MODERN COSMOLOGY LECTURE FYTN08

Size: px
Start display at page:

Download "MODERN COSMOLOGY LECTURE FYTN08"

Transcription

1 1/43 MODERN COSMOLOGY LECTURE Lund University bijnens Lecture Updated 2015

2 2/43

3 3/ Some problems with a simple expanding universe Credit many pictures: ESA, NASA, WMAP, Planck, Scientific American

4 I: Flatness problem Rewrite Friedman-Lemaître equation as 3H 2 8π = 3k2 8πR 2 + ρ H = Ṙ R k = 0 or flat defines critical density ρ c 3H2 8π measure all components of ρ in units of ρ c : Ω i = ρ i ρ c Time evolution k R(t) 2 = H(t)2 (Ω(t) 1) e.g. Matterdominated (Ω(t) 1) kt 2/3 Ω 1 does not stay there Flatness problem: close to 1 now, really close to 1 in early universe For cosmological constant dominated: R(t) e αt = (Ω(t) 1) e 2αt 4/43

5 I: Flatness problem Rewrite Friedman-Lemaître equation as 3H 2 8π = 3k2 8πR 2 + ρ H = Ṙ R k = 0 or flat defines critical density ρ c 3H2 8π measure all components of ρ in units of ρ c : Ω i = ρ i ρ c Time evolution k R(t) 2 = H(t)2 (Ω(t) 1) e.g. Matterdominated (Ω(t) 1) kt 2/3 Ω 1 does not stay there Flatness problem: close to 1 now, really close to 1 in early universe For cosmological constant dominated: R(t) e αt = (Ω(t) 1) e 2αt 4/43

6 II 5/43 We see the universe as the same from all directions Not all these spots have had time to talk to each other Homogeneity problem Many phase transitions possible Create defects: vortices (cosmic strings), domain walls,... All of these contain large amounts of energy None seen, so either no phase transitions or they have had time to align Monopole problem

7 II 5/43 We see the universe as the same from all directions Not all these spots have had time to talk to each other Homogeneity problem Many phase transitions possible Create defects: vortices (cosmic strings), domain walls,... All of these contain large amounts of energy None seen, so either no phase transitions or they have had time to align Monopole problem

8 III 6/43 The early universe was very smooth Where does the observed structure come from? Much structure seen: galaxies, voids, sheets, the great wall,... How are these formed? Structure formation problem

9 7/43 At some point very early in the universe we had a period dominated by Λ This is not the present Λ or dark energy Blow up a small region that had fully homogeneized to enormous size Solves homogeneity problem Solves monopole problem (for earlier first order phase transitions) That bit also gets really flat Solves flatness problem During the blowup: quantum fluctuations get very big, become real Possible seeds of structure Can solve structure problem

10 credit NASA/IPAC 8/43

11 9/43 Matter ρ M R 3, radiation ρ R R 4 In addition all momenta were bigger earlier since λ 1 p R(t) Early universe dominated by radiation Present: Matter+cosmological constant (dark energy) t years or T 1eV : decoupling/recombination Accident: becomes radiation dominated at about the same time t a few minutes or T 1 MeV: Primordial nucleosynthesis (BBN) Much earlier T >> 100 GeV:

12 ladder 10/43 Main problem in cosmology: Measuring distances ladder: Parallax: triangulation easy in principle take base: Earth orbit main problem: how accurate to measure the angles Note old debate: if earth moves around sun, why don t the stars move? Now dominated by satellite: Hipparchos, Hubble, Gaia (to come) Redshift distance: simply take the redshift as a measure of distance Luminosity distance

13 ladder 11/43 Luminosity distance Flux (in flat space) goes like 1/d 2 Know Luminosity at source, measure luminosity at earth know the distance Small correction: if curvature take into account (example all the light emitted in a sphere surface from Southpole arrives at Northpole) Essentially start close by and then work further out Cepheid variables: period Luminosity... Supernovae Ia: Luminosity decay period Luminosity

14 Expansion Nobel Prize /43

15 Three main satellites 13/43 COBE: up Final data 1996 WMAP : up Final data 2012 Planck: up Final data??? (3rd batch February 2015) Also many ground based measurements, galaxy surveys,...

