.

More information

David Mattingly University of California-Davis

David Mattingly University of California-Davis David Mattingly University of California-Davis Quantum gravity in the Americas III Penn State August 26 th, 2006 What is QG phenomenology? The search for effects at low energies(

More information

arxiv:hep-th/ v1 30 Jan 2007

arxiv:hep-th/ v1 30 Jan 2007 IUHET-505 arxiv:hep-th/0701270v1 30 Jan 2007 Cerenkov Radiation in a Lorentz-Violating and Birefringent Vacuum Brett Altschul 1 Department of Physics Indiana University Bloomington, IN 47405 USA Abstract

More information

electrodynamics and Lorentz violation

electrodynamics and Lorentz violation Vacuum Cherenkov radiation in Lorentz violating quantum electrodynamics and experimental limits on the scale of Lorentz violation Damiano Anselmi (IHEP/CAS, Beijing, & Pisa University) Lorentz symmetry

More information

MODERN COSMOLOGY LECTURE FYTN08

MODERN COSMOLOGY LECTURE FYTN08 1/43 MODERN COSMOLOGY LECTURE Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Lecture Updated 2015 2/43 3/43 1 2 Some problems with a simple expanding universe 3 4 5 6 7 8 9 Credit many

More information

Precision measurements and fundamental physics: some recent results and new approaches

Precision measurements and fundamental physics: some recent results and new approaches Precision measurements and fundamental physics: some recent results and new approaches (at Harvard-Smithsonian Maser Lab) Ronald Walsworth Harvard-Smithsonian Center for Astrophysics Harvard University,

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Violation of Lorentz Invariance in High-Energy γ Rays

Violation of Lorentz Invariance in High-Energy γ Rays Violation of Lorentz Invariance in High-Energy γ Rays M. E. Peskin July, 2005 There is a huge literature on Lorentz-Invarance violation. I am no expert on the subject, but hopefully I can give you some

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

Vacuum Energy and. Cosmological constant puzzle:

Vacuum Energy and. Cosmological constant puzzle: Vacuum Energy and the cosmological constant puzzle Steven Bass Cosmological constant puzzle: (arxiv:1503.05483 [hep-ph], MPLA in press) Accelerating Universe: believed to be driven by energy of nothing

More information

Tests of Lorentz and CPT Violation with Neutrino Oscillation Experiments

Tests of Lorentz and CPT Violation with Neutrino Oscillation Experiments Tests of Lorentz and CPT Violation with Neutrino Oscillation Experiments Teppei Katori Queen Mary University of London Cavendish HEP seminar, Univ. Cambridge, Cambridge, UK, Nov. 11, 2014 Teppei Katori,

More information

A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS

A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS S. HERRMANN, A. SENGER, K. MÖHLE, E. V. KOVALCHUK, A. PETERS Institut für Physik, Humboldt-Universität zu Berlin Hausvogteiplatz

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Planck 2015 parameter constraints

Planck 2015 parameter constraints Planck 2015 parameter constraints Antony Lewis On behalf of the Planck Collaboration http://cosmologist.info/ CMB temperature End of inflation Last scattering surface gravity+ pressure+ diffusion Observed

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

arxiv:hep-th/ v1 20 Jul 2004

arxiv:hep-th/ v1 20 Jul 2004 IUHET-473 arxiv:hep-th/040717v1 0 Jul 004 Gauge Invariance and the Pauli-Villars Regulator in Lorentz- and CPT-Violating Electrodynamics B. Altschul 1 Department of Physics Indiana University Bloomington,

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Gravitational Tests 1: Theory to Experiment

Gravitational Tests 1: Theory to Experiment Gravitational Tests 1: Theory to Experiment Jay D. Tasson St. Olaf College outline sources of basic information theory to experiment intro to GR Lagrangian expansion in gravity addressing the fluctuations

More information

LORENTZ AND CPT VIOLATIONS FROM CHERN-SIMONS MODIFICATION OF QED. Alexander A. Andrianov. Instituto Nazionale di Fisica Nucleare Sezione di Bologna

LORENTZ AND CPT VIOLATIONS FROM CHERN-SIMONS MODIFICATION OF QED. Alexander A. Andrianov. Instituto Nazionale di Fisica Nucleare Sezione di Bologna LORENTZ AND CPT VIOLATIONS FROM CHERN-SIMONS MODIFICATION OF QED Alexander A. Andrianov Instituto Nazionale di Fisica Nucleare Sezione di Bologna Paola Giacconi & R. S. Dipartimento di Fisica Università