16 Perfect black body radiation 14/43

17 Perfect black body radiation 15/43

18 : homogeneity/isotropy 16/43 This is data, not a uniform picture Note: discovered 1960s, Nobel Prize 1978 Penzias Wilson

19 : homogeneity/isotropy 17/43 So v 600 km/s Originally discovered in 1970s

20 : homogeneity/isotropy 18/43 Nobel Prize 2006 Mather Smoot

21 : homogeneity/isotropy 19/43

22 WMAP/Planck 20/43 More frequencies (COBE 3, WMAP 5, Planck 9) Much better angular resolution Much better sensitivity Polarization Note: all-sky pictures have a fit of the foreground removed and a simualated spectrum across the galaxy

23 WMAP 5 year 21/43

24 Planck Nine months 22/43

25 Planck 2 years 23/43

26 Angular spectrum of fluctuations 24/43

27 WMAP 5 year 25/43 Plot temperature or intensity as a function of I (θ, φ) I (θ, φ) = C lm Yl m (θ, φ) lm For each l average the power over m: C l So we have an angular measure and fluctuations Ground based ones add at high l

28 Planck Two years 26/43 Note: SEVEN now visible

29 Everyone 27/43 Dl[µK 2 ] Planck WMAP9 ACT SPT l Can fit to nine

30 The source of the fluctuations 28/43 Small quantum fluctuations do exist blows them up so they cannot disappear again Expected power spectrum P s = A s ( k k 0 ) ns Tensor spectrum can come from priomordial gravitational waves P t = A t ( k k 0 ) nt predics n s 1 (scale invariant) and usually a little below 1. So then inflation stops, what now?

31 Growing and oscillating 29/43 Very long wavelength: frozen in, no time to interact As soon as within horizon (i.e. time to interact) Fluctuations grow: denser spots grow denser, rarer spots grow rarer (gravity is attractive) Then however: universe is dominated by radiation: we know the photon gas If too dense, pressure counteracts the compression by gravity, like sound waves (hence acoustic oscillations) Matter reacts much slower and in first hand only normal matter reacts with the photons So height first peak depends on photon density, we know that one, so get information on total matter and from the different sizes first second peak also on baryonic matter

32 How big is the first peak 30/43 We know the real size of the first peak plus the age, so the angle of view tells us flat, open (hyperbolical) or closed (spherical) from the shape of the triangles If neutrinos had mass: streaming kills of those so upper limit on neutrino mass. fluctuations should hook on to those measured from galaxy distributions (surveys) Number of neutrinos: how many radiation species: affects rate of also visible

33 Parameters 31/43 1 Ω ± Ω Λ ± Ω b h ± Ω c h ± H ± 0.46 km/s/mpc h ± Age ± Gyr n s ± ν m ν < ev w ± 0.045

34 Universe content (WMAP) 32/43 3 No Big Bang SNe: Knop et al. (2003) : Spergel et al. (2003) Clusters: Allen et al. (2002) 2 1 Ω Λ 0 Supernovae expands forever recollapses eventually Clusters closed 1 open flat Ω M

35 Universe content (WMAP) 33/43

36 34/43 Galaxy rotation curves: flat???

37 35/43 Globular clusters: also more matter needed than visible to bound them Seen in essentially all galaxies Clusters of galaxies needed for galaxy formation Weigh galaxies by gravitational lensing: see directly dark matter Colliding galaxies: dust interacts strongly, starsless, dark matter even less

38 36/43 Credit: X-ray: NASA/CXC/M.Markevitch et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al. Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

39 Gravitational waves Copyright: Physics World IOP 37/43

40 Density Wave E-Mode Polarization Pattern Cold Hot Hot Cold Gravitational Wave Squeezes Space Cold Hot Temperature Pattern Seen by Electrons B-Mode Polarization Pattern Stretches Space Hot Cold Credit: BICEP collaboration 38/43

41 39/43 Credit: BICEP collaboration

42 Credit: Wikipedia commons 40/43

43 41/43 : E signal Simulation: E from lensed ΛCDM+noise µK 1.7µK µk Declination [deg.] : B signal 0.3µK Simulation: B from lensed ΛCDM+noise 0.3µK µk Right ascension [deg.] Credit: BICEP collaboration

44 B mode signal µK Declination [deg.] Right ascension [deg.] Credit: BICEP collaboration 42/43

45 43/ BICEP QUAD QUIET Q QUIET W CBI Boomerang DASI WMAP CAPMAP l(l+1)c l BB /2π [µk 2 ] r=0.2 lensing Multipole

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23 II. The Universe Around Us ASTR378 Cosmology : II. The Universe Around Us 23 Some Units Used in Astronomy 1 parsec distance at which parallax angle is 1 ; 1 pc = 3.086 10 16 m ( 3.26 light years; 1 kpc