More information

Experimental Signatures for Lorentz Violation (in Neutral B Meson Mixing)

Experimental Signatures for Lorentz Violation (in Neutral B Meson Mixing) Experimental Signatures for Lorentz Violation (in Neutral B Meson Mixing) Theory recap (see Mike Berger's talk for details) Experimental situation Experimental issues: particle/antiparticle differences

More information

Physics from 1-2 GeV

Physics from 1-2 GeV Physics from 1-2 GeV Caterina Bloise INFN, Frascati Laboratory, Italy What next LNF: Perspectives of fundamental physics at the Frascati Laboratory Frascati, November 11, 2014 1 / 19 1 Introduction 2 Kaon

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

Tests of Lorentz and CPT Violation with Neutrino Oscillation Experiments

Tests of Lorentz and CPT Violation with Neutrino Oscillation Experiments Tests of Lorentz and CPT Violation with Neutrino Oscillation Experiments Teppei Katori Queen Mary University of London Particle Physics seminar, Univ. of Birmingham, Birmingham, UK, Mar. 11, 2015 Teppei

More information

A New Limit on CMB Circular Polarization from SPIDER Johanna Nagy for the SPIDER collaboration arxiv: Published in ApJ

A New Limit on CMB Circular Polarization from SPIDER Johanna Nagy for the SPIDER collaboration arxiv: Published in ApJ A New Limit on CMB Circular Polarization from SPIDER Johanna Nagy for the SPIDER collaboration arxiv: 1704.00215 Published in ApJ TeVPA 2017 Stokes Parameters Plane wave traveling in the z direction Stokes

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Cosmology & CMB. Set6: Polarisation & Secondary Anisotropies. Davide Maino

Cosmology & CMB. Set6: Polarisation & Secondary Anisotropies. Davide Maino Cosmology & CMB Set6: Polarisation & Secondary Anisotropies Davide Maino Polarisation How? Polarisation is generated via Compton/Thomson scattering (angular dependence of the scattering term M) Who? Only

More information

Cosmology with CMB & LSS:

Cosmology with CMB & LSS: Cosmology with CMB & LSS: the Early universe VSP08 lecture 4 (May 12-16, 2008) Tarun Souradeep I.U.C.A.A, Pune, India Ω +Ω +Ω +Ω + Ω +... = 1 0 0 0 0... 1 m DE K r r The Cosmic Triangle (Ostriker & Steinhardt)

More information

Polarization from Rayleigh scattering

Polarization from Rayleigh scattering Polarization from Rayleigh scattering Blue sky thinking for future CMB observations Previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Gravitational Čerenkov Notes

Gravitational Čerenkov Notes Gravitational Čerenkov Notes These notes were presented at the IUCSS Summer School on the Lorentz- and CPT-violating Standard-Model Extension. They are based Ref. [1]. There are no new results here, and

More information

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Higgs field as the main character in the early Universe. Dmitry Gorbunov Higgs field as the main character in the early Universe Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia Dual year Russia-Spain, Particle Physics, Nuclear Physics and Astroparticle Physics

More information

arxiv:hep-th/ v1 20 Nov 2005

arxiv:hep-th/ v1 20 Nov 2005 IUHET-487 arxiv:hep-th/0511200v1 20 Nov 2005 Lorentz Violation and Faddeev-Popov Ghosts B. Altschul 1 Department of Physics Indiana University Bloomington, IN 47405 USA Abstract We consider how Lorentz-violating

More information

Gravity, Lorentz violation, and the standard model

Gravity, Lorentz violation, and the standard model PHYSICAL REVIEW D 69, 105009 2004 Gravity, Lorentz violation, and the standard model V. Alan Kostelecký Physics Department, Indiana University, Bloomington, Indiana 47405, USA Received 8 January 2004;

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Clock based on nuclear spin precession spin-clock

Clock based on nuclear spin precession spin-clock Clock based on nuclear spin precession spin-clock signal (a.u.) detector t exp - T (G. D. Cates, et al., Phys. Rev. A 37, 877) T T T, field T, field 4 4R 75D B, z B, y B, x R 4 p B (ms ) T 00h Long T :

More information

Search for Heavy Majorana Neutrinos

Search for Heavy Majorana Neutrinos Search for Heavy Majorana Neutrinos Workshop on Lepton Baryon Number Violation Madison, WI Anupama Atre Fermilab Outline A Brief Introduction: What we know about neutrinos Simplest extension The Search

More information

New Constraints on Cosmic Polarization Rotation (CPR) including SPTpol B-Mode polarization observations

New Constraints on Cosmic Polarization Rotation (CPR) including SPTpol B-Mode polarization observations New Constraints on Cosmic Polarization Rotation (CPR) including SPTpol B-Mode polarization observations Wei-Tou Ni National Tsing Hua U. Ref.: [1] W.-T. Ni, Spacetime structure, PLA 379(2015)1297 1303

More information

Primordial gravitational waves detected? Atsushi Taruya

Primordial gravitational waves detected? Atsushi Taruya 21 May 2014 Lunch seminar @YITP Primordial gravitational waves detected? Atsushi Taruya Contents Searching for primordial gravitational waves from cosmic microwave background polarizations Gravitational-wave

More information

Discrete Rotational Subgroups of the Standard Model dictate Family Symmetries and Masses

Discrete Rotational Subgroups of the Standard Model dictate Family Symmetries and Masses Discrete Rotational Subgroups of the Standard Model dictate Family Symmetries and Masses Franklin Potter Sciencegems.com Huntington Beach, California USA December 2008 Discrete Rotational Subgroups DISCRETE

More information

Effective Field Theory in Cosmology

Effective Field Theory in Cosmology C.P. Burgess Effective Field Theory in Cosmology Clues for cosmology from fundamental physics Outline Motivation and Overview Effective field theories throughout physics Decoupling and naturalness issues

More information

The AfterMap Wayne Hu EFI, February 2003

The AfterMap Wayne Hu EFI, February 2003 The AfterMap Wayne Hu EFI, February 2003 Connections to the Past Outline What does MAP alone add to the cosmology? What role do other anisotropy experiments still have to play? How do you use the MAP analysis

More information

Probing alternative theories of gravity with Planck

Probing alternative theories of gravity with Planck Probing alternative theories of gravity with Planck Andrea Marchini Sapienza - University of Rome based on Updated constraints from the Planck experiment on modified gravity:prd88,027502 In collaboration

More information

Suppressing the Lorentz violations in the matter sector A class of extended Hořava gravity

Suppressing the Lorentz violations in the matter sector A class of extended Hořava gravity Suppressing the Lorentz violations in the matter sector A class of extended Hořava gravity A. Emir Gümrükçüoğlu University of Nottingham [Based on arxiv:1410.6360; 1503.07544] with Mattia Colombo and Thomas

More information

Massive Photon and Cosmology

Massive Photon and Cosmology Massive Photon and Cosmology Phillial Oh Sungkyunkwan University KIAS 2014. 6. Contents I. Introduction II. Massive QED and Cosmology III. Massive Dark Photon and Cosmology IV. Conslusions Massive Photon:

More information

Cosmology after Planck

Cosmology after Planck Cosmology after Planck Raphael Flauger Rencontres de Moriond, March 23, 2014 Looking back Until ca. 1997 data was consistent with defects (such as strings) generating the primordial perturbations. (Pen,

More information

Emergent Dimensions. Bob Poltis. SUNY at Buffalo. Essential Cosmology for the Next Generation Cosmology on the Beach January 20, 2012 Cancún, Mexico

Emergent Dimensions. Bob Poltis. SUNY at Buffalo. Essential Cosmology for the Next Generation Cosmology on the Beach January 20, 2012 Cancún, Mexico Emergent Dimensions Bob Poltis SUNY at Buffalo Essential Cosmology for the Next Generation Cosmology on the Beach January 0, 01 Cancún, Mexico Extra Dimensions Add extra dimensions (make model more complicated:

More information

arxiv: v2 [hep-th] 23 Mar 2016

arxiv: v2 [hep-th] 23 Mar 2016 Cherenkov Radiation with Massive, CPT-violating Photons Don Colladay and Patrick McDonald New College of Florida, Sarasota, FL, 34243 Robertus Potting arxiv:163.38v2 [hep-th] 23 Mar 216 CENTRA and Department

More information

Exotic BSM Physics and N-N oscillation R. N. Mohapatra University of Maryland

Exotic BSM Physics and N-N oscillation R. N. Mohapatra University of Maryland Exotic BSM Physics and N-N oscillation R. N. Mohapatra University of Maryland K. S. Babu and R.N.M, PRD91,096009 (2015); PRD94, 054034(2016) NNbar search and BSM physics Nnbar is a gold mine of informaeon

More information

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Method: Rayleigh-Schrödinger Perturbation Theory Step 1: Find the eigenvectors ψ n and eigenvalues ε n

More information

CMB studies with Planck

CMB studies with Planck CMB studies with Planck Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Thanks to Anthony Challinor & Anthony Lasenby for a few slides (almost) uniform