More information

Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that

Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that A) Galaxy B is two times further away than Galaxy A. B) Galaxy

More information

Testing the Big Bang Idea

Testing the Big Bang Idea Reading: Chapter 29, Section 29.2-29.6 Third Exam: Tuesday, May 1 12:00-2:00 COURSE EVALUATIONS - please complete these online (recitation and lecture) Last time: Cosmology I - The Age of the & the Big

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

4 The Big Bang, the genesis of the Universe, the origin of the microwave background

4 The Big Bang, the genesis of the Universe, the origin of the microwave background 4 The Big Bang, the genesis of the Universe, the origin of the microwave background a(t) = 0 The origin of the universe: a(t) = 0 Big Bang coined by Fred Hoyle he calculated the ratio of elements created

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Today. Course Evaluations Open. Modern Cosmology. The Hot Big Bang. Age & Fate. Density and Geometry. Microwave Background

Today. Course Evaluations Open. Modern Cosmology. The Hot Big Bang. Age & Fate. Density and Geometry. Microwave Background Today Modern Cosmology The Hot Big Bang Age & Fate Density and Geometry Microwave Background Course Evaluations Open Cosmology The study of the universe as a physical system Historically, people have always

More information

Lecture #25: Plan. Cosmology. The early Universe (cont d) The fate of our Universe The Great Unanswered Questions

Lecture #25: Plan. Cosmology. The early Universe (cont d) The fate of our Universe The Great Unanswered Questions Lecture #25: Plan Cosmology The early Universe (cont d) The fate of our Universe The Great Unanswered Questions Announcements Course evaluations: CourseEvalUM.umd.edu Review sheet #3 was emailed to you

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 11 Nov. 13, 2015 Today Cosmic Microwave Background Big Bang Nucleosynthesis Assignments This week: read Hawley and Holcomb,

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

The Big Bang. Olber s Paradox. Hubble s Law. Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe

The Big Bang. Olber s Paradox. Hubble s Law. Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe The Big Bang Olber s Paradox Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe Hubble s Law v = H0 d v = recession velocity in km/sec d = distance in Mpc H 0 =

More information

Cosmology after Planck

Cosmology after Planck Cosmology after Planck Raphael Flauger Rencontres de Moriond, March 23, 2014 Looking back Until ca. 1997 data was consistent with defects (such as strings) generating the primordial perturbations. (Pen,

More information

Dark Energy and the Accelerating Universe

Dark Energy and the Accelerating Universe Dark Energy and the Accelerating Universe Dragan Huterer Department of Physics University of Michigan The universe today presents us with a grand puzzle: What is 95% of it made of? Shockingly, we still

More information

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Homework. Set 8now. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Review for Final. In class on Thursday. Course Evaluation. https://rateyourclass.msu.edu /

More information

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light _ (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe Lecture #24: Plan Cosmology Expansion of the Universe Olber s Paradox Birth of our Universe Reminder: Redshifts and the Expansion of the Universe Early 20 th century astronomers noted: Spectra from most

More information

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data.

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data. Cosmology Cosmology is the study of the origin and evolution of the Universe, addressing the grandest issues: How "big" is the Universe? Does it have an "edge"? What is its large-scale structure? How did

More information

The Search for the Complete History of the Cosmos. Neil Turok

The Search for the Complete History of the Cosmos. Neil Turok The Search for the Complete History of the Cosmos Neil Turok * The Big Bang * Dark Matter and Energy * Precision Tests * A Cyclic Universe? * Future Probes BIG Questions * What are the Laws of Nature?

More information

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Licia Verde. Introduction to cosmology. Lecture 4. Inflation Licia Verde Introduction to cosmology Lecture 4 Inflation Dividing line We see them like temperature On scales larger than a degree, fluctuations were outside the Hubble horizon at decoupling Potential

More information

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) Unseen Influences Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

The Big Bang The Beginning of Time

The Big Bang The Beginning of Time The Big Bang The Beginning of Time What were conditions like in the early universe? The early universe must have been extremely hot and dense Photons converted into particle-antiparticle pairs and vice-versa

More information

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law Chapter 21 Evidence of the Big Bang Hubble s Law Universal recession: Slipher (1912) and Hubble found that all galaxies seem to be moving away from us: the greater the distance, the higher the redshift

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments Intersection of physics (fundamental laws) and astronomy (contents of the universe)

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift = Cosmology Study of the structure and origin of the universe Observational science The large-scale distribution of galaxies Looking out to extremely large distances The motions of galaxies Clusters of galaxies

More information

What is the evidence that Big Bang really occurred

What is the evidence that Big Bang really occurred What is the evidence that Big Bang really occurred Hubble expansion of galaxies Microwave Background Abundance of light elements but perhaps most fundamentally... Darkness of the night sky!! The very darkness

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

Physics Nobel Prize 2006

Physics Nobel Prize 2006 Physics Nobel Prize 2006 Ghanashyam Date The Institute of Mathematical Sciences, Chennai http://www.imsc.res.in shyam@imsc.res.in Nov 4, 2006. Organization of the Talk Organization of the Talk Nobel Laureates

More information

The first 400,000 years

The first 400,000 years The first 400,000 years All about the Big Bang Temperature Chronology of the Big Bang The Cosmic Microwave Background (CMB) The VERY early universe Our Evolving Universe 1 Temperature and the Big Bang

More information

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe. Island Universes Up to 1920 s, many thought that Milky Way encompassed entire universe. Observed three types of nebulas (clouds): - diffuse, spiral, elliptical - many were faint, indistinct - originally

More information

Taking the Measure of the Universe. Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012

Taking the Measure of the Universe. Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012 Taking the Measure of the Universe Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012 The Big Bang Theory What is wrong with this picture? The Big Bang Theory The Big bang

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 9, sections 9.4 and 9.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Lecture 37 Cosmology [not on exam] January 16b, 2014

Lecture 37 Cosmology [not on exam] January 16b, 2014 1 Lecture 37 Cosmology [not on exam] January 16b, 2014 2 Structure of the Universe Does clustering of galaxies go on forever? Looked at very narrow regions of space to far distances. On large scales the

More information

Simulating Cosmic Microwave Background Fluctuations

Simulating Cosmic Microwave Background Fluctuations Simulating Cosmic Microwave Background Fluctuations Mario Bisi Emma Kerswill Picture taken from: http://astro.uchicago.edu/~tyler/omegab.html Introduction What is the CMB and how was it formed? Why is

More information

Modern Cosmology Final Examination Solutions 60 Pts

Modern Cosmology Final Examination Solutions 60 Pts Modern Cosmology Final Examination Solutions 6 Pts Name:... Matr. Nr.:... February,. Observable Universe [4 Pts] 6 Pt: Complete the plot of Redshift vs Luminosity distance in the range < z < and plot (i)

More information

20 Lecture 20: Cosmic Microwave Background Radiation continued

20 Lecture 20: Cosmic Microwave Background Radiation continued PHYS 652: Astrophysics 103 20 Lecture 20: Cosmic Microwave Background Radiation continued Innocent light-minded men, who think that astronomy can be learnt by looking at the stars without knowledge of

More information

Lecture 20 Cosmology, Inflation, dark matter

Lecture 20 Cosmology, Inflation, dark matter The Nature of the Physical World November 19th, 2008 Lecture 20 Cosmology, Inflation, dark matter Arán García-Bellido 1 News Exam 2: good job! Ready for pick up after class or in my office Average: 74/100

More information

Astronomy 422. Lecture 20: Cosmic Microwave Background

Astronomy 422. Lecture 20: Cosmic Microwave Background Astronomy 422 Lecture 20: Cosmic Microwave Background Key concepts: The CMB Recombination Radiation and matter eras Next time: Astro 422 Peer Review - Make sure to read all 6 proposals and send in rankings

More information

Set 1: Expansion of the Universe

Set 1: Expansion of the Universe Set 1: Expansion of the Universe Syllabus Course text book: Ryden, Introduction to Cosmology, 2nd edition Olber s paradox, expansion of the universe: Ch 2 Cosmic geometry, expansion rate, acceleration:

More information

Structure in the CMB

Structure in the CMB Cosmic Microwave Background Anisotropies = structure in the CMB Structure in the CMB Boomerang balloon flight. Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

Cosmology: The History of the Universe

Cosmology: The History of the Universe Cosmology: The History of the Universe The Universe originated in an explosion called the Big Bang. Everything started out 13.7 billion years ago with zero size and infinite temperature. Since then, it

More information

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology Mysteries of D.V. Fursaev JINR, Dubna the Universe Problems of the Modern Cosmology plan of the lecture facts about our Universe mathematical model, Friedman universe consequences, the Big Bang recent

More information

Astroparticle physics the History of the Universe

Astroparticle physics the History of the Universe Astroparticle physics the History of the Universe Manfred Jeitler and Wolfgang Waltenberger Institute of High Energy Physics, Vienna TU Vienna, CERN, Geneva Wintersemester 2016 / 2017 1 The History of

More information

4.3 The accelerating universe and the distant future

4.3 The accelerating universe and the distant future Discovering Astronomy : Galaxies and Cosmology 46 Figure 55: Alternate histories of the universe, depending on the mean density compared to the critical value. The left hand panel shows the idea graphically.