More information

The Search for Neutrino-Antineutrino Mixing Resulting from Lorentz Invariance Violation using neutrino interactions in MINOS

The Search for Neutrino-Antineutrino Mixing Resulting from Lorentz Invariance Violation using neutrino interactions in MINOS The Search for Neutrino-Antineutrino Mixing Resulting from Lorentz Invariance Violation using neutrino interactions in MINOS B. Rebel a, S. Mufson b arxiv:1301.4684v1 [hep-ex] 20 Jan 2013 Abstract a Fermi

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

An Estimator for statistical anisotropy from the CMB. CMB bispectrum

An Estimator for statistical anisotropy from the CMB. CMB bispectrum An Estimator for statistical anisotropy from the CMB bispectrum 09/29/2012 1 2 3 4 5 6 ...based on: N. Bartolo, E. D., M. Liguori, S. Matarrese, A. Riotto JCAP 1201:029 N. Bartolo, E. D., S. Matarrese,

More information

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu CMB Anisotropies: The Acoustic Peaks 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Astro 280, Spring 2002 Wayne Hu Physical Landscape 100 IAB Sask 80 Viper BAM TOCO Sound Waves

More information

Understanding Lorentz violation with Rashba interaction

Understanding Lorentz violation with Rashba interaction Understanding Lorentz violation with Rashba interaction Muhammad Adeel Ajaib University of Delaware, Newark, DE 976, USA Abstract Rashba spin orbit interaction is a well studied effect in condensed matter

More information

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

COSMIC MICROWAVE BACKGROUND ANISOTROPIES COSMIC MICROWAVE BACKGROUND ANISOTROPIES Anthony Challinor Institute of Astronomy & Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk 26

More information

Lorentz invariance violations: Kostelecky, 2002

Lorentz invariance violations: Kostelecky, 2002 Lorentz invariance violations: Kostelecky, 2002 2 Kinematic approach to Lorentz invariance violations: Considers only light beams and ideal rods, clocks: If a laboratory is assumed to be moving at a velocity

More information

MATTER THEORY OF EXPANDED MAXWELL EQUATIONS

MATTER THEORY OF EXPANDED MAXWELL EQUATIONS MATTER THEORY OF EXPANDED MAXWELL EQUATIONS WU SHENG-PING Abstract. This article try to unified the four basic forces by Maxwell equations, the only experimental theory. Self-consistent Maxwell equation

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (6.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 2 2 3 3 4 4 5 Where are we? W fi = 2π 4 LI matrix element M i (2Ei) fi 2 ρ f (E i ) LI phase

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Weak gravitational lensing of CMB

Weak gravitational lensing of CMB Weak gravitational lensing of CMB (Recent progress and future prospects) Toshiya Namikawa (YITP) Lunch meeting @YITP, May 08, 2013 Cosmic Microwave Background (CMB) Precise measurements of CMB fluctuations

More information

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli Coupled Dark University of Rome La Sapienza Roma, October 28th 2011 Outline 1 2 3 4 5 1 2 3 4 5 Accelerated Expansion Cosmological data agree with an accelerated expansion of the Universe d L [Mpc] 16000

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

CMB polarization and cosmology

CMB polarization and cosmology Fundamental physics and cosmology CMB polarization and cosmology Institut d'astrophysique Spatiale Orsay Standard cosmology : reverse the expansion... 10 16 GeV GUT 10-42 s 10 15 GeV 10-32 s 300 GeV 0.1

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Special Relativity from Soft Gravitons

Special Relativity from Soft Gravitons Special Relativity from Soft Gravitons Mark Hertzberg, Tufts University CosPA, December 14, 2017 with McCullen Sandora, PRD 96 084048 (1704.05071) Can the laws of special relativity be violated in principle?

More information

Polarization of the Cosmic Microwave Background Radiation

Polarization of the Cosmic Microwave Background Radiation Polarization of the Cosmic Microwave Background Radiation Yasin Memari, March 2007 The CMB radiation is completely characterized by its temperature anisotropy and polarization in each direction in the

More information

Equivalence Principles Pseudoscalar-Photon Interaction and Cosmic Polarization Rotation

Equivalence Principles Pseudoscalar-Photon Interaction and Cosmic Polarization Rotation Equivalence Principles Pseudoscalar-Photon Interaction and Cosmic Polarization Rotation Wei-Tou Ni National Tsing Hua U., Hsinchu, Taiwan, ROC Ref.: [1] W.-T. Ni, PLA 378 (2014) 1217-1223; RoPP 73 (2010)

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information