More information

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies)

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies) ASTR 1040 Accel Astro: Stars & Galaxies Today s s `Cosmological Events Look at models for our universe,, and what prompted ideas about big-bang bang beginnings Cosmic Microwave Background Simulation: Large-scale

More information

Lecture 34: The Big Bang Readings: Sections 28-3 and 28-6

Lecture 34: The Big Bang Readings: Sections 28-3 and 28-6 Lecture 34: The Big Bang Readings: Sections 28-3 and 28-6 Key Ideas: Big Bang Model of the Universe Universe starts in a hot, dense state in the past Universe expands & cools with time Cosmological Redshift

More information

BASICS OF COSMOLOGY Astro 2299

BASICS OF COSMOLOGY Astro 2299 BASICS OF COSMOLOGY Astro 2299 We live in a ΛCDM universe that began as a hot big bang (BB) and has flat geometry. It will expand forever. Its properties (laws of physics, fundamental constants) allow

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past Gravity: Einstein s General Theory of Relativity The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Gravity: Einstein s General Theory of Relativity Galileo and falling

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Galileo and falling bodies Galileo Galilei: all bodies fall at the same speed force needed to accelerate a body is

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang 1 Outline Observational Cosmology:

More information

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2 Physics 661 Particle Physics Phenomenology October 2, 2003 Evidence for theory: Hot Big Bang Model Present expansion of the Universe Existence of cosmic microwave background radiation Relative abundance

More information

Cosmology. Thornton and Rex, Ch. 16

Cosmology. Thornton and Rex, Ch. 16 Cosmology Thornton and Rex, Ch. 16 Expansion of the Universe 1923 - Edwin Hubble resolved Andromeda Nebula into separate stars. 1929 - Hubble compared radial velocity versus distance for 18 nearest galaxies.

More information

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight Guiding Questions 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands,

More information

The Beginning of the Universe 8/11/09. Astronomy 101

The Beginning of the Universe 8/11/09. Astronomy 101 The Beginning of the Universe 8/11/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Outline for Today Astronomy Picture of the Day Return Lab 11 Astro News Q&A Session Dark Energy Cosmic Microwave

More information

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe Cosmology Cosmology Study of the origin, evolution and future of the Universe Obler s Paradox If the Universe is infinite why is the sky dark at night? Newtonian Universe The Universe is infinite and unchanging

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background The Cosmic Microwave Background Key Concepts 1) The universe is filled with a Cosmic Microwave Background (CMB). 2) The microwave radiation that fills the universe is nearly

More information

Chapter 22 Back to the Beginning of Time

Chapter 22 Back to the Beginning of Time Chapter 22 Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Back to the Big Bang The early Universe was both dense and hot. Equivalent mass density of radiation (E=mc

More information

Modeling the Universe A Summary

Modeling the Universe A Summary Modeling the Universe A Summary Questions to Consider 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands, what, if anything, is it expanding

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

Ringing in the New Cosmology

Ringing in the New Cosmology Ringing in the New Cosmology 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Acoustic Peaks in the CMB Wayne Hu Temperature Maps CMB Isotropy Actual Temperature Data COBE 1992 Dipole

More information

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc.

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc. OUSSEP Final Week Last week hopefully read Holiday-Week 23rd November Lecture notes Hand in your Hubble Deep Field Reports today! (If not today then in my mail box @ International College.) Today we will

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 3 Our universe (and its fate) In this lecture we discuss the observed values for the different forms of energy and matter in our universe.

More information

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Information Makeup quiz Wednesday, May 31, 5-6PM, Planetarium Review Session, Monday, June 5 6PM, Planetarium Cosmology Study of the universe

More information

The cosmic microwave background radiation

The cosmic microwave background radiation The cosmic microwave background radiation László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 May 18, 2018. Origin of the cosmic microwave radiation Photons in the plasma are

More information

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3.

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3. Announcements SEIs! Quiz 3 Friday. Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3. Lecture today, Wednesday, next Monday. Final Labs Monday & Tuesday next week. Quiz 3

More information

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy II. Cosmology: How the universe developed Outstanding features of the universe today: 1. It is big, and full of galaxies. 2. It has structure: the galaxies are clumped in filaments and sheets The structure

More information

Phys/Astro 689: Lecture 1. Evidence for Dark Matter

Phys/Astro 689: Lecture 1. Evidence for Dark Matter Phys/Astro 689: Lecture 1 Evidence for Dark Matter Why? This class is primarily a consideration of whether Cold Dark Matter theory can be reconciled with galaxy observations. Spoiler: CDM has a small scale

More information

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence that the Universe began with a Big Bang? How has the Universe

More information

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox Suppose the Universe were not expanding, but was in some kind of steady state. How should galaxy recession velocities correlate with distance? They should a) be directly proportional to distance. b) reverse

More information

Cosmology Dark Energy Models ASTR 2120 Sarazin

Cosmology Dark Energy Models ASTR 2120 Sarazin Cosmology Dark Energy Models ASTR 2120 Sarazin Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing) Final Exam Thursday, May 2,

More information

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu CMB Anisotropies: The Acoustic Peaks 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Astro 280, Spring 2002 Wayne Hu Physical Landscape 100 IAB Sask 80 Viper BAM TOCO Sound Waves

More information

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Cosmology Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Assumptions in Cosmology Copernican principle: We do not

More information

13/01/2017. the. Big Bang. Friedmann, Lemaitre. Cosmic Expansion History

13/01/2017. the. Big Bang. Friedmann, Lemaitre. Cosmic Expansion History 13/01/2017 the Big Bang Friedmann, Lemaitre & Cosmic Expansion History 1 Alexander Friedmann (1888 1925) George Lemaitre (1894 1966) They discovered (independently) theoretically the expansion of the Universe

More information

Cosmology. Big Bang and Inflation

Cosmology. Big Bang and Inflation Cosmology Big Bang and Inflation What is the Universe? Everything we can know about is part of the universe. Everything we do know about is part of the universe. Everything! The Universe is expanding If

More information

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe ASTR 1120 General Astronomy: Stars & Galaxies FINAL: Saturday, Dec 12th, 7:30pm, HERE ALTERNATE FINAL: Monday, Dec 7th, 5:30pm in Muenzinger E131 Last OBSERVING session, Tue, Dec.8th, 7pm Please check

More information

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation )

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation ) WMAP Density fluctuations at t = 79,000 yr he Growth of Structure Read [CO 0.2] 1.0000 1.0001 0.0001 10 4 Early U. contained condensations of many different sizes. Current large-scale structure t = t 0

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

ASTR 101 General Astronomy: Stars & Galaxies

ASTR 101 General Astronomy: Stars & Galaxies ASTR 101 General Astronomy: Stars & Galaxies ANNOUNCEMENTS MIDTERM III: Tuesday, Nov 24 th Midterm alternate day: Fri, Nov 20th, 11am, ESS 450 At LAST: In the very Beginning BIG BANG: beginning of Time

More information

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741 Lecture 19 Nuclear Astrophysics Baryons, Dark Matter, Dark Energy Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Haxton, Nuclear Astrophysics - Basdevant, Fundamentals

More information

ASTR 101 General Astronomy: Stars & Galaxies

ASTR 101 General Astronomy: Stars & Galaxies ASTR 101 General Astronomy: Stars & Galaxies ANNOUNCEMENTS FINAL EXAM: THURSDAY, May 14 th, 11:15am Last Astronomy public talk, May 8 th (up to 3% Extra class credit (see Blackboard announcement for details)

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 2; January 8 2014 Previously on PHYS133 Units in astrophysics Olbers paradox The night sky is dark. Inconsistent with and eternal, static and infinite

More information

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum The Cosmic Microwave Background Part II Features of the Angular Power Spectrum Angular Power Spectrum Recall the angular power spectrum Peak at l=200 corresponds to 1o structure Exactly the horizon distance

More information

Early (Expanding) Universe. Average temperature decreases with expansion.

Early (Expanding) Universe. Average temperature decreases with expansion. Early (Expanding) Universe Average temperature decreases with expansion. Particles & Anti-Particles Very short wavelength photons collide and form electron-positron pairs. E=mc 2 electron=matter positron=antimatter

More information

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics The Universe: What We Know and What we Don t Fundamental Physics Cosmology Elementary Particle Physics 1 Cosmology Study of the universe at the largest scale How big is the universe? Where What Are did

More information